-
摘要:
铀矿浓缩物中稀土元素的分布模式已成为核法证学地理溯源的重要指纹信息,因此准确测定稀土元素的含量尤为重要。采用直接溶样电感耦合等离子体质谱法(ICP-MS)测定铀矿浓缩物中的稀土元素时,由于大量铀基体效应,造成稀土元素的离子化效率较低,测定结果明显偏低,去除大量铀基体是铀矿浓缩物中精确测定稀土元素的关键因素。本文通过对Eichrom TRU树脂铀上柱酸的浓度、稀土吸附酸的浓度、淋洗酸的浓度和体积等条件实验研究,建立了快速分离铀矿浓缩物中稀土元素的分析方法。使用该方法对铀矿浓缩物中铀和稀土元素进行分离后,洗脱液中铀含量低于ng/kg量级,稀土元素的回收率在88.3%~104.0%之间,稀土元素的检出限在0.001~0.190μg/kg范围内。将该方法用于测定铀矿石标准物质GBW04205,其测定值与标准值一致,进一步对4个不同来源的铀矿浓缩物样品进行分析,表明该方法可以准确测定铀矿浓缩物中的稀土元素,建立的稀土元素分布模式对铀矿浓缩物核法证学地理溯源可行。
-
关键词:
- 核法证 /
- 铀矿浓缩物 /
- Eichrom TRU树脂 /
- 稀土元素 /
- 电感耦合等离子体质谱法
Abstract:The distribution pattern of rare earth elements (REEs) in uranium ore concentrates (UOC) is an important fingerprint information for geological source tracing in nuclear forensics. It is particularly important to accurately determine the content of rare earth elements in UOC. Because of the large amount of the uranium matrix effect, the ionization efficiency of rare earth elements is low when determined by ICP-MS, and the results are significantly low. It is most important to remove the uranium matrix for accurately determining rare earth elements in UOC. A rapid separation method for rare earth elements in UOC by study of experimental conditions of Eichrom TRU resin, such as equilibrium solution acidity of column, adsorption acidity, leaching acidity and volume of rare earth elements is established. The content of uranium in eluent is lower than ng/kg, the recovery of REEs ranges from 88.3% to 104.0%, and the detection limit of REEs through ICP-MS analysis is from 0.001μg/kg to 0.190μg/kg after the separation of uranium and rare earth elements in UOC by TRU Resin. This method is used to determine the standard material GBW04205 for uranium ore, and the measured values are consistent with the standard values. Further analysis of four samples of UOC from different sources shows that the method can accurately determine the rare earth elements in UOC. The established distribution pattern of rare earth elements is effective for the geographical traceability of UOC nuclear forensics.
-
-
表 1 铀在不同硝酸浓度中的吸附率
Table 1. The absorption rate of uranium in nitric acid with different acidity
硝酸浓度
(mol/L)铀的加入量
(mg)铀的测定量
(mg)铀的吸附率
(%)1 38.6 36.0 93.90 2 38.2 37.0 98.00 3 38.5 38.0 99.66 4 38.3 38.0 99.40 5 38.4 38.0 99.57 6 38.4 38.0 99.78 7 38.3 38.2 99.75 表 2 建立的铀矿浓缩物中稀土元素分析方法的加标回收率
Table 2. Spiked recovery rate of REEs analysis method in uranium ore concentrates
稀土元素 加标回收率(%) 第1次 第2次 第3次 La 94.1 101.0 101.0 Ce 94.8 101.0 102.0 Pr 95.3 101.0 102.0 Nd 94.8 101.0 100.0 Sm 93.9 100.0 101.0 Eu 95.5 102.0 102.0 Gd 88.6 93.9 88.3 Tb 94.9 100.0 100.0 Dy 94.9 100.0 99.0 Ho 95.3 102.0 104.0 Er 94.2 101.0 100.0 Tm 96.1 101.0 102.0 Yb 96.2 104.0 102.0 Lu 96.5 101.0 102.0 表 3 稀土元素检出限
Table 3. Detection limit of the methods for REEs
稀土元素 方法检出限
(μg/kg)稀土元素 方法检出限
(μg/kg)La 0.078 Tb 0.003 Ce 0.190 Dy 0.017 Pr 0.027 Ho 0.003 Nd 0.116 Er 0.004 Sm 0.027 Tm 0.001 Eu 0.005 Yb 0.006 Gd 0.179 Lu 0.001 表 4 八氧化三铀标准物质GBW04205中稀土元素的参考值与测定值
Table 4. Recommended values and determined values of REEs content in U3O8 standard material GBW04205
稀土元素 元素含量
参考值(μg/g)元素含量分次测定值(μg/g) 元素含量测定
平均值(μg/g)第1次 第2次 第3次 第4次 第5次 第6次 Dy 0.01 0.018 0.024 0.025 0.019 0.020 0.016 0.019 Gd 0.006 0.004 0.006 0.007 0.005 0.005 0.007 0.006 Sm 0.007 0.003 0.003 0.004 0.004 0.004 0.003 0.004 Eu 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 表 5 八氧化三铀标准物质GBW04205中无标准值稀土元素的测定值
Table 5. Analytical values of REEs with unrecommended values in U3O8 standard material GBW04205
稀土元素 元素含量分次测定值(μg/g) 元素含量测定
平均值(μg/g)第1次 第2次 第3次 第4次 第5次 第6次 La 0.016 0.015 0.016 0.020 0.025 0.015 0.018 Ce 0.033 0.035 0.032 0.036 0.037 0.041 0.036 Pr 0.004 0.004 0.004 0.003 0.004 0.003 0.004 Nd 0.014 0.015 0.010 0.011 0.013 0.011 0.012 Tb 0.003 0.004 0.005 0.005 0.003 0.003 0.004 Ho 0.006 0.005 0.006 0.005 0.004 0.005 0.005 Er 0.024 0.025 0.021 0.021 0.020 0.024 0.023 Tm 0.004 0.004 0.004 0.004 0.004 0.003 0.004 Yb 0.035 0.038 0.027 0.030 0.028 0.026 0.031 Lu 0.004 0.004 0.004 0.004 0.004 0.004 0.004 表 6 实际铀矿浓缩物样品中稀土元素的测定值
Table 6. Analytical values of REEs content in real UOC samples
样品编号 La
(μg/g)Ce
(μg/g)Pr
(μg/g)Nd
(μg/g)Sm
(μg/g)Eu
(μg/g)Gd
(μg/g)Te
(μg/g)Dy
(μg/g)Ho
(μg/g)Er
(μg/g)Tm
(μg/g)Yb
(μg/g)Lu
(μg/g)1#-1 0.945 2.21 0.926 0.745 0.503 0.345 0.564 0.214 0.173 0.124 0.103 0.086 0.088 0.079 1#-2 0.907 2.30 0.895 0.707 0.477 0.345 0.511 0.241 0.181 0.106 0.097 0.082 0.100 0.079 1#-3 0.857 2.06 0.842 0.655 0.438 0.293 0.487 0.187 0.146 0.106 0.097 0.094 0.094 0.079 1#-4 0.924 2.35 0.947 0.728 0.431 0.362 0.521 0.214 0.161 0.106 0.103 0.090 0.088 0.079 含量平均值 0.907 2.22 0.905 0.709 0.464 0.328 0.521 0.214 0.165 0.106 0.103 0.090 0.094 0.079 RSD(%) 4.20 5.74 4.94 5.53 7.19 7.61 6.16 8.44 8.58 8.55 4.27 6.28 4.74 5.20 2#-1 0.726 1.83 0.558 0.445 0.301 0.224 0.341 0.160 0.138 0.088 0.079 0.078 0.059 0.039 2#-2 0.730 1.70 0.558 0.475 0.327 0.207 0.311 0.160 0.134 0.088 0.079 0.039 0.059 0.039 2#-3 0.764 1.65 0.579 0.488 0.333 0.207 0.350 0.187 0.126 0.088 0.073 0.078 0.053 0.039 2#-4 0.738 1.78 0.568 0.497 0.307 0.207 0.355 0.160 0.130 0.088 0.079 0.078 0.059 0.039 含量平均值 0.738 1.73 0.568 0.475 0.314 0.207 0.341 0.160 0.134 0.088 0.079 0.078 0.059 0.039 RSD(%) 2.20 4.57 2.19 4.78 4.71 2.89 5.88 2.40 4.00 1.42 2.73 4.10 5.46 5.09 3#-1 1.41 1.75 1.04 0.964 1.27 1.12 2.55 3.10 4.29 6.57 10.3 13.1 16.5 18.4 3#-2 1.25 1.72 0.968 0.938 1.27 1.14 2.61 3.29 4.72 7.16 11.1 14.6 18.5 20.9 3#-3 1.38 1.90 1.06 1.05 1.27 1.21 2.35 3.21 4.72 7.31 11.3 14.2 18.5 20.5 3#-4 1.28 1.76 0.989 0.976 1.28 1.24 2.36 3.18 4.53 7.07 10.9 13.7 17.6 19.6 含量平均值 1.41 1.75 1.04 0.964 1.27 1.12 2.55 3.10 4.29 6.57 10.3 13.1 16.5 18.4 RSD(%) 4.86 4.22 4.35 4.53 0.36 4.53 4.82 2.10 4.32 3.98 3.55 4.22 4.71 5.09 4#-1 4371 6346 4032 2970 2242 164 1144 866 587 350 308 253 258 212 4#-2 4456 6346 4074 2784 2294 171 1163 920 614 367 314 264 242 222 4#-3 4333 6057 3832 2842 2222 163 1071 904 598 357 309 238 248 225 4#-4 4101 5922 3905 2835 2163 156 1080 861 563 341 292 241 249 204 含量平均值 4316 6168 3958 2859 2229 163 1114 888 591 353 306 249 249 216 RSD(%) 3.51 3.46 2.82 2.77 2.42 3.58 4.11 3.23 3.65 3.17 3.03 4.84 2.72 4.35 -
[1] 徐卓, 李力力, 朱留超, 等. Eichrom Sr树脂用于铀矿浓缩物中铅锶的分离富集研究[J]. 岩矿测试, 2019, 8(1): 55−61.
Xu Z, Li L L, Zhu L C, et al. Application of Eichrom Sr resin to the separation and enrichment of lead and strontium in uranium ore concentrates[J]. Rock and Mineral Analysis, 2019, 8(1): 55−61.
[2] Mercadier J, Cuney M, Lach P, et al. Origin of uranium deposits revealed by their rare element signature[J]. Terra Nova, 2011, 23(4): 264−269. doi: 10.1111/j.1365-3121.2011.01008.x
[3] 姜小燕, 朱留超, 张燕, 等. 铀芯块的核法证分析及初步溯源[J]. 原子能科学技术, 2020, 54(2): 373−378.
Jiang X Y, Zhu L C, Zhang Y, et al. Study on nuclear forensic analysis and preliminary attribution of uranium pellet[J]. Atomic Energy Science and Technology, 2020, 54(2): 373−378.
[4] Keegan E, Kristo M J, Toole K, et al. Nuclear forensics: Scientific analysis supporting law enforcement and nuclear security investigations[J]. Analytical Chemistry, 2016, 88(3): 1496−1505. doi: 10.1021/acs.analchem.5b02915
[5] 姜小燕, 李力力, 杜志明. 铀矿石浓缩物的地理溯源特征属性分析技术研究现状[J]. 原子能科学技术, 2020, 54(11): 2014−2023.
Jiang X Y, Li L L, Du Z M. Research status of geological traceability analysis of uranium ore concentrate[J]. Atomic Energy Science and Technology, 2020, 54(11): 2014−2023.
[6] Victoria E, Devlin McLoughlin D, Quinn R, et al. Determining provenance of uranium ore concentrates using 143Nd/144Nd[J]. Talanta, 2023, 253: 124088. doi: 10.1016/j.talanta.2022.124088
[7] Keegan E, Kristo M J, Colella M, et al. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia[J]. Forensic Science International, 2014, 240(3): 111−121.
[8] 邵学鹏, 王昌斌, 汤磊, 等. 核取证的常用分析技术与研究进展[J]. 核材料与工程, 2015, 35(4): 757−765.
Shao X P, Wang C B, Tang L, et al. Analytic techniques and progress in nuclear forensics[J]. Nuclear Science and Engineering, 2015, 35(4): 757−765.
[9] Alexandre L, Marycel E, Maria A. An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade[J]. Microchemical Journal, 2013, 106(1): 194−201.
[10] 黄声慧, 王同兴, 李力力, 等. 元素成像技术在核法证中的应用研究进展[J]. 中国无机分析化学, 2024, 14(6): 732−738.
Huang S H, Wang T X, Li L L, et al. Development and application of elemental imaging technology in nuclear forensics[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(6): 732−738.
[11] 韩萧萧, 梁涛, 王思雨, 等. 电感耦合等离子体质谱联用技术在稀土元素物源指示研究中的应用进展[J]. 岩矿测试, 2023, 42(1): 1−15.
Han X X, Liang T, Wang S Y, et al. A review of research progress on provenance indication of rare earth elements by inductively coupled plasma-mass spectrometry hyphenated techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 1−15.
[12] 陈晓薇, 陈秀玲, 周笑笑, 等. 霍童溪表层沉积物稀土元素特征及其物源示踪分析[J]. 地球环境学报, 2021, 12(5): 526−539.
Chen X W, Chen X L, Zhou X X, et al. Characteristics and trace analysis of rare earth elements in surface sediment of Huotong River[J]. Journal of Earth Environment, 2021, 12(5): 526−539.
[13] Wang L Q, Han X X, Liang T, et al. Discrimination of rare earth element geochemistry and co-occurrence in sediment from Poyang Lake, the largest freshwater lake in China[J]. Chemosphere, 2019, 217: 851−857. doi: 10.1016/j.chemosphere.2018.11.060
[14] Nance W B, Taylor S R. Rare-earth element patterns and crustal evolution-Ⅱ. Archean sedimentary-rocks from Kalgoorlie, Australia[J]. Geochimica Cosmochimica Acta, 1977, 41(2): 225−231. doi: 10.1016/0016-7037(77)90229-0
[15] Keegan E, Kristo M J, Colella M, et al. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia[J]. Forensic Science International, 2014, 240: 111−121. doi: 10.1016/j.forsciint.2014.04.004
[16] Spano T L, Simonetti A, Balboni E, et al. Trace element and U isotope analysis of uraninite and ore concentrate: Applications for nuclear forensic investigations[J]. Applied Geochemistry, 2017, 84: 277−285. doi: 10.1016/j.apgeochem.2017.07.003
[17] Mu L, Zhao Y G, Zhao L F, et al. Tracing origins of uranium ore concentrates (UOCs) by multidimensional statistical analysis of rare-earth impurities[J]. Journal of Analytical Atomic Spectrometry, 2015, 30: 396−402. doi: 10.1039/C4JA00354C
[18] Shao X P, Bu W T, Ni Y Y, et al. Origin assessment of uranium ores using multivariate statistical method based on their rare-earth elemental parameters[J]. Nuclear Analysis, 2022, 1(3): 1−7.
[19] Shiho A, Andreas L. LA-ICP-MS of rare earth elements concentrated in cation-exchange resin particles for origin attribution of uranium ore concentrate[J]. Talanta, 2015(135): 41−49.
[20] Zsolt V, Judit K, Maxim P, et al. Identification of uranium signals relevant for nuclear safeguards and forensics[J]. Journal of Radioanalysis Nuclear Chemistry, 2017, 312: 639−654. doi: 10.1007/s10967-017-5247-5
[21] Balboni E, Simonetti A, Spano T, et al. Rare-earth element fractionation in uranium ore and its U(Ⅵ) alteration minerals[J]. Applied Geochemistry, 2017, 87(C): 84−92.
[22] 陈彦, 赵永刚, 李力力, 等. 电感耦合等离子体质谱测定铀样品年龄方法研究[J]. 原子能科学技术, 2020, 54(7): 1199−1204.
Chen Y, Zhao Y G, Li L L, et al. Age dating of uranium sample by ICP-MS[J]. Atomic Energy Science and Technology, 2020, 54(7): 1199−1204.
[23] Vargaa Z, Katonab R, Stefánkab Z, et al. Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry[J]. Talanta, 2010, 80: 1744−1749. doi: 10.1016/j.talanta.2009.10.018
[24] 曾江萍, 王家松, 朱悦, 等. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素[J]. 岩矿测试, 2022, 41(5): 789−797.
Zeng J P, Wang J S, Zhu Y, et al. Determination of 15 rare earth elements in uranium ore by open acid dissolution-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(5): 789−797.
[25] 万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145−155.
Wan J J, Pan C R, Yan J, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan uranium rare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145−155.
[26] 余关美, 时国. 赣中相山铀矿田基底变质岩稀土元素特征及其地质意义[J]. 东华理工大学学报(自然科学版), 2015, 38(4): 350−370.
Yu G M, Shi G. Characteristics of rare earth elements and the geological significance of the basement metamorphic rocks in Xiangshan uranium ore field in Central Jiangxi Province[J]. Journal of East China Institute of Technology (Natural Science Edition), 2015, 38(4): 350−370.
[27] Enrica B, Nina J, Tyler S, et al. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications[J]. Applied Geochemistry, 2016, 74: 24−32. doi: 10.1016/j.apgeochem.2016.08.016
[28] 刘政国, 林锦荣, 王勇剑, 等. 江西相山铀矿田铀矿物稀土元素特征及富集机制探讨[J]. 铀矿地质, 2023, 39(3): 375−394.
Liu Z G, Lin J R, Wang Y J, et al. Characteristics of REE in uranium minerals and its enrichment mechanism in Xiangshan uranium ore field, Jiangxi[J]. Uranium Geology, 2023, 39(3): 375−394.
[29] 陈佑纬, 胡瑞忠, 骆金诚, 等. 桂北沙子江铀矿床沥青铀矿原位微区年代学和元素分析: 对铀成矿作用的启示[J]. 岩石学报, 2019, 35(9): 2679−2694. doi: 10.18654/1000-0569/2019.09.04
Chen Y W, Hu R Z, Luo J C, et al. In-situ mineral chemistry and chronology analyses of the pitchblende in the Shazijiang uranium deposit and their implications for mineralization[J]. Acta Petrologica Sinica, 2019, 35(9): 2679−2694. doi: 10.18654/1000-0569/2019.09.04
[30] Hartwig E F, Sibylle S, Helene B. Uraninite chemistry as forensic tool for provenance analysis[J]. Applied Geochemistry, 2014, 48: 104−121. doi: 10.1016/j.apgeochem.2014.07.013
[31] Pierre M, Julien M, Julien P, et al. Post-crystallization alteration of natural uraninites: Implications for dating, tracing, and nuclear forensics[J]. Geochimica et Cosmochimica Acta, 2019, 249: 138−159. doi: 10.1016/j.gca.2019.01.025
-