中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

宁芜盆地玢岩型铁矿尾矿元素与矿物组成特征

鲁银鹏, 孟郁苗, 黄小文, 王丛林, 杨秉阳, 谭侯铭睿, 谢欢. 宁芜盆地玢岩型铁矿尾矿元素与矿物组成特征[J]. 岩矿测试, 2024, 43(2): 259-269. doi: 10.15898/j.ykcs.202210120194
引用本文: 鲁银鹏, 孟郁苗, 黄小文, 王丛林, 杨秉阳, 谭侯铭睿, 谢欢. 宁芜盆地玢岩型铁矿尾矿元素与矿物组成特征[J]. 岩矿测试, 2024, 43(2): 259-269. doi: 10.15898/j.ykcs.202210120194
LU Yinpeng, MENG Yumiao, HUANG Xiaowen, WANG Conglin, YANG Bingyang, TANHOU Mingrui, XIE Huan. Element and Mineral Characteristics of Tailings in the Porphyry-Type Iron Deposit from Ningwu Basin[J]. Rock and Mineral Analysis, 2024, 43(2): 259-269. doi: 10.15898/j.ykcs.202210120194
Citation: LU Yinpeng, MENG Yumiao, HUANG Xiaowen, WANG Conglin, YANG Bingyang, TANHOU Mingrui, XIE Huan. Element and Mineral Characteristics of Tailings in the Porphyry-Type Iron Deposit from Ningwu Basin[J]. Rock and Mineral Analysis, 2024, 43(2): 259-269. doi: 10.15898/j.ykcs.202210120194

宁芜盆地玢岩型铁矿尾矿元素与矿物组成特征

  • 基金项目: 国家自然科学基金项目(42073043);贵州省科技计划项目(黔科合基础-ZK[2023]重点050);中国科学院“百人计划”项目
详细信息
    作者简介: 鲁银鹏,地球化学专业。E-mail:2319699036@qq.com
    通讯作者: 孟郁苗,博士,副研究员,主要从事非传统稳定同位素地球化学及低温矿床成因研究。E-mail:mengyumiao@vip.gyig.ac.cn
  • 中图分类号: P595;P579

Element and Mineral Characteristics of Tailings in the Porphyry-Type Iron Deposit from Ningwu Basin

More Information
  • 宁芜盆地玢岩型铁矿是中国重要的铁资源来源,其尾矿成分复杂,而对复杂尾矿进行高效综合利用的前提是充分了解其工艺矿物学特征。本文以宁芜盆地和尚桥铁矿床尾矿样品为研究对象,在常规X射线荧光光谱(XRF)、电感耦合等离子体质谱(ICP-MS)、粉晶X射线衍射(XRD)分析的基础上,借助综合矿物分析仪(TIMA),对尾矿的矿物与化学组成、元素赋存状态、矿物粒度分布、嵌布关系以及解离度和连生关系进行分析。结果表明:尾矿的主量元素为SiO2 (47.18%~50.08%)、Fe2O3 (15.40%~17.91%)和Al2O3 (12.12%~13.34%);微量元素中Cu、Zn、V含量较高,但均未达到其工业品位;矿物组成主要为钠长石(23.26%~24.58%)、赤铁矿和磁铁矿(17.30%~21.99%)以及石英(15.31%~17.08%),总体以脉石矿物为主,金属矿物较少。Si主要赋存于石英(平均值为33.89%)与钠长石(平均值为33.75%)中;Fe主要赋存于赤铁矿和磁铁矿(平均值为73.56%)中;有害元素S主要赋存于黄铁矿中(平均值为96.86%)。尾矿粒度较细,主要分布于50~2000μm;矿物嵌布关系较为复杂且嵌布粒度较细;矿物解离度较低,大部分低于10%,单体颗粒较少,连生关系复杂。宁芜盆地玢岩型铁矿尾矿与中国其他类型铁矿尾矿相比,具有高铝的特征,黄铁矿含量相对较高。

  • 加载中
  • 图 1  和尚桥铁矿尾矿矿物嵌布关系背散射图像

    Figure 1. 

    图 2  和尚桥铁矿尾矿中的钠长石、赤铁矿/磁铁矿、石英的解离度TIMA分析结果

    Figure 2. 

    图 3  和尚桥铁矿尾矿中钠长石、赤铁矿/磁铁矿、石英的连生关系TIMA分析结果

    Figure 3. 

    表 1  和尚桥铁矿尾矿主量元素XRF分析结果

    Table 1.  Analytical results of major elements in tailings of the Heshangqiao Fe deposit determined by XRF

    样品编号主量元素(%)
    SiO2Fe2O3Al2O3Na2OSMgOCaOK2OTiO2P2O5MnO
    DS-1-A49.9415.5913.254.093.4393.062.670.870.5990.4880.340
    DS-1-B50.0815.4013.344.123.4843.052.780.850.6140.4970.333
    DS-2-A47.1817.9112.233.823.4673.233.400.770.6210.4550.369
    DS-2-B47.2817.7112.123.903.8883.233.430.750.6660.4580.358
    下载: 导出CSV

    表 2  和尚桥铁矿尾矿微量元素ICP-MS分析结果

    Table 2.  Analytical results of trace elements in tailings of the Heshangqiao Fe deposit determined by ICP-MS

    样品编号 微量元素(μg/g)
    Li Be Sc V Cr Co Ni Cu Zn Ga As Rb Sr Y Zr Nb
    DS-1-A 16 1.9 11 89 9.5 72 23 156 143 13 10 38 279 17 84 3.0
    DS-1-B 15 1.9 11 90 8.3 78 25 189 143 14 11 36 299 16 87 3.2
    DS-2-A 15 2.0 12 119 11 73 25 142 141 14 11 33 269 17 88 3.0
    DS-2-B 14 2.1 12 129 11 74 26 137 152 14 13 32 308 19 94 3.1
    样品编号 Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
    DS-1-A 2.6 340 28 41 5.1 18 3.5 0.77 3.2 0.47 2.5 0.47 1.4 0.22 1.5 0.26
    DS-1-B 2.6 302 30 43 5.1 19 3.6 0.82 3.2 0.48 2.6 0.50 1.5 0.22 1.5 0.27
    DS-2-A 2.6 322 30 50 5.6 20 4.0 0.87 3.4 0.53 2.9 0.54 1.6 0.24 1.6 0.29
    DS-2-B 2.6 317 30 48 6.0 21 4.0 0.85 3.6 0.52 3.0 0.55 1.6 0.27 1.8 0.31
    样品编号 Hf Ta Pb Th U Ge Mo Ag Cd In Sn Sb W Tl Bi
    DS-1-A 2.1 1.1 19 4.7 1.8 5.0 1.4 0.28 0.27 0.15 1.9 1.1 189 0.25 3.5
    DS-1-B 2.1 0.78 17 4.7 1.1 5.0 1.2 0.40 0.21 0.16 1.4 1.0 222 0.24 2.9
    DS-2-A 2.2 0.62 16 5.0 1.1 5.5 1.2 0.23 0.23 0.19 2.7 1.2 185 0.23 2.3
    DS-2-B 2.5 0.54 16 5.3 1.1 6.2 1.1 0.22 0.21 0.20 1.9 1.3 149 0.24 2.5
    下载: 导出CSV

    表 3  和尚桥铁矿尾矿矿物含量TIMA分析结果

    Table 3.  Mineral content of tailings of the Heshangqiao Fe deposit determined by TIMA.

    矿物名称 含量(%) 平均含量
    (%)
    矿物名称 含量(%) 平均含量
    (%)
    DS-1 DS-2 DS-1 DS-2
    钠长石 23.26 24.58 23.92 磷灰石 0.89 0.90 0.90
    赤铁矿/磁铁矿 17.30 21.99 19.65 钛闪石 0.76 0.70 0.73
    石英 15.31 17.08 16.19 方解石 0.37 0.71 0.54
    斜长石 10.20 8.50 9.35 黝帘石 0.46 0.56 0.51
    黄铁矿 8.26 4.37 6.32 黑电气石 0.47 0.48 0.48
    黑云母 5.08 3.71 4.39 透辉石 0.24 0.66 0.45
    斜绿泥石 4.31 2.80 3.56 针铁矿 0.43 0.34 0.39
    阳起石 2.87 3.96 3.42 正长石 0.30 0.36 0.33
    鲕绿泥石 3.50 2.45 2.97 磁黄铁矿 0.46 0.13 0.30
    白云母 2.07 2.27 2.17 绿柱石 0.20 0.20 0.20
    镁铝石榴子石 1.69 0.86 1.41 其他矿物总和 0.77 0.74 0.76
    高岭石 0.78 1.62 1.20
    下载: 导出CSV

    表 4  和尚桥铁矿尾矿元素赋存状态TIMA分析结果

    Table 4.  The occurrence state of elements in tailings of the Heshangqiao Fe deposit determined by TIMA

    矿物名称Si含量占比(%)矿物名称Fe含量占比(%)
    DS-1DS-2DS-1DS-2
    石英32.4635.32赤铁矿/磁铁矿66.5180.60
    钠长石33.2434.26黄铁矿21.1310.66
    斜长石14.4011.70斜绿泥石2.781.72
    阳起石3.344.49鲕绿泥石2.251.50
    黑云母4.483.19阳起石1.351.78
    斜绿泥石2.771.76黑云母1.801.25
    白云母1.982.12针铁矿1.491.13
    鲕绿泥石2.251.53磁黄铁矿1.590.44
    镁铝石榴子石1.600.80黑电气石0.410.40
    高岭石0.771.56钛铁矿0.240.17
    钛闪石0.670.60其他0.460.34
    透辉石0.290.76
    正长石0.410.48
    其他1.341.42
    下载: 导出CSV

    表 5  和尚桥铁矿尾矿及主要矿物钠长石、赤铁矿/磁铁矿、石英的粒度分布TIMA分析结果统计

    Table 5.  Statistics of particle size distribution of tailings, albite, hematite/magnetite and quartz from the Heshangqiao Fe deposit determined by TIMA

    矿物名称不同粒径矿物在尾矿中的质量占比(%)
    >2000μm
    2000~500μm
    粗砂
    500~250μm
    中砂
    250~50μm
    细砂
    50~5μm
    粉砂
    <5μm
    尾矿040.1235.0720.204.100.51
    钠长石034.0127.3124.6613.830.19
    赤铁矿/磁铁矿025.4827.4129.4417.320.35
    石英027.9925.6829.2116.900.22
    下载: 导出CSV

    表 6  中国不同类型单金属类铁矿尾矿工艺矿物学特性932-35

    Table 6.  Process mineralogy characteristics of different types of monometallic iron tailings in China

    单金属类铁矿尾矿
    类型
    元素含量特征主要矿物组成尾矿粒度主要分布铁主要赋存矿物
    高硅型Si、Fe含量较高,Al含量较低石英、阳起石、透辉石、长石集中在50~350μm透辉石、赤铁矿
    高铝型Si、Fe和Al含量较高钠长石、赤铁矿/磁铁矿和石英集中在50~2000μm赤铁矿/磁铁矿、黄铁矿
    高钙镁型Si、Ca和Mg含量较高方解石、钠长石和白云母集中在3~155μm赤铁矿
    低钙镁铝硅型Si、Ca、Mg和Al含量都较低云母、石英、方解石、斜长石、重晶石集中在75μm以下赤铁矿、菱铁矿
    下载: 导出CSV
  • [1]

    邓文, 江登榜, 杨波, 等. 我国铁尾矿综合利用现状和存在的问题[J]. 现代矿业, 2012, 27(9): 1−3. doi: 10.3969/j.issn.1674-6082.2012.09.001

    Deng W, Jiang D B, Yang B, et al. Current situation and existing problems of comprehensive utilization of iron tailings in China[J]. Modern Mining, 2012, 27(9): 1−3. doi: 10.3969/j.issn.1674-6082.2012.09.001

    [2]

    Wan H, Yi P, Luukkanen S, et al. Recovering iron concentrate from low-grade siderite tailings based on the process mineralogy characteristics[J]. Minerals, 2022, 12(6): 676. doi: 10.3390/min12060676

    [3]

    刘文博, 姚华彦, 王静峰, 等. 铁尾矿资源化综合利用现状[J]. 材料导报, 2020, 34(S1): 268−270.

    Liu W B, Yao H Y, Wang J F, et al. Current status of comprehensive utilization of iron tailings[J]. Materials Reports, 2020, 34(S1): 268−270.

    [4]

    陈邢, 于峰, 曹越, 等. 铁尾矿粉-脱硫灰胶凝材料的制备及性能研究[J]. 硅酸盐通报, 2023, 42(1): 180−187.

    Chen X, Yu F, Cao Y, et al. Preparation and properties of iron tailings powder-desulfurization ash cementitious material[J]. Bulletin of the Chinese Silicate Society, 2023, 42(1): 180−187.

    [5]

    Alfonso P, Ruiz M, Zambrana R N, et al. Process mineralogy of the tailings from Llallagua: Towards a sustainable activity[J]. Minerals, 2022, 12(2): 214. doi: 10.3390/min12020214

    [6]

    杨杰, 董静, 宋洲, 等. 鄂西铜铅锌尾矿库周边农田土壤-水稻重金属污染状况及风险评价[J]. 岩矿测试, 2022, 41(5): 867−879.

    Yang J, Dong J, Song Z, et al. Heavy metal pollution characteristics and risk assessment of soil and rice in farmland around the copper-lead-zinc tailing, Western Hubei Province[J]. Rock and Mineral Analysis, 2022, 41(5): 867−879.

    [7]

    曹惠昌, 郑竞, 高淑玲. 我国铁尾矿综合利用研究进展[J]. 现代矿业, 2011, 27(10): 68−71.

    Cao H C, Zheng J, Gao S L. Research progress on comprehensive utilization of iron tailings in China[J]. Modern Mining, 2011, 27(10): 68−71.

    [8]

    蒋京航, 叶国华, 胡艺博, 等. 铁尾矿再选技术现状及研究进展[J]. 矿冶, 2018, 27(1): 1−4.

    Jiang J H, Ye G H, Hu Y B, et al. Present situation and research progress of iron tailings reconcentration technology[J]. Mining & Metallurgy, 2018, 27(1): 1−4.

    [9]

    刘鹏, 刘磊, 田馨, 等. 我国铁尾矿工艺矿物学特性及其资源化技术研究进展[J]. 矿产保护与利用, 2022, 42(3): 169−178.

    Liu P, Liu L, Tian X, et al. Reviews of the process mineralogy characteristics and comprehensive utilization technology of iron ore tailings in China[J]. Conservation and Utilization of Mineral Resource, 2022, 42(3): 169−178.

    [10]

    任明昊, 谢贤, 李博琦, 等. 铁尾矿综合利用研究进展[J]. 矿产保护与利用, 2022, 42(3): 155−168.

    Ren M H, Xie X, Li B Q, et al. Research progress on comprehensive utilization of iron tailings[J]. Conservation and Utilization of Mineral Resource, 2022, 42(3): 155−168.

    [11]

    赵新福, 曾丽平, 廖旺, 等. 长江中下游成矿带玢岩铁矿研究新进展及对矿床成因的启示[J]. 地学前缘, 2020, 27(2): 197−217.

    Zhao X F, Zeng L P, Liao W, et al. An overview of recent advances in porphyrite iron (iron oxide-apatite, IOA) deposits in the middle-lower Yangtze River metallogenic belt and its implication for ore genesis[J]. Earth Science Frontiers, 2020, 27(2): 197−217.

    [12]

    Wanhainen C, Pålsson B I, Martinsson O, et al. Rare earth mineralogy in tailings from Kiirunavaara iron ore, Northern Sweden: Implications for mineral processing[J]. Minerals & Metallurgical Processing, 2017, 34(4): 189−200.

    [13]

    Peelman S, Kooijman D, Sietsma J, et al. Hydrometallurgical recovery of rare earth elements from mine tailings and WEEE[J]. Journal of Sustainable Metallurgy, 2018, 4(3): 367−377. doi: 10.1007/s40831-018-0178-0

    [14]

    梁朝杰. 姑山尾矿磁化焙烧及磁选试验[J]. 现代矿业, 2014, 30(9): 83−84, 87.

    Liang C J. Magnetic roasting and magnetic separation test of Gushan tailings[J]. Modern Mining, 2014, 30(9): 83−84, 87.

    [15]

    李广, 王化军, 孙体昌, 等. 梅山铁矿尾矿浮选铁的试验研究[J]. 湿法冶金, 2015, 34(3): 173−175.

    Li G, Wang H J, Sun T C, et al. Flotation of iron minerals from Meishan iron tailings[J]. Hydrometallurgy of China, 2015, 34(3): 173−175.

    [16]

    丁开振, 王小玉, 胡炳胜, 等. 马钢罗河尾矿强磁-反浮选工艺研究[J]. 现代矿业, 2019, 35(11): 14−19. doi: 10.3969/j.issn.1674-6082.2019.11.005

    Ding K Z, Wang X Y, Hu B S, et al. Research on strong magnetic-reverse flotation process of Luohe tailings in Masteel[J]. Modern Mining, 2019, 35(11): 14−19. doi: 10.3969/j.issn.1674-6082.2019.11.005

    [17]

    段超, 李延河, 毛景文, 等. 宁芜和尚桥铁氧化物-磷灰石矿床(IOA)成矿过程研究: 来自磁铁矿LA-ICP-MS原位分析的证据[J]. 岩石学报, 2017, 33(11): 3471−3483.

    Duan C, Li Y H, Mao J W, et al. Study on the ore-forming process of the Heshangqiao IOA deposit in Ningwu ore district: Insight from magnetite LA-ICP-MS in-situ analysis data[J]. Acta Petrologica Sinica, 2017, 33(11): 3471−3483.

    [18]

    谢小敏, 李利, 袁秋云, 等. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50−60.

    Xie X M, Li L, Yuan Q Y, et al. Grain size distribution of organic matter and pyrite in Alum shale by TIMA and its paleo-environmental significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50−60.

    [19]

    陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345−368.

    Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345−368.

    [20]

    郑意, 刘文胜, 李杰, 等. 和尚桥铁矿隔离堤边坡治理复垦实践[J]. 现代矿业, 2022, 38(3): 223−225.

    Zheng Y, Liu W S, Li J, et al. Practice of reclamation and treatment of isolation dike slope in Heshangqiao iron mine[J]. Modern Mining, 2022, 38(3): 223−225.

    [21]

    朱末琳, 武飞. 东山铁矿剩余资源开发利用论证[J]. 矿业工程, 2014, 12(6): 1−3.

    Zhu M L, Wu F. Demonstration of exploration and utilization of remaining resources of Dongshan iron mine[J]. Mining Engineering, 2014, 12(6): 1−3.

    [22]

    徐嘉辰, 寿震宇, 曾霄祥, 等. 东山铁矿露天采场改建尾矿库边坡稳定性研究[J]. 金属矿山, 2016(7): 175−178.

    Jia C, Shou Z Y, Zeng X X, et al. Study on the slope stability of the tailing pond built at open-pit stope in Dongshan iron mine[J]. Metal Mine, 2016(7): 175−178.

    [23]

    武飞. 安徽马鞍山东山铁矿Ⅰ区剩余资源开发方案可行性论证[J]. 现代矿业, 2017, 33(11): 79−82.

    Wu F. Discussion on the development feasibility of the remaining resources of Ⅰ area in Dongshan iron mine in Ma’anshan City, Anhui Province[J]. Modern Mining, 2017, 33(11): 79−82.

    [24]

    刘义云. 和尚桥铁矿石选矿试验研究[J]. 现代矿业, 2013, 29(5): 172−173.

    Liu Y Y. Experimental study on beneficiation of Heshang-qiao iron ore[J]. Modern Mining, 2013, 29(5): 172−173.

    [25]

    Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51: 507−513. doi: 10.1016/S0039-9140(99)00318-5

    [26]

    张凤英, 张文捷, 刘春丽. X射线粉晶衍射(XRD)法在粘土矿物岩矿鉴定中的应用[J]. 低碳世界, 2018(9): 279−281. doi: 10.3969/j.issn.2095-2066.2018.09.174

    Zhang F Y, Zhang W J, Liu C L. Application of X-ray powder diffraction (XRD) method in the identification of clay mineral rock[J]. Low Carbon World, 2018(9): 279−281. doi: 10.3969/j.issn.2095-2066.2018.09.174

    [27]

    何袖辉, 唐帅帅, 程江, 等. 碳酸钠-氧化锌半熔电感耦合等离子体质谱法测定地球化学样品中的碘[J]. 岩矿测试, 2022, 41(4): 606−613.

    He X H, Tang S S, Cheng J, et al. Determination of iodine in geochemical samples by ICP-MS with sodium carbonate-zinc oxide semi-melting[J]. Rock and Mineral Analysis, 2022, 41(4): 606−613.

    [28]

    刘金, 王剑, 王桂君, 等. 利用电子探针和X射线衍射研究准噶尔盆地风城组淡钡钛石矿物学特征[J]. 岩矿测试, 2022, 41(5): 764−773.

    Liu J, Wang J, Wang G J, et al. Analysis of mineralogical characteristics of leucosphenite from the Fengcheng Formation in the Junggar Basin by electron probe microanalyzer and X-ray diffractometer[J]. Rock and Mineral Analysis, 2022, 41(5): 764−773.

    [29]

    杨召群, 揣新, 张宏光, 等. 某铁矿超细碎尾矿工艺矿物学研究[J]. 现代矿业, 2019, 35(10): 135−138.

    Yang Z Q, Qi X, Zhang H G, et al. Study on ultrafine tailings process mineralogy in an iron ore[J]. Modern Mining, 2019, 35(10): 135−138.

    [30]

    秦玉芳, 李娜, 王其伟, 等. 白云鄂博选铁尾矿稀土的工艺矿物学研究[J]. 中国稀土学报, 2021, 39(5): 796−804.

    Qin Y F, Li N, Wang Q W, et al. Technological mineralogy of rare earth in Bayan Obo iron tailings[J]. Journal of the China Society of Rare Earths, 2021, 39(5): 796−804.

    [31]

    张燕, 宋志娇, 陈翠华, 等. 重庆城口高燕锰矿床矿物解离度与工艺粒度研究[J]. 地质论评, 2016, 62(1): 285−286.

    Zhang Y, Song Z J, Chen C H, et al. Study on the liberation degree and processing size of mineral in Gaoyan Mn deposit, Chengkou, Chongqing[J]. Geological Review, 2016, 62(1): 285−286.

    [32]

    李德先, 王锦, 张长青, 等. 冀东司家营铁矿尾矿特征及综合利用建议[J]. 地质学报, 2022, 96(4): 1460−1468. doi: 10.3969/j.issn.0001-5717.2022.04.022

    Li D X, Wang J, Zhang C Q, et al. Tailings characteristics and comprehensive utilization suggestions of the Sijiaying iron ore deposit in Eastern Hebei Province[J]. Acta Geologica Sinica, 2022, 96(4): 1460−1468. doi: 10.3969/j.issn.0001-5717.2022.04.022

    [33]

    韩波, 孙熠, 李月明, 等. 高掺量高钙型铁尾矿建筑瓷砖的制备及性能研究[J]. 中国陶瓷, 2023, 59(6): 68−73.

    Han B, Sun Y, Li Y M, et al. Study on preparation and properties of building tiles with high content and high calcium iron tailings[J]. China Ceramics, 2023, 59(6): 68−73.

    [34]

    袁晨光, 黄自力, 刘楚玉, 等. 酒钢镜铁矿尾矿中铁矿物再回收试验研究[J]. 烧结球团, 2023, 48(1): 98−105.

    Yuan C G, Huang Z L, Liu C Y, et al. Experimental research on recovery of iron minerals from specularite tailings in JISCO[J]. Sintering and Pelletizing, 2023, 48(1): 98−105.

    [35]

    刘金长, 张双爱. 酒钢尾矿再利用实验室试验研究[J]. 金属矿山, 2017(12): 185−188.

    Liu J C, Zhang S A. Laboratory research on recycling of ore tailing in JISCO[J]. Metal Mine, 2017(12): 185−188.

  • 加载中

(3)

(6)

计量
  • 文章访问数:  957
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2022-10-12
修回日期:  2024-01-05
录用日期:  2024-02-04
刊出日期:  2024-04-30

目录