中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

μ-XRF技术在黄龙铺钼(铀)矿床铀矿物学研究中的应用

张熠阳, 钟福军, 杜景勇, 严杰, 潘春蓉, 黄卉, 康清清, 潘家永. μ-XRF技术在黄龙铺钼(铀)矿床铀矿物学研究中的应用[J]. 岩矿测试, 2022, 41(1): 32-42. doi: 10.15898/j.cnki.11-2131/td.202105260067
引用本文: 张熠阳, 钟福军, 杜景勇, 严杰, 潘春蓉, 黄卉, 康清清, 潘家永. μ-XRF技术在黄龙铺钼(铀)矿床铀矿物学研究中的应用[J]. 岩矿测试, 2022, 41(1): 32-42. doi: 10.15898/j.cnki.11-2131/td.202105260067
ZHANG Yi-yang, ZHONG Fu-jun, DU Jing-yong, YAN Jie, PAN Chun-rong, HUANG Hui, KANG Qing-qing, PAN Jia-yong. Application of μ-XRF in Uranium Mineralogy of the Huanglongpu Carbonate-type Molybdenum Deposit, Shaanxi Province, China[J]. Rock and Mineral Analysis, 2022, 41(1): 32-42. doi: 10.15898/j.cnki.11-2131/td.202105260067
Citation: ZHANG Yi-yang, ZHONG Fu-jun, DU Jing-yong, YAN Jie, PAN Chun-rong, HUANG Hui, KANG Qing-qing, PAN Jia-yong. Application of μ-XRF in Uranium Mineralogy of the Huanglongpu Carbonate-type Molybdenum Deposit, Shaanxi Province, China[J]. Rock and Mineral Analysis, 2022, 41(1): 32-42. doi: 10.15898/j.cnki.11-2131/td.202105260067

μ-XRF技术在黄龙铺钼(铀)矿床铀矿物学研究中的应用

  • 基金项目:
    国家自然科学基金项目(42002091,42002095,41772066,41862010);核资源与环境国家重点实验室自主基金项目(Z1906,2020Z08)
详细信息
    作者简介: 张熠阳, 硕士研究生, 研究方向为铀矿地质。E-mail: zyy292917338@163.com
    通讯作者: 潘家永, 博士, 教授, 主要从事铀矿床与地球化学研究。E-mail: jypan@ecit.cn
  • 中图分类号: P575

Application of μ-XRF in Uranium Mineralogy of the Huanglongpu Carbonate-type Molybdenum Deposit, Shaanxi Province, China

More Information
  • 东秦岭碳酸岩型钼成矿带是全球最大的钼成矿带。该带内的黄龙铺矿床是中国最早发现的碳酸岩型钼矿床之一。最近的野外地质调查发现,部分钼矿石具有较高的放射性异常,但其放射性元素的赋存形式和矿物学特征尚不明确。本文借助聚毛细管微束X射线荧光光谱分析(μ-XRF)分析速度快、原位无损、高灵敏度的分析优势,快速查明铀矿物的空间位置,再结合扫描电镜分析(SEM)和X射线能谱分析(EDS),确定铀矿物的种类及其次生变化。研究表明:黄龙铺矿床高放射性矿石中主要的铀矿物为钛铀矿、铌钛铀矿和晶质铀矿,它们与方解石、长石、黄铁矿、辉钼矿和黄铜矿呈共生关系。矿石中铀矿物后期均遭受氧化性流体改造,发生了明显的蚀变,钛铀矿蚀变之后转变为含Nb的钛铁氧化物,铌钛铀矿和晶质铀矿蚀变后矿物内部形成大量空洞,流体来源可能为大气降水。背散射电子(BSE)图像上灰度差异明显,暗示着矿物中元素分布的不均一性。

  • 加载中
  • 图 1  黄龙铺矿床(a)野外地质特征和(b、c、d)矿石特征

    Figure 1. 

    图 2  样品照片和元素Ca、Sr、Mn、S、Na的μ-XRF分析图像

    Figure 2. 

    图 3  元素K、Al、Si、Cu、Co和Fe的μ-XRF分析图像

    Figure 3. 

    图 4  元素V、Nb、Pb、Ti、U和Y的μ-XRF分析图像

    Figure 4. 

    图 5  元素Al、Mn、Fe、Co、U和Pb的μ-XRF叠加图像

    Figure 5. 

    图 6  铀矿物的(a)镜下照片、(b)SEM图像和(c-f)EDS谱图

    Figure 6. 

    图 7  铀矿物镜SEM图像(a,c)和EDS(b,d)谱图

    Figure 7. 

  • [1]

    黄典豪, 侯增谦, 杨志明, 等. 东秦岭钼矿带内碳酸岩脉型钼(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景[J]. 地质学报, 2009, 83(12): 1968-1984. doi: 10.3321/j.issn:0001-5717.2009.12.012

    Huang D H, Hou Z Q, Yang Z M, et al. Geological and geochemical characteristics, metallogenetic mechanism and tectonic setting of carbonatite vein-type Mo (Pb) deposits in the East Qinling molybdenum ore belt[J]. Acta Geologica Sinica, 2009, 83(12): 1968-1984. doi: 10.3321/j.issn:0001-5717.2009.12.012

    [2]

    Xu C, Kynicky J, Chakhmouradian A R, et al. A unique Mo deposit associated with carbonatites in the Qinling orogenic belt, central China[J]. Lithos, 2010, 118(1-2): 50-60. doi: 10.1016/j.lithos.2010.03.013

    [3]

    王佳营, 李志丹, 张祺, 等. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J]. 地质学报, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011

    Wang J Y, Li Z D, Zhang Q, et al. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in East Qinling: Evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J]. Acta Geologica Sinica, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011

    [4]

    黄典豪, 王义昌, 聂凤军, 等. 一种新的钼矿床类型——陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制[J]. 地质学报, 1985, 59(3): 241-257, 275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198503006.htm

    Huang D H, Wang Y C, Nie F J, et al. A new type of molybdenum deposit-Geological characteristics and metal-logenic mechanism of the Huanglongpu carbonatite vein-type of molybdenum (lead) deposit, Shanxi[J]. Acta Geologica Sinica, 1985, 59(3): 241-257, 275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198503006.htm

    [5]

    许成, 宋文磊, 漆亮, 等. 黄龙铺钼矿田含矿碳酸岩地球化学特征及其形成构造背景[J]. 岩石学报, 2009, 25(2): 422-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902016.htm

    Xu C, Song W L, Qi L, et al. Geochemical characteristics and tectonic setting of ore-bearing carbonatites in Hunglongpu Mo ore field[J]. Acta Petrologica Sinica, 2009, 25(2): 422-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902016.htm

    [6]

    Cangelosi D, Smith M, Banks D, et al. The role of sulfate-rich fluids in heavy rare earth enrichment at the Dashigou carbonatite deposit, Huanglongpu, China[J]. Mineralogical Magazine, 2020, 84(1): 65-80. doi: 10.1180/mgm.2019.78

    [7]

    Song W L, Xu C, Smith M P, et al. Origin of unusual HREE-Mo-rich carbonatites in the Qinling Orogen, China[J]. Scientific Reports, 2016, 6(1): 1-10. doi: 10.1038/s41598-016-0001-8

    [8]

    Smith M, Cangelosi D, Yardley B, et al. Mechanisms for the generation of HREE mineralization in carbonatites: Evidence from Huanglongpu, China[C]//Natural History Museum, SGA Conference Abstract, 2019: 1-5.

    [9]

    Bai T, Chen W, Jiang S Y. Evolution of the carbonatite Mo-HREE deposits in the Lesser Qinling Orogen: Insights from in situ geochemical investigation of calcite and sulfate[J]. Ore Geology Reviews, 2019, 113: 103069. doi: 10.1016/j.oregeorev.2019.103069

    [10]

    惠小朝. 陕西省华阳川铀多金属成矿作用地球化学研究[D]. 北京: 核工业北京地质研究院, 2014.

    Hui X Z. Study on mineralization and geochemistry of the Huayangchuan uranium ploymetallic deposit, Shaanxi Province[D]. Beijing: Research Institute of Uranium Geology, Beijing, 2014.

    [11]

    高成, 康清清, 江宏君, 等. 秦岭造山带发现新型铀多金属矿: 华阳川与伟晶岩脉和碳酸岩脉有关的超大型铀-铌-铅-稀土矿床[J]. 地球化学, 2017, 46(5): 446-455. doi: 10.3969/j.issn.0379-1726.2017.05.004

    Gao C, Kang Q Q, Jiang H J, et al. Aunique uranium polymetallic deposit discovered in the Qinling orogenic belt: The Huayangchuan super-large U-Nb-Pb-REE deposit associated with pegmatites and carbonatites[J]. Geochimica, 2017, 46(5): 446-455. doi: 10.3969/j.issn.0379-1726.2017.05.004

    [12]

    Zheng H, Chen H, Li D, et al. Timing of carbonatite-hosted U-polymetallic mineralization in the supergiant Huayangchuan deposit, Qinling Orogen: Constraints from titanite U-Pb and molybdenite Re-Os dating[J]. Geoscience Frontiers, 2020, 11(5): 1581-1592. doi: 10.1016/j.gsf.2020.03.001

    [13]

    许涛, 罗立强. 原位微区X射线荧光光谱分析装置与技术研究进展[J]. 岩矿测试, 2011, 30(3): 375-383. doi: 10.3969/j.issn.0254-5357.2011.03.028 http://www.ykcs.ac.cn/article/id/ykcs_20110327

    Xu T, Luo L Q. Developments of micro-X-ray fluorescence spectrometer and applications[J]. Rock and Mineral Analysis, 2011, 30(3): 375-383. doi: 10.3969/j.issn.0254-5357.2011.03.028 http://www.ykcs.ac.cn/article/id/ykcs_20110327

    [14]

    Flude S, Haschke M, Storey M, et al. Application of benchtop micro-XRF to geological materials[J]. Mineralogical Magazine, 2017, 81(4): 923-948. doi: 10.1180/minmag.2016.080.150

    [15]

    罗立强, 沈亚婷, 马艳红, 等. 微区X射线荧光光谱仪研制及元素生物地球化学动态分布过程研究[J]. 光谱学与光谱分析, 2017, 37(4): 1003-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201704003.htm

    Luo L Q, Shen Y T, Ma Y H, et al. Development of laboratory microscopic X-Ray fluorescence spectrometer and the study on spatial distribution of elements in biofilms and maize seeds[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1003-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201704003.htm

    [16]

    Barker R D, Barker S L, Wilson S A, et al. Quantitative mineral mapping of drill core surfaces Ⅰ: A method for μ-XRF mineral calculation and mapping of hydrothermally altered, fine-grained sedimentary rocks from a carlin-type gold deposit[J]. Economic Geology, 2021, 116(4): 803-819. doi: 10.5382/econgeo.4803

    [17]

    Schmid S, Taylor W R, Jordan D P. The Bigrlyi tabular sandstone-hosted uranium-vanadium deposit, Ngalia Basin, central Australia[J]. Minerals, 2020, 20(10): 896. https://www.mdpi.com/2075-163X/10/10/896/htm

    [18]

    Woldegabriel G, Boukhalfa H, Ware S, et al. Characterization of cores from an in-situ recovery mined uranium deposit in Wyoming: Implications for post-mining restoration[J]. Chemical Geology, 2014, 390: 32-45. doi: 10.1016/j.chemgeo.2014.10.009

    [19]

    Herazo A, Reich M, Barra F, et al. Assessing the role of bitumen in the formation of strata bound Cu-(Ag) deposits: Insights from the Lorena deposit, Las Luces district, northern Chile[J]. Ore Geology Reviews, 2020, 124: 103639. doi: 10.1016/j.oregeorev.2020.103639

    [20]

    李六权, 崔江荣, 陈浩. 陕西木龙沟-黄龙铺地区钼、铼、稀土资源量概况及铼、稀土赋存特征[J]. 陕西地质, 2019, 37(1): 1-7. doi: 10.3969/j.issn.1001-6996.2019.01.001

    Li L Q, Cui J R, Chen H. General situation of molybdenum, rhenium and rare earth resources and occurrence characteristics of rhenium and rare earth in Mulonggou-Huanglongpu area of Luonan County[J]. Geology of Shaanxi, 2019, 37(1): 1-7. doi: 10.3969/j.issn.1001-6996.2019.01.001

    [21]

    王运, 胡宝群, 孙占学, 等. 相山铀矿田邹家山矿床钛铀矿赋存特征及成因[J]. 铀矿地质, 2010, 26(6): 344-349. doi: 10.3969/j.issn.1000-0658.2010.06.004

    Wang Y, Hu B Q, Sun Z X, et al. Occurring characteristics and genesis of brannerite at Zoujiashan uranium deposits, Xiangshan ore field[J]. Uranium Geology, 2010, 26(6): 344-349. doi: 10.3969/j.issn.1000-0658.2010.06.004

    [22]

    李治兴, 漆富成, 张字龙, 等. 张家界下寒武统磷块岩中钛铀矿的晶出方式与成矿机理[J]. 矿物学报, 2017, 37(3): 305-313. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201703007.htm

    Li Y X, Qi F C, Zhang Z L, et al. Crystallization and metallization of brannerite in marine phosphorite of the Lower Cambrian Niutitang Formation in Zhangjiajie area, China[J]. Acta Mineralogica Sinica, 2017, 37(3): 305-313. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201703007.htm

    [23]

    王贵, 王强, 苗爱生, 等. 鄂尔多斯盆地纳岭沟铀矿床铀矿物特征与形成机理[J]. 矿物学报, 2017, 37(4): 461-468. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201704013.htm

    Wang G, Wang Q, Miao A S, et al. Characteristics of uranium minerals in Nalinggou uranium deposit of Ordos Basin and their formation mechanism[J]. Acta Mineralogica Sinica, 2017, 37(4): 461-468. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201704013.htm

    [24]

    Cuney M. Geologic environment, mineralogy, and fluid inclusions of the Bois Noirs-Limouzat uranium vein, Forez, France[J]. Economic Geology, 1978, 73(8): 1567-1610. doi: 10.2113/gsecongeo.73.8.1567

    [25]

    Hu R Z, Bi X W, Zhou M F, et al. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary[J]. Economic Geology, 2008, 103(3): 583-598. doi: 10.2113/gsecongeo.103.3.583

    [26]

    闵茂中, 张富生. 成因铀矿物学概论[M]. 北京: 原子能出版社, 1992.

    Min M Z, Zhang F S. Uranium minerageny[M]. Beijing: Atomic Energy Press, 1992.

    [27]

    Cuney M. Felsic magmatism and uranium deposits[J]. Bulletin de la Société Géologique de France, 2014, 185(2): 75-92. doi: 10.2113/gssgfbull.185.2.75

    [28]

    Zhang L, Chen Z Y, Wang F Y, et al. Release of uranium from uraninite in granites through alteration: Implications for the source of granite-related uranium ores[J/OL]. Economic Geology, 2021, https://doi.org/10.5382/econgeo.4822.

    [29]

    Rallakis D, Michels R, Brouand M, et al. The role of organic matter on uranium precipitation in Zoovch Ovoo[J]. Mongolia Minerals, 2019, 9(5): 310. https://www.mdpi.com/2075-163X/9/5/310/htm

    [30]

    Scheinost A C, Hennig C, Somogyi A, et al. Uranium speciation in two Freital mine tailing samples: EXAFS, μ-XRD, and μ-XRF results[M]//Uranium in the Environment. Heidelberg: Springer, 2006.

  • 加载中

(7)

计量
  • 文章访问数:  2586
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2021-05-26
修回日期:  2021-08-04
录用日期:  2021-11-11
刊出日期:  2022-01-28

目录