中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

火焰原子吸收光谱法测定土壤中游离铁含量

张随安, 杨中瑞, 段玉宇, 杨凯淇, 胡智杰, 杨春, 侯莎. 火焰原子吸收光谱法测定土壤中游离铁含量[J]. 岩矿测试, 2024, 43(4): 614-621. doi: 10.15898/j.ykcs.202305110067
引用本文: 张随安, 杨中瑞, 段玉宇, 杨凯淇, 胡智杰, 杨春, 侯莎. 火焰原子吸收光谱法测定土壤中游离铁含量[J]. 岩矿测试, 2024, 43(4): 614-621. doi: 10.15898/j.ykcs.202305110067
ZHANG Sui’an, YANG Zhongrui, DUAN Yuyu, YANG Kaiqi, HU Zhijie, YANG Chun, HOU Sha. Free Iron Determination in Soil by Flame Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2024, 43(4): 614-621. doi: 10.15898/j.ykcs.202305110067
Citation: ZHANG Sui’an, YANG Zhongrui, DUAN Yuyu, YANG Kaiqi, HU Zhijie, YANG Chun, HOU Sha. Free Iron Determination in Soil by Flame Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2024, 43(4): 614-621. doi: 10.15898/j.ykcs.202305110067

火焰原子吸收光谱法测定土壤中游离铁含量

  • 基金项目: 陕西省公益性地质调查项目“建设用地与农用地土壤特殊污染物检测方法研究”(202114);陕西省科技协会青年人才托举计划项目“富硒土壤中重金属污染的复合钝化体系研究”(NYKJ202223);陕西省公益性地质调查项目“战略性金属矿产检测能力建设与应用”(202410)
详细信息
    作者简介: 张随安,硕士,高级工程师,长期从事地质勘察和地球化学研究。E-mail:870644844@qq.com
  • 中图分类号: P618.31;O657.31

Free Iron Determination in Soil by Flame Atomic Absorption Spectrometry

  • 土壤游离铁是成土母质风化、迁移转化的产物,其形态和活化、老化程度能够反映成土过程和成土环境,可以直接反映土壤的形成环境、形成过程和气候变化。因此,准确测定土壤中的游离铁含量具有重要的现实意义。目前采用紫外分光光度法测定游离铁实验流程长,需要将高价铁还原为低价铁,加之需要显色时间24h,耗费时间长,检测效率较低。本文采用火焰原子吸收光谱法(FAAS)测定土壤中的游离铁含量,系统研究了实验条件对游离铁测定的影响,通过优化样品测定过程中碳酸氢钠的用量、反应温度、反应时间以及清洗次数,确定了称样量为0.5g,加入柠檬酸钠溶液20mL和碳酸氢钠溶液2mL,反应温度75~80℃,反应时间15~30min,再用饱和氯化钠溶液和2mL 1mol/L氯化钠溶液清洗各一次为最佳实验条件。经验证,该方法检出限(3σ)为0.05g/kg,定量限为0.20g/kg,标准曲线线性相关系数为0.9995,方法精密度 (RSD,n=6) 为1.95%~3.76%,标准样品测定误差小于5%,符合土壤调查样品分析测试要求,可推广应用于土壤调查中土壤和沉积物样品分析。

  • 加载中
  • 图 1  不同碳酸氢钠用量(a)、反应温度(b)、反应时间(c)、氯化钠溶液清洗次数(d)对铁吸光度的影响

    Figure 1. 

    表 1  紫外可见分光光度法和火焰原子吸收光谱法测定土壤中游离态铁的检出限比较

    Table 1.  Comparison of detection limits for free iron in soil by ultraviolet–visible spectrophotometry and flame atomic absorption spectrometry

    测定方法 11次空白游离态铁含量测定结果
    (g/kg)
    方法检出限
    (g/kg)
    紫外可见分光光度法1.23 1.13 1.28 1.44 1.26 1.16 1.03 1.39 1.30 1.22 1.010.40
    火焰原子吸收光谱法0.18 0.15 0.18 0.16 0.14 0.15 0.18 0.16 0.17 0.13 0.150.05
    下载: 导出CSV

    表 2  采用本文方法测定游离铁含量的精密度

    Table 2.  Precision results of free iron content determined by this study method

    样品编号 游离铁含量6次测定值
    (g/kg)
    游离铁含量测定平均值
    (g/kg)
    RSD
    (%)
    1#27.4 25.6 25.6 24.5 26.4 26.326.03.76
    2#16.2 16.2 15.8 16.1 16.0 16.816.21.95
    3#11.2 11.6 11.1 11.5 11.4 12.011.52.80
    下载: 导出CSV

    表 3  游离铁含量测定正确度实验结果

    Table 3.  Accuracy results of of the method for free iron content determination

    标准物质编号 游离铁含量7次测定值
    (g/kg)
    游离铁含量测定平均值
    (g/kg)
    游离铁含量标准值
    (g/kg)
    相对误差
    (%)
    GBW(E)07033441.3 42.6 42.4 42.1 42.4 40.9 41.941.944±4−4.72
    GBW(E)07033926.5 27.0 27.5 27.4 27.3 27.1 27.127.128±3−3.21
    GBW(E)07034114.2 12.9 13.5 13.8 12.9 13.7 13.513.513±1.13.85
    下载: 导出CSV

    表 4  采用本文方法分析实际土壤样品游离铁含量测定结果

    Table 4.  Analytical results of free iron content in actual soil samples determined by this method

    实际样品编号土壤质地游离铁含量测定值
    (g/kg)
    实际样品编号土壤质地游离铁含量测定值
    (g/kg)
    4#砂土及壤质沙土16.1414#黏壤土21.92
    5#砂土及壤质沙土14.5715#黏壤土24.77
    6#黏壤土25.1916#砂质壤土20.08
    7#砂土及壤质沙土11.7717#砂土及壤质沙土11.66
    8#砂质壤土18.2818#黏壤土27.35
    9#砂质壤土17.9719#砂土及壤质沙土13.61
    10#粉(砂)质黏土10.0720#黏壤土21.35
    11#黏壤土20.7221#砂土及壤质沙土13.68
    12#砂质壤土20.6222#砂质壤土16.42
    13#黏壤土24.4923#黏壤土23.37
    下载: 导出CSV
  • [1]

    孙丹丹, 刘学, 杨继松, 等. 黄河三角洲农田退耕年限对土壤不同形态氧化铁含量及其分布的影响[J]. 生态学杂志, 2023, 42(10): 2359−2367. doi: 10.13292/j.1000-4890.202310.028

    Sun D D, Liu X, Yang J S, et al. Effects of returning years from farmland to wetland on the content and distribution of soil iron oxides in the Yellow River Delta[J]. Chinese Journal of Ecology, 2023, 42(10): 2359−2367. doi: 10.13292/j.1000-4890.202310.028

    [2]

    贾重建, 卢瑛, 熊凡, 等. 珠江三角洲平原不同种植年限土壤铁氧化物特征研究[J]. 土壤学报, 2017, 54(4): 894−904. doi: 10.11766/trxb201611160502

    Jia C J, Lu Y, Xiong F, et al. Characteristics of iron oxide in soils different in cultivation age in The Pearl River Delta Plain[J]. Acta Pedologica Sinica, 2017, 54(4): 894−904. doi: 10.11766/trxb201611160502

    [3]

    Chen C M, Hall S J, Coward L, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 2020, 168(10): 707−717. doi: 10.1038/s41467-020-16071-5

    [4]

    Rezapour S, Azhah H, Momtaz H R, et al. Changes in forms and distribution pattern of soil iron oxides due to long-term cropping in the northwest of Iran[J]. Environmental Earth Sciences, 2015, 73(11): 7257−7286. doi: 10.1007/s12665-014-3933-y

    [5]

    魏昌龙, 赵玉国, 邬登巍, 等. 基于光谱分析的土壤游离铁预测研究[J]. 土壤, 2014, 46(4): 678−683. doi: 10.13758/j.cnki.tr.2014.04.016

    Wei C L, Zhao Y G, Wu D W, et al. Prediction of soil free iron oxide content based on spectral analysis[J]. Soils, 2014, 46(4): 678−683. doi: 10.13758/j.cnki.tr.2014.04.016

    [6]

    张治伟, 朱章雄, 傅瓦利, 等. 岩溶山地土壤氧化铁形态及其与成土环境的关系[J]. 环境科学, 2012, 33(6): 2013−2020. doi: 10.13227/j.hjkx.2012.06.014

    Zhang Z W, Zhu Z X, Fu W L, et al. Morphology of soil iron oxides and its correlation with soil-forming process and forming conditions in a karst mountain[J]. Environmental Science, 2012, 33(6): 2013−2020. doi: 10.13227/j.hjkx.2012.06.014

    [7]

    李孝良, 陈效民, 周炼川, 等. 喀斯特石漠化地区土壤Fe组成及其发生学意义[J]. 地质通报, 2010, 29(5): 745−751. doi: 10.3969/j.issn.1671-2552.2010.05.015

    Li X L, Chen X M, Zhou L C, et al. Characteristics of soil iron and its pedogenetic significance in the process of karst rocky desertification in Southwestern China[J]. Geological Bulletin of China, 2010, 29(5): 745−751. doi: 10.3969/j.issn.1671-2552.2010.05.015

    [8]

    刘玉晶, 陆晓辉, 罗丹, 等. 贵州喀斯特山区典型土壤氧化铁特征及其与土壤类型分异关系[J]. 土壤通报, 2021, 52(3): 505−514. doi: 10.19336/j.cnki.trtb.2020100901

    Liu Y J, Lu X H, Luo D, et al. Characteristics of iron oxides and their relationship with soil types in the karst mountainous areas of Guizhou[J]. Chinese Journal of Soil Science, 2021, 52(3): 505−514. doi: 10.19336/j.cnki.trtb.2020100901

    [9]

    牛庚, 孙德安, 韦昌富, 等. 游离氧化铁对红黏土持水特性的影响[J]. 岩土工程学报, 2018, 40(12): 2318−2324. doi: 10.11779/CJGE201812021

    Niu G, Sun D A, Wei C F, et al. Effects of free iron oxide on water retention behavior of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2318−2324. doi: 10.11779/CJGE201812021

    [10]

    刘莉, 颜荣涛, 牛富俊, 等. 游离氧化铁对红黏土力学特性的影响[J]. 桂林理工大学学报, 2021, 41(4): 810−816. doi: 10.3969/j.issn.1674-9057.2021.04.012

    Liu L, Yan R T, Niu F J, et al. Effect of free iron oxide on the strength and deformation characteristics of red clay[J]. Journal of Guilin University of Technology, 2021, 41(4): 810−816. doi: 10.3969/j.issn.1674-9057.2021.04.012

    [11]

    杨东伟, 章明奎, 张鹏启, 等. 平原区水田改林地后土壤黏土矿物及氧化铁的变化[J]. 土壤, 2020, 52(3): 567−574. doi: 10.13758/j.cnki.tr.2020.03.021

    Yang D W, Zhang M K, Zhang P Q, et al. Changes of soil clay minerals and iron oxides after paddy field converted into forest land in plain areas[J]. Soils, 2020, 52(3): 567−574. doi: 10.13758/j.cnki.tr.2020.03.021

    [12]

    孙东年, 韩张雄, 杨树俊, 等. DCB浸提-电感耦合等离子体光谱法测定土壤中游离态铁[J]. 化学工程师, 2023, 37(2): 21−24. doi: 10.16247/j.cnki.23-1171/tq.20230221

    Sun D N, Han Z X, Yang S J, et al. Rapid determination of free iron in soils by ICP-OES with DCB extraction[J]. Chemical Engineer, 2023, 37(2): 21−24. doi: 10.16247/j.cnki.23-1171/tq.20230221

    [13]

    王大娟, 杨根兰, 向喜琼, 等. 邻菲啰啉分光光度法测定红层砂岩中Fe(Ⅱ)和全铁的方法探讨[J]. 岩矿测试, 2020, 39(2): 216−224. doi: 10.15898/j.cnki.11-2131/td.201906200088

    Wang D J, Yang G L, Xiang X Q, et al. Determination of Fe(Ⅱ) and total iron in red sandstone by o-phenanthroline spectrophotometry[J]. Rock and Mineral Analysis, 2020, 39(2): 216−224. doi: 10.15898/j.cnki.11-2131/td.201906200088

    [14]

    傅翠梨, 陈文瑞, 郭阿明, 等. 邻菲啰啉光度法测定高岭土中可溶铁和非可溶铁[J]. 岩矿测试, 2012, 31(4): 621−626. doi: 10.15898/j.cnki.11-2131/td.2012.04.009

    Fu C L, Chen W R, Guo A M, et al. Determination of soluble and insoluble iron in kaolin by phenanthroline spectrophotometry[J]. Rock and Mineral Analysis, 2012, 31(4): 621−626. doi: 10.15898/j.cnki.11-2131/td.2012.04.009

    [15]

    潘涵香, 胡超勇, 王红梅, 等. 邻二氮菲分光光度法测定碳酸盐相中微量亚铁[J]. 岩矿测试, 2007, 26(3): 198−200. doi: 10.15898/j.cnki.11-2131/td.2007.03.006

    Pan H X, Hu C Y, Wang H M, et al. Determination of trace Fe(Ⅱ) in carbonate phase by spectrophotometry with 1, 10-phenanthroline[J]. Rock and Mineral Analysis, 2007, 26(3): 198−200. doi: 10.15898/j.cnki.11-2131/td.2007.03.006

    [16]

    程米亮, 赵利启, 杨长丕, 等. 邻菲罗啉分光光度法测定电解液中铁的方法改进[J]. 化工设计通讯, 2021, 47(8): 99−100. doi: 10.3969/j.issn.1003-6490.2021.08.048

    Cheng M L, Zhao L Q, Yang C P, et al. An improved spectrophotometric method for the determination of iron in electrolyte with 1, 10-phenanthroline[J]. Chemical Engineering Design Communications, 2021, 47(8): 99−100. doi: 10.3969/j.issn.1003-6490.2021.08.048

    [17]

    程芳婷, 罗细珍, 孙立忠. 常用的铁离子含量分析方法探讨[J]. 工业水处理, 2007, 27(1): 61−63. doi: 10.3969/j.issn.1005-829X.2007.01.019

    Cheng F T, Luo X Z, Sun L Z. Discussion of common methods for the determination of iron[J]. Industrial Water Treatment, 2007, 27(1): 61−63. doi: 10.3969/j.issn.1005-829X.2007.01.019

    [18]

    韩林宝, 代群威, 党政, 等. 厌氧环境下邻菲罗啉分光光度法测定纤维水镁石中Fe(Ⅱ)与Fe(Ⅲ)[J]. 冶金分析, 2018, 38(5): 25−29. doi: 10.13228/j.boyuan.issn1000-7571.010264

    Han L B, Dai Q E, Dang Z, et al. Determination of Fe(Ⅱ) and Fe(Ⅲ) in fiber brucite by phenanthroline spectrophotometry under anaerobic condition[J]. Metallurgical Analysis, 2018, 38(5): 25−29. doi: 10.13228/j.boyuan.issn1000-7571.010264

    [19]

    苏洋. 邻菲罗啉光度法测定钒铝合金中铁[J]. 冶金分析, 2019, 39(2): 77−80. doi: 10.13228/j.boyuan.issn1000-7571.010492

    Su Y. Determination of iron in vanadium-aluminum alloy by phenanthroline spectrophotometry[J]. Metallurgical Analysis, 2019, 39(2): 77−80. doi: 10.13228/j.boyuan.issn1000-7571.010492

    [20]

    马红宇, 赵静, 张利文. 分光光度法测定乳化含硫污水中铁含量[J]. 中国无机分析化学, 2021, 11(5): 72−76. doi: 10.3969/j.issn.2095-1035.2021.05.012

    Ma H Y, Zhao J, Zhang L W. Determination of iron content in emulsified sulfur-containing sewage by spectrophotometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(5): 72−76. doi: 10.3969/j.issn.2095-1035.2021.05.012

    [21]

    张榕, 段宁, 降林华, 等. 紫外可见分光光度法直接测定高浓度六价铬溶液的光程优化研究[J]. 光谱学与光谱分析, 2023, 43(6): 829−1837. doi: 10.3964/j.issn.1000-0593(2023)06-1829-09

    Zhang R, Duan N, Jiang L H, et al. Study on optical path optimization for direct determination of spectrophotometry of high concentration hexavalent chromium solution by ultraviolet visible spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(6): 829−1837. doi: 10.3964/j.issn.1000-0593(2023)06-1829-09

    [22]

    彭杰, 向红英, 周清, 等. 土壤氧化铁的高光谱响应研究[J]. 光谱学与光谱分析, 2013, 33(2): 502−506. doi: 10.3964/j.issn.1000-0593(2013)02-0502-05

    Peng J, Xiang H Y, Zhou Q, et al. Influence of soil iron oxide on VNIR diffuse reflectance spectroscopy[J]. Spectroscopy and Spectral Analysis, 2013, 33(2): 502−506. doi: 10.3964/j.issn.1000-0593(2013)02-0502-05

    [23]

    严煜, 韩乃旭, 卢水淼, 等. 工业在线-电感耦合等离子体发射光谱法分析湿法冶炼硫酸锌溶液中铜镉钴铁[J]. 岩矿测试, 2022, 41(1): 153−159. doi: 10.15898/j.cnki.11-2131/td.202107200080

    Yan Y, Han N X, Lu S M, et al. Industrial on-line ICP-OES analysis of copper, cadmium, cobalt and iron in hydrometallurgical zinc sulfate solution[J]. Rock and Mineral Analysis, 2022, 41(1): 153−159. doi: 10.15898/j.cnki.11-2131/td.202107200080

    [24]

    陈新, 罗琼, 胡建民. 石墨炉原子吸收光谱法测定麦麸颗粒中镉[J]. 中国无机分析化学, 2023, 13(7): 684−688. doi: 10.3969/j.issn.2095-1035.2023.07.003

    Chen X, Luo Q, Hu J M, et al. Determination of cadmium in wheat bran pellets by graphite furnace atomic absorption spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(7): 684−688. doi: 10.3969/j.issn.2095-1035.2023.07.003

    [25]

    汪磊, 蒙益林, 耿小颖. 火焰原子吸收光谱法测定氧化石墨烯中铁和钾的含量[J]. 理化检验(化学分册), 2022, 58(9): 1088−1092. doi: 10.11973/lhjy-hx202209018

    Wang L, Meng Y L, Geng X Y, et al. Determination of iron and potassium in graphene oxide by flame atomic absorption spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(9): 1088−1092. doi: 10.11973/lhjy-hx202209018

    [26]

    马毅红, 蒙兰粉, 尹艺青. 离子液体双水相体系分离-火焰原子吸收光谱法测定铁尾矿中铁[J]. 冶金分析, 2012, 32(9): 36−39. doi: 10.13228/j.issn.1000-7571.2012.09.003

    Ma Y H, Meng L F, Yin Y Q. Determination of iron in iron tailings by ionic liquid aqueous two-phase system separation-flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2012, 32(9): 36−39. doi: 10.13228/j.issn.1000-7571.2012.09.003

    [27]

    张伟琦, 谢涛, 孙稚菁, 等. 微波消解火焰原子吸收光谱法测定土壤中六价铬[J]. 环境科学研究, 2023, 36(1): 44−53. doi: 10.13198/j.issn.1001-6929.2022.11.27

    Zhang W Q, Xie T, Sun Z J, et al. Developments of the method of microwave digestion and flame atomic absorption spectrometry for determination of hexavalent chromium in soils[J]. Research of Environmental Sciences, 2023, 36(1): 44−53. doi: 10.13198/j.issn.1001-6929.2022.11.27

    [28]

    杨琳, 李雪蕾, 王相舒, 等. 浊点萃取-火焰原子吸收光谱法测定土壤中的有效态钴[J]. 岩矿测试, 2013, 59(8): 775−779. doi: 10.15898/j.cnki.11-2131/td.2013.05.017

    Yang L, Li X L, Wang X S, et al. Determination of available cobalt in soils by flame atomic absorption spectrometry with cloud point extraction[J]. Rock and Mineral Analysis, 2013, 59(8): 775−779. doi: 10.15898/j.cnki.11-2131/td.2013.05.017

    [29]

    刘琳娟, 张琪, 陆培培. 标准加入-原子吸收光谱法测定钢渣中的铁[J]. 岩矿测试, 2010, 29(6): 695−698. doi: 10.15898/j.cnki.11-2131/td.2010.06.021

    Liu L J, Zhang Q, Lu P P. Determination of iron in steel slag by standard addition-atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2010, 29(6): 695−698. doi: 10.15898/j.cnki.11-2131/td.2010.06.021

    [30]

    王娜, 滕新华, 吴彦涛, 等. 三氯化铝浸取-火焰原子吸收光谱法测定水系沉积物中低含量的碳酸铁[J]. 岩矿测试, 2015, 34(2): 229−233. doi: 10.15898/j.cnki.11-2131/td.2015.02.013

    Wang N, Teng X H, Wu Y T, et al. Determination of low-content iron carbonate in stream sediments by flame atomic absorption spectrometry with aluminum chloride extraction[J]. Rock and Mineral Analysis, 2015, 34(2): 229−233. doi: 10.15898/j.cnki.11-2131/td.2015.02.013

    [31]

    余星兴, 袁大刚, 陈剑科, 等. 基于 Munsell 颜色的土壤游离铁预测研究[J]. 土壤学报, 2021, 58(5): 1322−1329. doi: 10.11766/trxb202004130048

    Yu X X, Yuan D G, Chen J K, et al. Prediction of soil free iron oxide content based on soils Munsell color[J]. Acta Pedologica Sinica, 2021, 58(5): 1322−1329. doi: 10.11766/trxb202004130048

    [32]

    胡健平, 王日中, 杜宝华, 等. 火焰原子吸收光谱法和电感耦合等离子体发射光谱法测定硫化矿中的银铜铅锌[J]. 岩矿测试, 2018, 37(4): 388−395. doi: 10.15898/j.cnki.11-2131/td.201706270110

    Hu J P, Wang R Z, Du B H, et al. Determination of silver copper lead and zinc in sulfide ores by flame atomic absorption spectrometry and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 388−395. doi: 10.15898/j.cnki.11-2131/td.201706270110

    [33]

    褚琳琳, 王静云, 金晓霞, 等. 碱溶液提取-离子交换-电感耦合等离子体质谱法测定土壤中六价铬[J]. 岩矿测试, 2022, 41(5): 826−835. doi: 10.15898/j.cnki.11-2131/td.202203240060

    Chu L L, Wang J Y, Jin X X, et al. Determination of hexavalent chromium in soil by inductively coupled plasma-mass spectrometry with alkaline digestion-ion exchange[J]. Rock and Mineral Analysis, 2022, 41(5): 826−835. doi: 10.15898/j.cnki.11-2131/td.202203240060

  • 加载中

(1)

(4)

计量
  • 文章访问数:  732
  • PDF下载数:  692
  • 施引文献:  0
出版历程
收稿日期:  2023-05-11
修回日期:  2024-05-30
录用日期:  2024-06-21
刊出日期:  2024-07-31

目录