中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

下辽河平原地下水中挥发性有机物的污染特征及健康风险评价

李丽君, 王海娇, 马健生. 下辽河平原地下水中挥发性有机物的污染特征及健康风险评价[J]. 岩矿测试, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105
引用本文: 李丽君, 王海娇, 马健生. 下辽河平原地下水中挥发性有机物的污染特征及健康风险评价[J]. 岩矿测试, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105
LI Li-jun, WANG Hai-jiao, MA Jian-sheng. Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds in Groundwater in the Lower Liaohe River Plain[J]. Rock and Mineral Analysis, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105
Citation: LI Li-jun, WANG Hai-jiao, MA Jian-sheng. Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds in Groundwater in the Lower Liaohe River Plain[J]. Rock and Mineral Analysis, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105

下辽河平原地下水中挥发性有机物的污染特征及健康风险评价

  • 基金项目:
    中国地质调查局地质调查项目"兴凯湖平原及松辽平原西部土地质量地球化学调查"(DD20190520)
详细信息
    作者简介: 李丽君, 硕士, 高级工程师, 从事土壤、岩矿及地质矿产样品分析方法研究。E-mail: 475876904@qq.com
    通讯作者: 马健生, 硕士, 高级工程师, 从事环境样品及地质矿产分析方法研究。E-mail: 275470740@qq.com
  • 中图分类号: O657.63;X820.4

Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds in Groundwater in the Lower Liaohe River Plain

More Information
  • 挥发性有机物(VOCs)作为重要的化工原料、中间体和有机溶剂,随着人类工农业的发展,其对环境及人类健康的影响日益凸显。下辽河平原作为人口较密集、工业化程度较高的平原地区,地下水的污染随着人类活动不断加剧,对人体健康产生了潜在风险。为了研究下辽河平原地下水中VOCs的污染特征及对人体产生的健康风险,本文利用吹扫捕集-气相色谱-质谱法检测下辽河平原地下水样品中60种VOCs的含量及污染特征并分析其污染来源。通过经口饮用、洗浴呼吸吸入、洗浴皮肤接触三种VOCs的暴露途径计算污染物长期摄入量,采用CSOIL模型评价健康风险。结果表明:采集的24组地下水样品中有20个采样点检出VOCs,样品VOCs检出率为83.3%,在个别采样点萘、苯、1,2-二氯丙烷含量超过《地下水质量标准》(GB 14848—2017)Ⅲ类水的限值(100、10.0、5.0μg/L),工业源VOCs的排放是研究区地下水VOCs超标的主要来源。地下水样品中VOCs的总致癌风险指数在0~4.0×10-5之间,总非致癌风险指数在0~0.93之间,均低于US EPA推荐的健康风险评价标准;企业用地周边地下水中的健康风险指数高于农业用地地下水。本研究表明下辽河平原地下水中VOCs检出率相对较高,健康风险处于可接受水平,该结果可为地区地下水工业源VOCs污染监管和治理提供参考。

  • 加载中
  • 图 1  研究区采样点示意图

    Figure 1. 

    图 2  50.0μg/L的标准溶液中60种VOCs的总离子流图

    Figure 2. 

    表 1  研究区地下水中60种VOCs的总体检出情况

    Table 1.  Detection of 60 kinds of VOCs in groundwater in the study area

    VOCs组分 样品检出个数 检出率(%) 检出的浓度(μg/L) 《地下水质量标准》 (GB 14848—2017) (Ⅲ)限值(μg/L) 超标个数 超标率(%)
    最小值 最大值 平均值
    二硫化碳 7 29.2 ND 3.36 0.72 - - -
    1, 2-二氯丙烷 2 8.34 ND 9.17 0.75 5.0 2 8.33
    1, 1, 2-三氯乙烷 1 4.20 ND 2.29 0.12 5.0 - -
    1, 2, 3-三氯丙烷 2 8.30 ND 5.14 0.44 - - -
    6 25.0 ND 11.7 1.21 10.0 1 4.17
    甲苯 2 8.32 ND 4.99 0.38 700 - -
    乙苯 2 8.34 ND 1.47 0.11 300 - -
    间+对-二甲苯 4 16.7 ND 3.90 0.42 500(总量) - -
    邻-二甲苯 5 20.8 ND 28.0 1.75 - -
    1, 3, 5-三甲基苯 2 8.31 ND 8.31 0.42 - - -
    1, 2, 4-三甲基苯 4 16.7 ND 12.7 0.75 - - -
    4-异丙基甲苯 1 4.20 ND 2.62 0.15 - - -
    12 50.0 ND 121 45.7 100 2 8.33
    1, 3-二氯苯 1 4.20 ND 1.01 0.041 - - -
    1, 4-二氯苯 6 25.0 ND 4.33 0.42 300 - -
    1, 2-二氯苯 4 16.7 ND 5.77 0.48 1000 - -
    1, 2, 3-三氯苯 2 8.31 ND 2.84 0.24 20.0(总量) - -
    1, 2, 4-三氯苯 4 16.7 ND 7.54 0.53 - -
    氯苯 4 16.7 ND 28.4 1.37 300 - -
    注:表格中的“-”表示“无”,ND表示未检出。
    下载: 导出CSV

    表 2  不同暴露途径的长期日摄入剂量数据

    Table 2.  Long-term intake dose data sheets for different exposure pathways

    采样点编号 长期日摄入剂量
    经口饮用[mg/(kg·d)] 洗浴呼吸(mg/m3) 洗浴皮肤接触[mg/(kg·d)]
    S1 6.2×10-3 8.9×10-5 2.2×10-3
    S2 4.0×10-3 5.9×10-5 1.9×10-3
    S3 8.1×10-5 1.2×10-6 1.1×10-4
    S4 4.3×10-5 6.3×10-7 5.9×10-5
    S5 5.6×10-4 8.1×10-6 7.6×10-4
    S6 5.6×10-5 8.2×10-7 7.8×10-5
    S7 4.2×10-4 6.1×10-6 5.7×10-4
    S8 2.8×10-4 4.1×10-6 3.9×10-4
    S9 5.2×10-5 7.6×10-7 7.2×10-5
    S10 3.8×10-5 5.6×10-7 5.3×10-5
    S11 3.5×10-4 5.1×10-6 4.8×10-4
    S12 2.0×10-4 2.9×10-6 2.6×10-4
    S13 0 0 0
    S14 0 0 0
    S15 1.4×10-5 2.0×10-7 1.8×10-5
    S16 0 0 0
    S17 2.3×10-5 3.4×10-7 3.0×10-5
    S18 0 0 0
    S19 9.0×10-6 1.3×10-7 1.2×10-5
    S20 3.1×10-5 4.5×10-7 4.0×10-5
    S21 5.2×10-4 7.5×10-6 3.2×10-4
    S22 2.8×10-4 4.2×10-6 3.9×10-4
    S23 5.1×10-5 7.5×10-7 5.0×10-5
    S24 2.0×10-5 2.9×10-7 2.7×10-5
    下载: 导出CSV

    表 3  研究区地下水致癌风险评价

    Table 3.  Carcinogenic risk assessment of groundwater in the study area

    采样点编号 总致癌风险指数 风险类别 风险等级 风险等级说明 风险值区间
    S1 3.4×10-5 疑似致癌风险 Ⅱ级 作为饮用水源需引起注意 [1.0×10-5,5.0×10-5]
    S2 4.0×10-5 疑似致癌风险 Ⅱ级 作为饮用水源需引起注意 [1.0×10-5,5.0×10-5]
    S3 3.1×10-6 疑似致癌风险 Ⅰ级 基本适合作为饮用水源 [1.0×10-6,1.0×10-5]
    S4 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S5 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S6 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S7 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S8 1.6×10-6 疑似致癌风险 Ⅰ级 基本适合作为饮用水源 [1.0×10-6,1.0×10-5]
    S9 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S10 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S11 5.9×10-6 疑似致癌风险 Ⅰ级 基本适合作为饮用水源 [1.0×10-6,1.0×10-5]
    S12 4.8×10-6 疑似致癌风险 Ⅰ级 基本适合作为饮用水源 [1.0.×10-6,1.0×10-5]
    S13 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S14 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S15 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S16 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S17 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S18 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S19 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S20 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S21 1.5×10-5 疑似致癌风险 Ⅱ级 作为饮用水源需引起注意 [1.0×10-5,5.0×10-5]
    S22 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S23 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    S24 0 无致癌风险 忽略 适合作为饮用水源 <1.0×10-6
    下载: 导出CSV

    表 4  各采样点VOCs的非致癌风险指数

    Table 4.  Non-carcinogenic risk of VOCs for each sampling point

    采样点编号 非致癌风险指数
    经口饮用 洗浴呼吸 洗浴皮肤接触 总非致癌风险指数
    S1 0.3224 0.4819 0.127 0.93
    S2 0.2125 0.4671 0.107 0.79
    S3 0.0086 0.0065 0.0119 0.027
    S4 0.0022 0.0048 0.0029 0.010
    S5 0.0154 0.0226 0.0212 0.059
    S6 0.0028 0.0062 0.0038 0.013
    S7 0.0200 0.0438 0.0272 0.091
    S8 0.0168 0.0303 0.0229 0.070
    S9 0.0023 0.0050 0.00323 0.011
    S10 0.0019 0.0043 0.00267 0.0089
    S11 0.0239 0.0246 0.0320 0.081
    S12 0.0153 0.0103 0.0203 0.046
    S13 0 0 0 0
    S14 0 0 0 0
    S15 0.00014 0 0.000183 0.00032
    S16 0 0 0 0
    S17 0.00024 0 0.000306 0.00055
    S18 0 0 0 0
    S19 0 0 0 0
    S20 0.0003 0 0.000402 0.00070
    S21 0.0442 0.0020 0.0580 0.104
    S22 0.0014 0.0009 0.00189 0.0042
    S23 0.0010 0 0.00137 0.0024
    S24 0.0003 0.0001 0.000379 0.00078
    下载: 导出CSV
  • [1]

    程云轩, 高秋生, 李捷, 等. 淮河流域南四湖可挥发性有机物污染特征及风险评价[J]. 环境科学, 2021, 42(4): 1820-1829. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104026.htm

    Cheng Y X, Gao Q S, Li J, et al. Characteristics of volatile organic compounds pollution and risk assessment of Nansi Lake in Huaihe River Basin[J]. Environmental Science, 2021, 42(4): 1820-1829. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104026.htm

    [2]

    朱帅, 沈亚婷, 贾静, 等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试, 2018, 37(5): 586-606. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201603300054

    Zhu S, Shen Y T, Jia J, et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5): 586-606. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201603300054

    [3]

    Shi P, Zhou S C, Xiao H X, et al. Toxicological and chemical insights into representative source and drinking water in eastern China[J]. Environmental Pollution, 2018, 233: 35-44. doi: 10.1016/j.envpol.2017.10.033

    [4]

    Zhao Q, Wang Q, Li Y J, et al. Influence of volatile organic compounds (VOCs) on pulmonary surfactant monolayers at air-water interface: Implication for the pulmonary health[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562: 402-408. http://www.onacademic.com/detail/journal_1000041583899799_8101.html

    [5]

    Cao F M, Qin P, Lu S Y, et al. Measurement of volatile organic compounds and associated risk assessments through ingestion and dermal routes in Dongjiang Lake, China[J]. Ecotoxicology and Environmental Safety, 2018, 165: 645-653. doi: 10.1016/j.ecoenv.2018.08.108

    [6]

    张栋, 于世杰, 王楠, 等. 郑州市冬季VOCs污染特征、来源及健康风险评估[J]. 环境科学学报, 2020, 40(8): 2935-2943. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202008027.htm

    Zhang D, Yu S J, Wang N, et al. Characteristics, sources and health risk assessment of ambient VOCs in winter of Zhengzhou[J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2935-2943. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202008027.htm

    [7]

    Yu S, Lee P, Yun S, et al. Comparison of volatile organic compounds in stormwater and groundwater in Seoul Metropolitan City, South Korea[J]. Environmental Earth Sciences, 2017, 76: 338. doi: 10.1007/s12665-017-6666-x

    [8]

    杜士林. 沙颍河流域水环境优控污染物筛选及潜在生态风险评价研究[D]. 桂林: 桂林理工大学, 2020.

    Du S L. The research on screening of priority pollutants in the water environment and potential ecological risk assessment in Shaying River Basin[D]. Guilin: Guilin University of Technology, 2020.

    [9]

    郭永丽, 全洗强, 吴庆. 北方喀斯特地区地下水VOCs污染特征及健康风险——以山东省淄博市临淄区为例[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 102-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSF202006012.htm

    Guo Y L, Quan X Q, Wu Q. Pollution characteristics and health risk assessment of volatile organic compounds of typical karst groundwater source in North China[J]. Journal of Guangxi Normal University (Natural Science Edition), 2020, 38(6): 102-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSF202006012.htm

    [10]

    张坤锋, 赵少延, 孙兴滨, 等. 海拉尔河及傍河地下水饮用水源中挥发性有机物的污染特征与风险[J]. 河南师范大学学报(自然科学版), 2021, 49(5): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSX202105010.htm

    Zhang K F, Zhao S Y, Sun X B, et al. Pollution characteristics and risks of volatile organic compounds in drinking water sources of Hailar River and nearby rivers groundwater[J]. Journal of Henan Normal University (Natural Science Edition), 2021, 49(5): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSX202105010.htm

    [11]

    Chen X C, Luo Q, Wang D H, et al. Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China[J]. Environmental Pollution, 2015, 206: 64-72. doi: 10.1016/j.envpol.2015.06.027

    [12]

    李沫蕊, 王亚飞, 王金生, 等. 下辽河平原区域地下水典型污染物的筛选[J]. 中国环境监测, 2015, 31(3): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201503013.htm

    Li M R, Wang Y F, Wang J S, et al. Application of modified potential damage index method to screening of the typical pollutants in groundwater of the Liao River Basin[J]. Environmental Monitoring in China, 2015, 31(3): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201503013.htm

    [13]

    赵岩. 下辽河平原区辽阳-鞍山地段浅层地下水污染评价[J]. 地质与资源, 2015, 24(4): 388-393. doi: 10.3969/j.issn.1671-1947.2015.04.018

    Zhao Y. Evaluation of shallow groundwater pollution in Liaoyang-Anshan section of Lower Liaohe River Plain[J]. Geology and Resources, 2015, 24(4): 388-393. doi: 10.3969/j.issn.1671-1947.2015.04.018

    [14]

    奚旭, 张新长, 孙才志, 等. 不确定性条件下的下辽河平原地下水脆弱性评价及空间分布软区划[J]. 地理科学, 2017, 37(9): 1439-1448. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201709017.htm

    Xi X, Zhang X C, Sun C Z, et al. Assessment and soft zoning of groundwater vulnerability in the lower reach of the Liaohe River Plain under uncertainty condition[J]. Scientia Geographica Sinica, 2017, 37(9): 1439-1448. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201709017.htm

    [15]

    陈相涛. 下辽河平原浅层地下水污染风险评价及空间热点分析[D]. 大连: 辽宁师范大学, 2016.http://cdmd.cnki.com.cn/article/cdmd-10165-1016244014.htm

    Chen X T. Evaluation and hotspots analysis of shallow groundwater contamination risk in the lower reach of the Liaohe River Plain[D]. Dalian: Liaoning Normal University, 2016.

    [16]

    李仙波, 左锐, 滕彦国, 等. 基于RRM模型的化工企业对下辽河平原区域地下水环境风险评价[J]. 北京师范大学学报(自然科学版), 2016, 52(5): 580-585. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201605008.htm

    Li X B, Zuo R, Teng Y G, et al. A risk assessment model of regional groundwater risk due to chemical enterprises in the Lower Liaohe River Plain[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(5): 580-585. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201605008.htm

    [17]

    罗庆. 细河沿岸地下水中特征有机污染物健康风险评价[D]. 沈阳: 沈阳大学, 2011.http://cdmd.cnki.com.cn/article/cdmd-11035-1011069080.htm

    Luo Q. Health risk assessment of the typical organic pollutants in the groundwater of Xihe River area[D]. Shenyang: Shenyang University, 2011.

    [18]

    鲁统民. 淄博市大武水源地地下水有机污染特征及健康风险评价[D]. 青岛: 山东科技大学, 2020.

    Lu T M. Characteristics of organic pollution and health risk assessment of Dawu water source area in Zibo City[D]. Qingdao: Shandong University of Science and Technology, 2020.

    [19]

    冯丽丽, 胡晓芳. 顶空固相微萃取/气相色谱-三重四极杆串联质谱法测定地表水与饮用水中的挥发性有机物[J]. 分析测试学报, 2019, 38(11): 1294-1300. doi: 10.3969/j.issn.1004-4957.2019.11.002

    Feng L L, Hu X F. Determination ofvolatile organic compounds in surface water and drinking water by gas chromatography-triple quadrupole tandem mass spectrometry with head space-solid phase micro-extraction[J]. Journal of Instrumental Analysis, 2019, 38(11): 1294-1300. doi: 10.3969/j.issn.1004-4957.2019.11.002

    [20]

    姜洋, 房丽萍, 杨刚, 等. 水体中挥发性有机物分析方法研究进展[J]. 环境化学, 2015, 34(9): 1611-1618. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201509006.htm

    Jiang Y, Fang L P, Yang G, et al. Analytical methods of volatile organic compounds in water samples[J]. Environmental Chemistry, 2015, 34(9): 1611-1618. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201509006.htm

    [21]

    张春艳, 高柏, 郭亚丹, 等. 鄱阳湖区域地下水有机污染物特征与风险评价[J]. 生态毒理学报, 2016, 11(2): 524-530. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201602063.htm

    Zhang C Y, Gao B, Guo Y D, et al. Pollution characteristics and risk assessment of organic pollutants in groundwater of Poyang Lake[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 524-530. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201602063.htm

    [22]

    昌盛, 赵兴茹, 刘琰, 等. 滹沱河冲洪积扇地下水中挥发性有机物的分布特征与健康风险[J]. 环境科学研究, 2016, 29(6): 854-862. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201606010.htm

    Chang S, Zhao X R, Liu Y, et al. Distribution characteristics and health risk assessment of volatile organic compounds in groundwater of Hutuo River Pluvial Fan[J]. Research of Environmental Sciences, 2016, 29(6): 854-862. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201606010.htm

    [23]

    刘锐源, 钟美芳, 赵晓雅, 等. 2011-2019年中国工业源挥发性有机物排放特征[J]. 环境科学, 2021, doi.org/10.13227/j.hjkx.202102112. doi: 10.13227/j.hjkx.202102112

    Liu R Y, Zhong M F, Zhao X Y, et al. Characteristics of industrial volatile organic compounds (VOCs) emission in China from 201l to 2019[J]. Environmental Science, 2021, doi.org/10.13227/j.hjkx.202102112. doi: 10.13227/j.hjkx.202102112

    [24]

    Siddiqi S, Mamun A, Baawain M, et al. Groundwater contamination in the Gulf Cooperation Council (GCC)countries: A review[J]. Environmental Science and Pollution Research, 2021, 28: 21023-21044. doi: 10.1007/s11356-021-13111-5

    [25]

    杨帆, 闫雨龙, 戈云飞, 等. 晋城市冬季环境空气中挥发性有机物的污染特征及来源解析[J]. 环境科学, 2018, 39(9): 4042-4050. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201809052.htm

    Yang F, Yan Y L, Ge Y F, et al. Characteristics and source apportionment of ambient volatile organic compounds in winter in Jincheng[J]. Environmental Science, 2018, 39(9): 4042-4050. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201809052.htm

    [26]

    徐蓉桢, 刘菲, 荆继红, 等. 典型浅层孔隙水和岩溶水中多环芳烃分布特征[J]. 岩矿测试, 2018, 37(4): 411-418. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801120004

    Xu R Z, Liu F, Jing J H, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in typical shallow pore water and karst water[J]. Rock and Mineral Analysis, 2018, 37(4): 411-418. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801120004

    [27]

    崔晓嫒. 长江中下游饮用水水源地中典型POPs的污染特征及风险分析[D]. 石家庄: 河北师范大学, 2020.http://cdmd.cnki.com.cn/Article/CDMD-10094-1020622722.htm

    Cui X A. Pollution characteristics and risk assessment of typical POPs in drinking water sources in the middle and lower reaches of the Yangtze River[D]. Shijiazhuang: Hebei Normal University, 2020.

    [28]

    范晨子, 刘永兵, 赵文博, 等. 云南安宁水系沉积污染物分布特征与风险评价[J]. 岩矿测试, 2021, 40(4): 1-13. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202103080035

    Fan C Z, Liu Y B, Zhao W B, et al. Pollution distribution characteristics and ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in the river sediments in Anning, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570-582. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202103080035

    [29]

    卢浩. 济南市东部城区地下水系统氯代烃污染预警研究[D]. 济南: 济南大学, 2019.http://cdmd.cnki.com.cn/Article/CDMD-10427-1019234236.htm

    Lu H. Study on the early waring of groundwater chlorinated hydrocarbons pollution in the eastern area of Jinan[D]. Jinan: University of Jinan, 2019.

    [30]

    谢先军, 刘红杏, 高爽, 等. 典型纳污坑塘周边地下水污染来源识别及其健康风险评估[J]. 地质科技通报, 2020, 39(1): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001005.htm

    Xie X J, Liu H X, Gao S, et al. Source identification and health risk assessment of groundwater pollution in typical sewage pits and ponds[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001005.htm

    [31]

    张道来, 刘娜, 朱志刚, 等. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价[J]. 岩矿测试, 2016, 35(5): 521-529. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.05.011

    Zhang D L, Liu N, Zhu Z G, et al. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons in surface sediments from typical coast of Shandong Peninsula[J]. Rock and Mineral Analysis, 2016, 35(5): 521-529. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.05.011

    [32]

    陈玺, 朱亮, 刘景涛, 等. 银川平原饮用地下水健康风险评价及风险控制研究[J]. 安徽农业科学, 2019, 47(18): 78-84. doi: 10.3969/j.issn.0517-6611.2019.18.019

    Chen X, Zhu L, Liu J T, et al. Study on health risk assessment and risk control of drinking groundwater in Yinchuan Plain[J]. Journal of Anhui Agricultural Sciences, 2019, 47(18): 78-84. doi: 10.3969/j.issn.0517-6611.2019.18.019

    [33]

    饶志, 储小东, 颜春, 等. 鄱阳湖平原浅层地下水有机污染物含量特征与健康风险评价[J]. 地球与环境, 2019, 47(5): 662-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201905011.htm

    Rao Z, Chu X D, Yan C, et al. Characteristics and health risk assessment of organic pollutants in groundwater of the Poyang Lake Plain[J]. Earth and Environment, 2019, 47(5): 662-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201905011.htm

    [34]

    刘姝媛, 王红旗. 某地下水源地有机污染健康风险评价[J]. 环境科学与技术, 2014, 37(2): 174-177. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201402034.htm

    Liu S Y, Wang H Q. Health risk assessment of organic pollution in a groundwater source[J]. Environmental Science & Technology, 2014, 37(2): 174-177. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201402034.htm

    [35]

    赵庆令, 李清彩, 谢江坤, 等. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价[J]. 岩矿测试, 2016, 35(1): 90-97. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.015

    Zhao Q L, Li Q C, Xie J K, et al. Health risk assessment of carcinogenic and non-carcinogenic substances in underground water from the Shuangcun karst system of central-southern Shandong Province[J]. Rock and Mineral Analysis, 2016, 35(1): 90-97. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.015

  • 加载中

(2)

(4)

计量
  • 文章访问数:  2315
  • PDF下载数:  118
  • 施引文献:  0
出版历程
收稿日期:  2021-08-20
修回日期:  2021-09-04
录用日期:  2021-09-21
刊出日期:  2021-11-28

目录