Determination of Trace Mercury in Rocks by Dual-channel Atomic Fluorescence Spectrometry and Solid Sampling-Cold Atomic Absorption Spectrometry
-
摘要:
岩石中的痕量汞检测往往因内部晶胞结构复杂,使得热水浴酸解提取不彻底、挥发损失以及接触污染等引起结果偏差和不稳定。本文在前人研究的基础上,采用中国研制的双通道-原子荧光光谱仪和固体进样-冷原子吸收光谱仪分析岩石中的痕量汞,以探索最佳检测方案。双通道-原子荧光光谱分析中,优化的实验条件为:以80%王水溶液对样品沸水浴提取50min,灯电流30mA,负高压280V,载气流速600mL/min,屏蔽气流速1000mL/min。测定痕量汞浓度范围为0.05~2μg/L,线性相关系数r>0.999,取样量为0.2g下方法检出限为0.285μg/kg,相对标准偏差为7.3%~15.3%。固体进样-冷原子吸收法光谱分析中,避免了化学消解处理直接进样测定,主要实验条件为:载气流速180mL/min,裂解程序700℃保持60s。测定痕量汞浓度范围为0.05~5ng,线性相关系数r>0.999,取样量为0.1g下方法检出限为0.046μg/kg,相对标准偏差为1.3%~4.2%。通过实验结果对比表明,固体进样-冷原子吸收光谱法的操作性、检出限以及稳定性均优于双通道-原子荧光光谱法,更适用于岩石中的痕量汞测定。
-
关键词:
- 岩石 /
- 痕量汞 /
- 双通道-原子荧光光谱法 /
- 固体进样-冷原子吸收光谱法
Abstract:BACKGROUND The detection of trace mercury in rocks typically provides biased and non-reliable results because of the complex internal unit cell structure, incomplete hot water bath acid hydrolysis extraction, volatilization loss, and contact pollution.
OBJECTIVES To establish a more effective method for the determination of trace mercury concentrations in rocks.
METHODS Dual-channel atomic fluorescence spectrometry (AFS) and domestic solid sampling-cold atomic absorption spectrometry (AAS) were used to detect the total concentration of trace mercury in rocks.
RESULTS Under the optimized conditions of dual-channel AFS, the samples were extracted in a boiling water bath with 80% aqua regia solution for 50min. The current was 30mA, the negative high voltage was 280V, the carrier gas flow was 600mL/min, and the shielding gas flow was 1000mL/min. The concentration range was 0.05-2μg/L, and the linear correlation coefficient was greater than 0.999. The sample weight was 0.2g, method detection limit was 0.285μg/kg, and relative standard deviation was 7.3%-15.3%. For domestic solid sampling-cold AAS, the sample was determined by direct injection without chemical digestion. The carrier gas flow was 180mL/min, pyrolysis process was conducted for 60s at 700℃. The concentration range was determined to be 0.05-5ng, and the linear correlation coefficient was greater than 0.999. The sample weight was 0.1g, method detection limit was 0.046μg/kg, and relative standard deviation was 1.3%-4.2%.
CONCLUSIONS The solid sampling-cold AAS was found to be more effective than dual-channel AFS in terms of operation, detection limit, and stability. It is more suitable for the determination of trace mercury in rocks.
-
-
表 1 方法精密度和准确度数据
Table 1. Precision and accuracy data of the methods
标准物质编号 银含量标准值(μg/kg) 固体进样-冷原子吸收光谱法 双通道-原子荧光光谱法 单通道-原子荧光光谱法 7次实测均值(μg/kg) RSD (%) 相对偏差(%) 7次实测均值(μg/kg) RSD (%) 相对偏差(%) 7次实测均值(μg/kg) RSD (%) 相对偏差(%) GBW07103 4.1±1.2 4.04 1.4 -1.5 3.87 9.9 -5.6 3.53 11.2 -13.9 GBW07106 8.0±2.0 8.41 3.3 5.1 7.55 8.6 -5.6 7.27 9.5 -9.1 GBW07108 16.0±2.0 15.8 1.3 -1.3 15.6 7.3 -2.5 16.8 10.3 5.0 GBW07122 3.3±0.8 3.37 4.2 2.1 3.45 15.3 4.5 2.81 14.8 -14.8 表 2 固体进样-冷原子吸收光谱仪和国外同类仪器测试汞含量情况对比
Table 2. Comparison of Hg content determined by domestic solid sampling-cold atomic absorption spectrometry instrument and imported similar instruments
仪器制造商 仪器型号 主要参数条件 测试对象 检出限(μg/kg) RSD (%) 文献来源 鲁美克斯(LUMEX) RA-915M 载气流速:0.8~1.2L/min
裂解温度:680~740℃载金碳 0.7 1.2~8.0 罗荣根[21] 迈尔斯通(MILESTONE) DMA-80 载气流速:0.2L/min
裂解温度:800℃/330s锌精矿 4.4 5.3 罗明贵等[22] 利曼(LEEMAN) Hydra-C 载气流速:0.35L/min
裂解温度:800℃/60s土壤 3 9 路新燕等[32] 利曼(LEEMAN) Hydra-C 载气流速:0.35L/min
裂解温度:800℃/150s土壤 0.06 2 孙有娥等[33] 迈尔斯通(MILESTONE) DMA-80 载气流速:0.2L/min
裂解温度:800℃/150s海洋底栖生物 0.9 1.77 宋永刚等[35] 开元弘盛 5E-HGT2321 载气流速:0.5L/min
裂解温度:350℃粮食 0.01 5.2 秦祎芳等[36] 迈尔斯通(MILESTONE) DMA-80 载气流速:0.2L/min
裂解温度:800℃/150s脉红螺 0.2 2.2 宋永刚等[37] 北京海光仪器 HGA-100 载气流速:0.18L/min
裂解温度:700℃/60s岩石 0.046 4.2 本文研究 -
[1] 赵博, 张德会, 于蕾, 等. 从克拉克值到元素的地球化学性质或行为再到成矿作用[J]. 矿物岩石地球化学通报, 2014, 33(2): 252-261. doi: 10.3969/j.issn.1007-2802.2014.02.014
Zhao B, Zhang D H, Yu L, et al. From Clarke value to geochemical properties or behavior of elements to mineralization[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 252-261. doi: 10.3969/j.issn.1007-2802.2014.02.014
[2] 周子俣, 罗先熔, 文美兰, 等. 河南洛宁县石龙山多金属金矿区土壤热释汞测量及找矿预测[J]. 矿物岩石, 2018, 38(2): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201802007.htm
Zhou Z Y, Luo X R, Wen M L, et al. Soil thermomercury release survey and prospecting prediction of Shilongshan polymetallic gold deposit in Luoning County, Henan Province[J]. Mineralogy and Petrology, 2018, 38(2): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201802007.htm
[3] 边鹏. 汞的找矿指导作用[J]. 矿物学报, 2015, 35(增刊1): 566. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1405.htm
Bian P. Guiding role of mercury in ore prospecting[J]. Acta Mineralogica Sinica, 2015, 35(Supplement 1): 566. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1405.htm
[4] 李惠, 张国义, 禹斌, 等. 构造叠加晕找盲矿法及其在矿山深部找矿效果[J]. 地学前缘, 2010, 17(1): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001028.htm
Li H, Zhang G Y, Yu B, et al. Structural super imposed halos method for prospeting blind or body in the deep of districts[J]. Earth Science Frontiers, 2010, 17(1): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001028.htm
[5] 迟清华. 汞在地壳、岩石和疏松沉积物中的分布[J]. 地球化学, 2004, 33(6): 641-649. doi: 10.3321/j.issn:0379-1726.2004.06.013
Chi Q H. Distribution of mercury in the Earth's crust, rocks and loose sediments[J]. Geochimica, 2004, 33(6): 641-649. doi: 10.3321/j.issn:0379-1726.2004.06.013
[6] 梁斌, 詹蔚. 探讨环境中冷原子吸收法对汞的测定[J]. 环境与发展, 2018(2): 121, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201802069.htm
Liang B, Zhan W. Determination of mercury by cold atomic absorption spectrometry in the environment[J]. Environment and Development, 2018(2): 121, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201802069.htm
[7] 张礼仲, 李文贵, 李岚, 等. ICP法与AA法测定铅、砷、汞的比对分析[J]. 食品安全导刊, 2017(6): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAQ201736053.htm
Zhang L Z, Li W G, Li L, et al. Comparative analysis of ICP method and AA method for determination of lead, arsenic and mercury[J]. China Food Safety Magazine, 2017(6): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAQ201736053.htm
[8] 巧宁强, 薛志伟, 王刚峰, 等. 索氏提取-原子荧光光谱法测定含油岩心中的汞和砷[J]. 岩矿测试, 2019, 38(4): 461-467. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812030128
Qiao N Q, Xue Z W, Wang G F, et al. Soxhlet extract-atomic fluorescence spectrometry for the determination of mercury and arsenic in oil-bearing cores[J]. Rock and Mineral Analysis, 2019, 38(4): 461-467. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812030128
[9] 陆迁树, 段文, 李发刚, 等. 冷原子汞发生-原子荧光光谱法测定地球化学样品中痕量汞[J]. 理化检验(化学分册), 2019, 55(3): 338-342. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201903022.htm
Lu Q S, Duan W, Li F G, et al. Determination of trace mercury in geochemical samples by cold atomic mercury-atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2019, 55(3): 338-342. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201903022.htm
[10] 王谦, 郑琳, 任飞, 等. 悬浮液进样-全反射X射线荧光光谱法测定膏霜类化妆品中的铅、砷和汞[J]. 分析化学, 2018, 46(4): 517-523. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201804009.htm
Wang Q, Zheng L, Ren F, et al. Determination of lead, arsenic and mercury in cream cosmetics by suspension sampling-total reflection X-ray fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 517-523. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201804009.htm
[11] 卢水淼, 李鹰, 李剑, 等. 电感耦合等离子体质谱法测定地表水中汞及其记忆效应的消除[J]. 理化检验(化学分册), 2019, 55(10): 1222-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201910022.htm
Lu S M, Li Y, Li J, et al. Determination of mercury and its memory effects in surface water by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(10): 1222-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201910022.htm
[12] 林少美, 林彩琴, 郑三燕, 等. 电感耦合等离子体质谱法测定苦丁茶中的铅、镉、砷、汞和铬[J]. 中国卫生检验杂志, 2020(1): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ202001006.htm
Lin S M, Lin C Q, Zheng S Y, et al. Determination of lead, cadmium, arsenic, mercury and chromium in Bittersweet tea by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2020(1): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ202001006.htm
[13] 林海兰, 朱日龙, 于磊, 等. 水浴消解-原子荧光光谱法测定土壤和沉积物中砷、汞、硒、锑和铋[J]. 光谱学与光谱分析, 2020, 40(5): 1528-1533. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202005043.htm
Lin H L, Zhu R L, Yu L, et al. Water bath digestion-determination of arsenic, mercury, selenium, antimony and bismuth in soil and sediment by atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1528-1533. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202005043.htm
[14] 张宏康, 邵丹, 王中瑗, 等. 食品中痕量汞的检测方法研究进展[J]. 食品安全质量检测学报, 2019, 10(5): 1230-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201905030.htm
Zhang H K, Shao D, Wang Z Y, et al. Research progress on determination methods of trace mercury in food[J]. Journal of Food Safety & Quality, 2019, 10(5): 1230-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201905030.htm
[15] 杨常青, 萧达辉, 康菲, 等. 氧弹分解-原子荧光法快速测定煤中汞方法的改进[J]. 分析试验室, 2017, 36(10): 1184-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201710015.htm
Yang C Q, Xiao D H, Kang F, et al. An improved method for the rapid determination of mercury in coal by oxygen bomb decomposition and atomic fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(10): 1184-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201710015.htm
[16] 颜巧丽, 李悟庆, 刘天一, 等. 电感耦合等离子体质谱法测定汞元素校准曲线线性探讨[J]. 安徽农业科学, 2020(11): 202-204. doi: 10.3969/j.issn.0517-6611.2020.11.056
Yang Q L, Li W Q, Liu T Y, et al. Determination of mercury calibration curve linearity by inductively coupled plasma mass spectrometry[J]. Journal of Anhui Agricultural Sciences, 2020(11): 202-204. doi: 10.3969/j.issn.0517-6611.2020.11.056
[17] 李耀磊, 金红宇, 韩笑, 等. 电感耦合等离子体质谱测定法中汞元素记忆效应与稳定性研究[J]. 中国药学杂志, 2019, 54(1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201901009.htm
Li Y L, Jin H Y, Han X, et al. Memory effects and stability of mercury in inductively coupled plasma mass spectrometry[J]. Chinese Pharmaceutical Journal, 2019, 54(1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201901009.htm
[18] Linsa S S, Virgensa C F, dos Santosa W N L, et al. On-line solid phase extraction system using an ion imprinted polymer based on dithizone chelating for selective preconcentration and determination of mercury(Ⅱ) in natural waters by CV-AFS[J]. Microchemical Journal, 2019, 150: 104075-104075. doi: 10.1016/j.microc.2019.104075
[19] 周慧君, 帅琴, 黄云杰, 等. 双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞[J]. 岩矿测试, 2017, 36(5): 474-480, 449. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201703010024
Zhou H J, Shuai Q, Huang Y J, et al. Determination of trace mercury in geological samples by solid phase extraction with modified GO/Chitosan composite microsphere[J]. Rock and Mineral Analysis, 2017, 36(5): 474-480, 449. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201703010024
[20] 乔磊, 叶永盛, 李鹰, 等. 固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属[J]. 岩矿测试, 2020, 39(1): 99-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907170107
Qiao L, Ye Y S, Li Y, et al. Analysis of heavy metals in soil by electrothermal evaporation inductively coupled plasma mass spectrometry with direct solid injection[J]. Rock and Mineral Analysis, 2020, 39(1): 99-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907170107
[21] 罗荣根. 应用固体测汞仪直接测定载金碳中的总汞[J]. 岩矿测试, 2016, 35(4): 420-424. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.014
Luo R G. Direct determination of total mercury in gold-bearing carbon by solid mercury meter[J]. Rock and Mineral Analysis, 2016, 35(4): 420-424. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.014
[22] 罗明贵, 谢毓群, 李通耀, 等. 固体进样直接测定法测定锌精矿中汞[J]. 冶金分析, 2020, 40(9): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202009013.htm
Luo M G, Xie Y Q, Li T Y, et al. Determination of mercury in zinc concentrate by direct solid injection method[J]. Metallurgical Analysis, 2020, 40(9): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202009013.htm
[23] 陆建平, 覃梦琳, 布静龙, 等. 分散液液微萃取-原子荧光光度法测定大米中的汞[J]. 光谱学与光谱分析, 2017, 37(11): 3606-3609. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201711059.htm
Lu J P, Qin M L, Bu J L, et al. Determination of mercury in rice by dispersive liquid-liquid microextraction atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3606-3609. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201711059.htm
[24] 李明章, 林建奇. 微波消解-原子荧光光谱法同时测定食醋中的砷和汞[J]. 理化检验(化学分册), 2016, 52(2): 222-225.
Li M Z, Lin J Q. Simultaneous determination of arsenic and mercury in vinegar by microwave digestion and atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(2): 222-225.
[25] 李自强, 胡斯宪, 李小英, 等. 水浴浸提-氢化物发生-原子荧光光谱法同时测定土壤污染普查样品中砷和汞[J]. 理化检验(化学分册), 2018, 54(4): 480-483. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804024.htm
Li Z Q, Hu S X, Li X Y, et al. Simultaneous determination of arsenic and mercury in soil pollution census samples by water bath extraction hydride generation atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 480-483. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804024.htm
[26] 谭丽娟, 唐玉霜, 黄利宁, 等. 氢化物发生-原子荧光光谱法测定1: 5万区域地质调查样品中的As、Sb、Bi、Hg等4种元素[J]. 中国无机分析化学, 2019, 9(1): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201904005.htm
Tan L J, Tang Y S, Huang L N, et al. Determination of As, Sb, Bi and Hg in 1: 50000 regional geological survey samples by hydride generation-atomic fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201904005.htm
[27] 李丹, 于静, 钱玉萍. 氢化物发生原子荧光法测定陆地水中痕量汞[J]. 资源环境与工程, 2009(6): 867-869. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200906025.htm
Li D, Yu J, Qian Y P. Determination of trace mercury in terrestrial water by hydride generation atomic fluorescence spectrometry[J]. Resources Environment & Engineering, 2009(6): 867-869. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200906025.htm
[28] 张馨予, 王劲榕. 氢化物发生-原子荧光光谱法测定纯铝中的痕量汞[J]. 云南冶金, 2011, 40(6): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ201106015.htm
Zhang X Y, Wang J R. Determination of trace mercury in pure aluminum by hydride generation-atomic fluorescence spectrometry[J]. Yunnan Metallurgy, 2011, 40(6): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ201106015.htm
[29] 张锦茂, 张勤. 冷原子无色散原子荧光法测定地球化学样品中的微量汞[J]. 岩矿测试, 1986, 15(1): 37-41. http://www.ykcs.ac.cn/article/id/ykcs_19860112
Zhang J M, Zhang Q. Determination of trace mercury in geochemical samples by cold atom dispersion-free atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 1986, 15(1): 37-41. http://www.ykcs.ac.cn/article/id/ykcs_19860112
[30] 余文丽, 王振生, 王小强. 氢化物发生-原子荧光法测田螺中硒、汞[J]. 当代化工, 2020(1): 204-207. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202001067.htm
Yu W L, Wang Z S, Wang X Q. Determination of selenium and mercury in snails by hydride generation-atomic fluorescence method[J]. Contemporary Chemical Industry, 2020(1): 204-207. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202001067.htm
[31] 林建奇. 直接进样测汞仪测定地质样品中汞的应用研究[J]. 地质装备, 2020, 21(2): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZB202002017.htm
Lin J Q. Study on the application of direct injection mercury detector in the determination of mercury in geological samples[J]. Equipment for Geotechnical Engineering, 2020, 21(2): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZB202002017.htm
[32] 路新燕, 陈纯, 高勇, 等. 固体进样-冷原子吸收法直接测定土壤中总汞[J]. 中国环境监测, 2016, 32(3): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201603021.htm
Lu X Y, Chen C, Gao Y, et al. Direct determination of total mercury in soil by solid sampling cold atomic absorption spectrometry[J]. Environmental Monitoring in China, 2016, 32(3): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201603021.htm
[33] 孙有娥, 李一辰, 程春艳, 等. 测汞仪固体直接进样测定土壤中总汞[J]. 化学分析计量, 2018, 27(6): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201806035.htm
Sun Y E, Li Y C, Cheng C Y, et al. Determination of total mercury in soil by solid direct injection mercury analyzer[J]. Chemical Analysis and Meterage, 2018, 27(6): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201806035.htm
[34] 宋姗娟, 刘彬, 赵颖. 水浴消解-原子荧光法同时测定土壤中的汞、砷、硒、锑[J]. 土壤通报, 2020, 51(3): 630-633. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003017.htm
Song S J, Liu B, Zhao Y. Simultaneous determination of mercury, arsenic, selenium and antimony in soil by water bath digestion atomic fluorescence spectrometry[J]. Soil Bulletin, 2020, 51(3): 630-633. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003017.htm
[35] 宋永刚, 于彩芬, 张玉凤, 等. 直接测汞仪与原子荧光法测定海洋底栖生物中痕量汞的对比研究[J]. 分析科学学报, 2016, 32(2): 288-290. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201602029.htm
Song Y G, Yu C F, Zhang Y F, et al. Comparative study on the determination of trace mercury in marine benthos by direct mercury analyzer and atomic fluorescence spectrometry[J]. Journal of Analytical Science, 2016, 32(2): 288-290. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201602029.htm
[36] 秦祎芳, 张红云, 高敬铭, 等. 原子荧光光谱法和快速测汞仪法测定粮食中汞的对比研究[J]. 食品科技, 2020, 45(8): 282-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202008048.htm
Qin Y F, Zhang H Y, Gao J M, et al. Comparative study on determination of mercury in grain by atomic fluorescence spectrometry and rapid mercury analyzer[J]. Food Science and Technology, 2020, 45(8): 282-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202008048.htm
[37] 宋永刚, 于彩芬, 张玉凤, 等. 脉红螺中痕量汞分析方法的研究[J]. 中国无机分析化学, 2016, 6(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201601001.htm
Song Y G, Yu C F, Zhang Y F, et al. Study on the analysis method of trace mercury in red snail[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201601001.htm
-