中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

流通式-时间分辨分析技术在地质领域的应用进展

许心宁, 王朔, 徐娟, 刘鹏飞, 杨守业. 流通式-时间分辨分析技术在地质领域的应用进展[J]. 岩矿测试, 2025, 44(1): 1-18. doi: 10.15898/j.ykcs.202304130048
引用本文: 许心宁, 王朔, 徐娟, 刘鹏飞, 杨守业. 流通式-时间分辨分析技术在地质领域的应用进展[J]. 岩矿测试, 2025, 44(1): 1-18. doi: 10.15898/j.ykcs.202304130048
XU Xinning, WANG Shuo, XU Juan, LIU Pengfei, YANG Shouye. Research Progress on the Geological Application of a Flow-Through Time-Resolved Analysis System[J]. Rock and Mineral Analysis, 2025, 44(1): 1-18. doi: 10.15898/j.ykcs.202304130048
Citation: XU Xinning, WANG Shuo, XU Juan, LIU Pengfei, YANG Shouye. Research Progress on the Geological Application of a Flow-Through Time-Resolved Analysis System[J]. Rock and Mineral Analysis, 2025, 44(1): 1-18. doi: 10.15898/j.ykcs.202304130048

流通式-时间分辨分析技术在地质领域的应用进展

  • 基金项目: 国家重点研发计划项目(2022YFF0800504);国家自然科学基金项目(42230410,42003020)
详细信息
    作者简介: 许心宁,博士研究生,海洋科学专业。E-mail:xinning_xu@tongji.edu.cn
    通讯作者: 杨守业,博士,教授,从事边缘海沉积地球化学研究。E-mail:syyang@tongji.edu.cn
  • 中图分类号: P595

Research Progress on the Geological Application of a Flow-Through Time-Resolved Analysis System

More Information
  • 流通式-时间分辨分析系统(简称FT-TRA)是二十一世纪初新发展起来的一种快速反应(溶解)-在线分析系统,由淋洗液混合单元、反应单元与分析单元组成,核心功能是通过特定流动相淋洗样品池中的微量样品,分离或去除样品中的特定组分,并监测样品不同元素和矿物组分的出溶特征,实现高分辨的在线过程分析。本文综述了FT-TRA系统的技术原理与软硬件组成、实验方法与操作要点及地质应用发展过程,重点对该系统在地质应用过程中出现的争议点进行阐释与分析,并基于其发展现状展望其未来发展方向与潜力。FT-TRA系统目前主要的地质应用包括古海洋学与古环境学研究代用指标的验证(如有孔虫、介形虫淋洗)、矿物溶解过程与反应动力学研究、环境样品的元素相态分析等。FT-TRA系统以溶解并提取有孔虫/介形虫壳体的元素组成信号作为还原古海洋指标的重要手段,与传统批处理法相比,该方法被认为具有实时监测清洁程度、降低损失率并实现差异溶解的优势,能够获取更精细的壳体化学组成信息;测试矿物溶解态与溶解参数也是FT-TRA系统的重要功能之一,该系统的实验室模拟能够与模型结合探究不同类型矿物在稳态下的溶解动力学,为研究矿物在自然状态下的溶解过程提供启示;近些年来该系统还逐渐被用于矿物反应性测试,其中将气相CO2作为淋滤液与矿物反应的研究可能在全球变暖及CO2的人工捕捉课题上具有潜在应用价值。FT-TRA系统运行中涉及的不同组分的溶解机制是其应用过程中亟待解决的重要问题,进一步完善其溶解动力学原理必然将为该系统的未来发展提供更多如多类型地质样品溶解、矿物的模拟合成等新思路。

  • 加载中
  • 图 1  FT-TRA系统原理示意图(修改自王朔10)

    Figure 1. 

    图 2  FT-TRA系统反应池设计实例(修改自de Baere2)

    Figure 2. 

    图 3  FT-TRA系统标线建立流程图

    Figure 3. 

    图 4  单颗有孔虫样品不同流速梯度淋滤元素浓度变化

    Figure 4. 

    图 5  FT-TRA系统处于“稳态”的证据(修改自Haley等1)

    Figure 5. 

    图 6  有孔虫壳体在FT-TRA系统内的差异溶解(修改自Klinkhammer等18)

    Figure 6. 

    图 7  FT-TRA系统与批处理法提取有孔虫壳体Mg/Ca还原古海洋温度(修改自Benway等7)

    Figure 7. 

    图 8  LA-ICP-MS与FT-TRA测试不同种类有孔虫壳体Mg/Ca值变化比较

    Figure 8. 

    图 9  FT-TRA系统测试所得不同pH下方解石/文石溶解度与其他测试结果的对比2

    Figure 9. 

    表 1  FT-TRA系统应用实例总结

    Table 1.  Summary of FT-TRA system application examples

    FT-TRA
    应用领域
    文献来源 研究方法 研究指标 研究亮点 对于FT-TRA系统的意义
    以有孔虫壳体成分为指标的古海洋学研究 Haley等
    (2002)
    FT-TRA 浮游有孔虫壳体REEs、Mg、Sr、Cd、Ba、Mn、Mg/Ca、Sr/Ca 提出FT-TRA系统作为一种新的清洗溶解有孔虫壳体的技术手段 FT-TRA系统的设计与最初应用
    Benway等
    (2003)
    FT-TRA 浮游有孔虫壳体Mg/Ca 首次评估该系统提取有孔虫壳体Mg/Ca作为还原古海水表层温度指标的可行性 首次提出FT-TRA系统可根据溶解度差异提取不同成因方解石的化学信号
    Klinkhammer等 (2005) FT-TRA 浮游有孔虫壳体Mg/Ca 进一步提出采用在FT-TRA系统中溶解最敏感的方解石部分作为反映表层海水温度的准确值 实现了系统自动化运行;肯定了前处理/清洗过程对于FT-TRA系统提取有孔虫Mg/Ca的非必要性
    Haley等
    (2005)
    FT-TRA 底栖及浮游有孔虫壳体REEs 运用FT-TRA系统分析底栖及浮游有孔虫壳体中的REEs作为古环境指标的潜力 /
    Hoogakker等 (2009) FT-TRA、
    电子探针、
    传统批次
    溶解法
    浮游有孔虫壳体Mg/Ca 对比高盐度与正常盐度环境中的浮游有孔虫壳体Mg/Ca,证明盐度高低不会影响有孔虫壳体Mg/Ca,变化是由次生生长导致 首次质疑FT-TRA系统可根据溶解度差异提取生物方解石的观点,但提出可通过Mg/Ca斜率变化进行判断
    Klinkhammer等 (2009) FT-TRA 有孔虫壳体Mn/Ca 测定钻孔中不同种属有孔虫壳体Mn/Ca在过去3万年间的变化趋势,得出陆源输入改变、表层生产力改变等结论 /
    Sadekov等
    (2010)
    FT-TRA、
    LA-ICP-MS
    有孔虫壳体Mg/Ca 针对部分溶解对有孔虫壳体Mg/Ca的影响作了针对性研究 提出有孔虫壳体在FT-TRA系统内部的溶解仅是由外至内进行,并不能提取特定组分方解石
    Torres等
    (2010)
    FT-TRA 有孔虫壳体Mg/Ca、Ba/Ca、
    Sr/Ca、Mn/Ca
    测定受次生矿化影响的有孔虫的El/Ca,并结合C/O同位素识别其是否生长在甲烷泄露区 /
    Boussetta等
    (2011)
    FT-ICP-AES、SEM、XRD 浮游有孔虫壳体Mg/Ca 对地中海钻孔浮游有孔虫Mg/Ca进行研究,证明地中海有孔虫Mg/Ca高于开阔海洋不是由于盐度效应,而是与成岩作用有关 提出FT-TRA系统并没有分离出次生方解石的效果
    Haarmann等 (2011) 离线FT-TRA 清洗有孔虫壳体 使用FT-TRA系统清洗样品以防止壳体损失,用于测试单个有孔虫壳体的Mg/Ca变化探究季节温度变化 /
    Kraft等
    (2013)
    FT-TRA、
    传统批次
    溶解法
    有孔虫壳体Al/Ca、Mn/Ca和Nd 同位素组成 详细比较了手动批次清洗和 FT-TRA 清洗有孔虫壳体的效果,证明两者清洗效率相同且批次清洗法对于Nd的重吸附效应更小 认为FT-TRA系统清洗有孔虫并不具备优势
    Mckay等
    (2015)
    SIMS、FT-ICP-OES 底栖有孔虫壳体Mn/Ca 评估底栖有孔虫壳体Mn/Ca作为记录东北大西洋低纬度上升流系统底层水氧化还原条件变化的替代物的潜力 /
    矿物溶解动力学研究 de Baere等
    (2015)
    FT-TRA 镁橄榄石溶解
    参数
    以镁橄榄石为例,探索FT-TRA在恒定和瞬态洗脱条件下测量矿物溶解速率、确定溶解参数和溶解化学计量学的适用性 首次将FT-TRA系统应用于矿物溶解动力学领域
    de Baere等
    (2016)
    FT-TRA、孔隙尺度建模 镁橄榄石、
    方解石溶解态
    对镁橄榄石和方解石的溶解态进行了经验测定表明FT-TRA系统能够判断矿物溶解态 提出方解石在系统内部溶解是受转运控制,首次从理论上反驳FT-TRA系统进行差异溶解的能力
    矿物反应性研究 Power等
    (2020)
    FT-TRA 尾矿与CO2的反应性 使用与CO2气体达到平衡的NaCl溶液作为洗脱液,在FT-TRA系统中测试尾矿与CO2的反应性 FT-TRA系统首次运用于矿物反应性研究;首次将气相作为系统洗脱液组分
    以介形虫壳体成分为指标的古海洋学研究 Börner等
    (2017)
    FT-TRA、
    LA-ICP-MS
    介形虫壳体El/Ca 与LA-ICP-MS的测试结果对照,探究FT-TRA提取介形虫壳体环境信号的潜力 首次根据FT-TRA系统由外至内的溶解特性进行介形虫壳体研究
    Rodríguez等 (2021) FT-TRA、
    电子探针
    介形虫壳体微量元素 探究微量元素在介形虫壳体内的分布,评价其作为古海洋学指标的潜在价值 /
    下载: 导出CSV
  • [1]

    Haley B A, Klinkhammer G P. Development of a flow-through system for cleaning and dissolving foraminiferal tests[J]. Chemical Geology, 2002, 185(1): 51−69. doi: 10.1016/S0009-2541(01)00399-0

    [2]

    de Baere B. Investigating mineral dissolution kinetics by flow-through time-resolved analysis (FT-TRA)[D]. Vancouver: The University of British Columbia, 2015: 294.

    [3]

    de Baere B, François R, Mayer K U. Measuring mineral dissolution kinetics using on-line flow-through time resolved analysis (FT-TRA): An exploratory study with forsterite[J]. Chemical Geology, 2015, 413: 107−118. doi: 10.1016/j.chemgeo.2015.08.024

    [4]

    de Baere B, Molins S, Mayer K U, et al. Determination of mineral dissolution regimes using flow-through time-resolved analysis (FT-TRA) and numerical simulation[J]. Chemical Geology, 2016, 430: 1−12. doi: 10.1016/j.chemgeo.2016.03.014

    [5]

    Power I M, Dipple G M, Bradshaw P M D, et al. Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada[J]. International Journal of Greenhouse Gas Control, 2020, 94: 102895. doi: 10.1016/j.ijggc.2019.102895

    [6]

    Haley B A, Klinkhammer G P, Mix A C. Revisiting the rare earth elements in foraminiferal tests[J]. Earth and Planetary Science Letters, 2005, 239(1): 79−97. doi: 10.1016/j.jpgl.2005.08.014

    [7]

    Benway H M, Haley B A, Klinkhammer G P, et al. Adaptation of a flow-through leaching procedure for Mg/Ca paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(2): 15. doi: 10.1029/2002GC000312

    [8]

    Nürnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 60(5): 803−814. doi: 10.1016/0016-7037(95)00446-7

    [9]

    Lea D W, Pak D K, Spero H J. Climate impact of late Quaternary equatorial Pacific Sea surface temperature variations[J]. Science, 2000, 289(5485): 1719−1724. doi: 10.1126/science.289.5485.1719

    [10]

    王朔. 新型FT-TRA系统研制及其对有孔虫元素分析的古环境意义初探[D]. 上海: 同济大学, 2022.

    Wang S. An improved FT-TRA system and its paleoenvironmental implications for elemental analysis of foraminifera[D]. Shanghai: Tongji University, 2022.

    [11]

    王天锋. 制备液相色谱仪自动控制系统的研究与设计[D]. 苏州: 苏州大学, 2012.

    Wang T F. Study and design of automatic control system based on preparative liquid chromatographic instrument[D]. Suzhou: Suzhou University, 2012.

    [12]

    江林, 周建, 张晓辉, 等. 三维全自动馏分收集器的研制[J]. 现代科学仪器, 2008(2): 8−9, 20.

    Jiang L, Zhou J, Zhang X H, et al. Development of three dimensions automatic fraction collector[J]. Modern Scientific Instruments, 2008(2): 8−9, 20.

    [13]

    魏莉, 张焜, 方岩雄, 等. 制备型高效液相色谱技术的研究进展[J]. 广东化工, 2005(11): 5−7. doi: 10.3969/j.issn.1007-1865.2005.11.002

    Wei L, Zhang K, Fang Y X, et al. The development of preparative high performance liquid chromatography[J]. Guangdong Chemical Industry, 2005(11): 5−7. doi: 10.3969/j.issn.1007-1865.2005.11.002

    [14]

    Siewers U. Inductively coupled plasma/mass spectrometry in geochemistry[J]. Microchimica Acta, 1989, 99(3): 365−372. doi: 10.1007/BF01244692

    [15]

    吴石头, 黄超, 谢烈文, 等. Iolite软件和基体归一化100%(m/m)定量校准策略处理激光剥蚀-电感耦合等离子体质谱元素含量信号[J]. 分析化学, 2018, 46(10): 1628−1636. doi: 10.11895/j.issn.0253-3820.181291

    Wu S T, Huang C, Xie L W, et al. Iolite based bulk normalization as 100% m/m quantification strategy for reduction of laser ablation-inductively coupled plasma mass spectrometry transient signal[J]. Chinese Journal of Analytical Chemistry, 2018, 46(10): 1628−1636. doi: 10.11895/j.issn.0253-3820.181291

    [16]

    吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试, 2015, 34(5): 503−511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

    Wu S T, Wang Y P, Xu C X. Research progress on reference materials for in situ elemental analysis by laser ablation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(5): 503−511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

    [17]

    杜宝华, 盛迪波, 罗志翔, 等. 低压密闭消解-电感耦合等离子体发射光谱法测定地质样品中的硼[J]. 岩矿测试, 2020, 39(5): 690−698. doi: 10.15898/j.cnki.11-2131/td.201909250139

    Du B H, Sheng D B, Luo Z X, et al. Determination of boron in geological samples by ICP-OES with low-pressure closed digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 690−698. doi: 10.15898/j.cnki.11-2131/td.201909250139

    [18]

    Klinkhammer G P, Haley B A, Mix A C, et al. Evaluation of automated flow-through time-resolved analysis of foraminifera for Mg/Ca paleothermometry[J]. Paleoceanography, 2004, 19: 4030. doi: 10.1029/2004PA001050

    [19]

    Klinkhammer G P, Mix A C, Haley B A. Increased dissolved terrestrial input to the coastal ocean during the last deglaciation[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(3): 1−11. doi: 10.1029/2008GC002219

    [20]

    Mckay C L, Groeneveld J, Filipsson H L, et al. A comparison of benthic foraminiferal Mn/Ca and sedimentary Mn/Al as proxies of relative bottom-water oxygenation in the low-latitude NE Atlantic upwelling system[J]. Biogeosciences, 2015, 12: 5415−5428. doi: 10.5194/bg-12-5415-2015

    [21]

    Haarmann T, Hathorne E C, Mohtadi M, et al. Mg/Ca ratios of single planktonic foraminifer shells and the potential to reconstruct the thermal seasonality of the water column[J]. Paleoceanography, 2011, 26(3): 1−14. doi: 10.1029/2010PA002091

    [22]

    Börner N, de Baere B, Francois R, et al. Application of flow-through time-resolved analysis (FT-TRA) to isolate the elemental composition in ostracod calcite[J]. Chemical Geology, 2017, 467: 53−63. doi: 10.1016/j.chemgeo.2017.07.019

    [23]

    Torres M E, Martin R A, Klinkhammer G P, et al. Post depositional alteration of foraminiferal shells in cold seep settings: New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates[J]. Earth and Planetary Science Letters, 2010, 299(1): 10−22. doi: 10.1016/j.jpgl.2010.07.048

    [24]

    Guo X, Xu B, Burnett W C, et al. A potential proxy for seasonal hypoxia: LA-ICP-MS Mn/Ca ratios in benthic foraminifera from the Yangtze River Estuary[J]. Geochimica et Cosmochimica Acta, 2018, 245: 290−303. doi: 10.1016/j.gca.2018.11.007

    [25]

    Koho K A, de Nooijer L J, Reichart G J. Combining benthic foraminiferal ecology and shell Mn/Ca to deconvolve past bottom water oxygenation and paleoproductivity[J]. Geochimica et Cosmochimica Acta, 2015, 165: 294−306. doi: 10.1016/j.gca.2015.06.003

    [26]

    Kraft S, Frank M, Hathorne E C, et al. Assessment of seawater Nd isotope signatures extracted from foraminiferal shells and authigenic phases of gulf of Guinea sediments[J]. Geochimica et Cosmochimica Acta, 2013, 121: 414−435. doi: 10.1016/j.gca.2013.07.029

    [27]

    Parkhurst D L, Appelo C A J. Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[R].U. S. Geological Survey, 2013.

    [28]

    Longerich H P, Jackson S E, Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899−904. doi: 10.1039/JA9961100899

    [29]

    Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 1−20. doi: 10.1029/2003GC000559

    [30]

    Rosenthal Y, Lear C H, Oppo D W, et al. Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans[J]. Paleoceanography, 2006, 21(1): 1−14. doi: 10.1029/2005pa001158

    [31]

    Rona P A, McGregor B A, Betzer P R, et al. Anomalous water temperatures over Mid-Atlantic Ridge crest at 26° north latitude[J]. Deep Sea Research and Oceanographic Abstracts, 1975, 22(9): 611−618. doi: 10.1016/0011-7471(75)90048-0

    [32]

    Elderfield H, Ganssen G. Past temperature and 18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 405: 442−445. doi: 10.1038/35013033

    [33]

    Hastings D W, Russell A D, Emerson S R. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy[J]. Paleoceanography, 1998, 13(2): 161−169. doi: 10.1029/97PA03147

    [34]

    Reichart G J, Jorissen F, Anschutz P, et al. Single foraminiferal test chemistry records the marine environment[J]. Geology, 2003, 31(4): 355−358. doi: 10.1130/0091-7613(2003)031<0355:SFTCRT>2.0.CO;2

    [35]

    Bender M L, Lorens R B, Williams D F. Sodium, magnesium and strontium in the tests of planktonic foraminifera[J]. Micropaleontology, 1975, 21(4): 448−459. doi: 10.2307/1485293

    [36]

    Russell A D, Honisch B, Spero H J, et al. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4347−4361. doi: 10.1016/j.gca.2004.03.013

    [37]

    Yu J M, Elderfield H, Honisch B. B/Ca in planktonic foraminifera as a proxy for surface seawater pH[J]. Paleoceanography, 2007, 22(2): 1−17. doi: 10.1029/2006pa001347

    [38]

    Russell A D, Emerson S, Nelson B K, et al. Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 671−681. doi: 10.1016/0016-7037(94)90497-9

    [39]

    Hastings D W, Emerson S R, Erez J, et al. Vanadium in foraminiferal calcite: Evaluation of a method to determine paleo-seawater vanadium concentrations[J]. Geochimica et Cosmochimica Acta, 1996, 60(19): 3701−3715. doi: 10.1016/0016-7037(96)00196-2

    [40]

    Misra S, Froelich P N. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering[J]. Science, 2012, 335: 818−823. doi: 10.1126/science.1214697

    [41]

    Brown S J, Elderfield H. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg-dependent dissolution[J]. Paleoceanography, 1996, 11(5): 543−551. doi: 10.1029/96PA01491

    [42]

    Boyle E A. Manganese carbonate overgrowths on foraminifera tests[J]. Geochimica et Cosmochimica Acta, 1983, 47(10): 1815−1819. doi: 10.1016/0016-7037(83)90029-7

    [43]

    Boyle E A. Cadmium, zinc, copper, and barium in foraminifera tests[J]. Earth & Planetary Science Letters, 1981, 53(1): 11−35. doi: 10.1016/0012-821X(81)90022-4

    [44]

    Rosenthal Y, Boyle E A, Slowey N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3633−3643. doi: 10.1016/S0016-7037(97)00181-6

    [45]

    Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16): 2369−2379. doi: 10.1016/S0016-7037(99)00197-0

    [46]

    Palmer M. Rare earth elements in foraminifera tests[J]. Earth and Planetary Science Letters, 1985, 73(2−4): 285−298. doi: 10.1016/0012-821X(85)90077-9

    [47]

    Delaney M L, Bé A W, Boyle E A. Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores[J]. Geochimica et Cosmochimica Acta, 1985, 49(6): 1327−1341. doi: 10.1016/0016-7037(85)90284-4

    [48]

    Goldstein S, O’nions R, Hamilton P. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems[J]. Earth and Planetary Science Letters, 1984, 70(2): 221−236. doi: 10.1016/0012-821X(84)90007-4

    [49]

    Weldeab S, Frank M, Stichel T, et al. Spatio-temporal evolution of the West African monsoon during the last deglaciation[J]. Geophysical Research Letters, 2011, 38(13): 1−5. doi: 10.1029/2011GL047805

    [50]

    Rickli J, Frank M, Halliday A N. The hafnium–neodymium isotopic composition of Atlantic seawater[J]. Earth and Planetary Science Letters, 2009, 280(1−4): 118−127. doi: 10.1016/j.jpgl.2009.01.026

    [51]

    Bayon G, Birot D, Ruffine L, et al. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin[J]. Earth and Planetary Science Letters, 2011, 312(3−4): 443−452. doi: 10.1016/j.jpgl.2011.10.008

    [52]

    Hoogakker B A A, Klinkhammer G P, Elderfield H, et al. Mg/Ca paleothermometry in high salinity environments[J]. Earth and Planetary Science Letters, 2009, 284(3): 583−589. doi: 10.1016/j.jpgl.2009.05.027

    [53]

    Boussetta S, Bassinot F, Sabbatini A, et al. Diagenetic Mg-rich calcite in Mediterranean sediments: Quanti-fication and impact on foraminiferal Mg/Ca thermometry[J]. Marine Geology, 2011, 280(1): 195−204. doi: 10.1016/j.margeo.2010.12.011

    [54]

    Kısakürek B, Eisenhauer A, Böhm F, et al. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white)[J]. Earth and Planetary Science Letters, 2008, 273(3−4): 260−269. doi: 10.1016/j.jpgl.2008.06.026

    [55]

    Sadekov A, Eggins S M, de Deckker P, et al. Surface and subsurface seawater temperature reconstruction using Mg/Ca microanalysis of planktonic foraminifera Globigerinoides ruber, Globigerinoides sacculifer, and Pulleniatina obliquiloculata[J]. Paleoceanography, 2009, 24(3): 1−17. doi: 10.1029/2008PA001664

    [56]

    Ferguson J, Henderson G, Kucera M, et al. Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient[J]. Earth and Planetary Science Letters, 2008, 265(1−2): 153−166. doi: 10.1016/j.jpgl.2007.10.011

    [57]

    Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2): 1−28. doi: 10.1029/2002PA000846

    [58]

    Pearson P N, Ditchfield P W, Singano J, et al. Warm tropical sea surface temperatures in the late Cretaceous and Eocene epochs[J]. Nature, 2001, 413(6855): 481−487. doi: 10.1038/35097000

    [59]

    Sadekov A Y, Eggins S M, Klinkhammer G P, et al. Effects of seafloor and laboratory dissolution on the Mg/Ca composition of Globigerinoides sacculifer and Orbulina universa tests—A laser ablation ICPMS microanalysis perspective[J]. Earth and Planetary Science Letters, 2010, 292(3): 312−324. doi: 10.1016/j.jpgl.2010.01.039

    [60]

    Murphy W M, Oelkers E H, Lichtner P C. Surface reaction versus diffusion control of mineral dissolution and growth rates in geochemical processes[J]. Chemical Geology, 1989, 78(3−4): 357−380. doi: 10.1016/0009-2541(89)90069-7

    [61]

    Berner R A. Rate control of mineral dissolution under Earth surface conditions[J]. American Journal of Science, 1978, 278(9): 1235−1252. doi: 10.2475/ajs.278.9.1235

    [62]

    Morse J W, Arvidson R S. The dissolution kinetics of major sedimentary carbonate minerals[J]. Earth-Science Reviews, 2002, 58(1−2): 51−84. doi: 10.1016/S0012-8252(1)00083-6

    [63]

    Sjoberg E. Kinetics and mechanism of calcite dissolution in aqueous solutions at low temperature temperatures[J]. Scottish Journal of Geology, 1978, 32: 1−92.

    [64]

    Plummer L N, Parkhurst D L, Wigley T M L. Critical review of the kinetics of calcite dissolution and precipitation[J]. ACS Symposium Series, 1979, 25: 537−573. doi: 10.1021/bk-1979-0093.ch025

    [65]

    Busenberg E, Plummer L, Mumpton F. A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite[J]. Studies in Diagenesis, 1986, 1578: 139−168.

    [66]

    Giudici G D. Surface control vs. diffusion control during calcite dissolution: Dependence of step-edge velocity upon solution pH[J]. American Mineralogist, 2002, 87(10): 1279−1285. doi: 10.2138/am-2002-1002

    [67]

    Chou L, Garrels R M, Wollast R. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals[J]. Chemical Geology, 1989, 78(3−4): 269−282. doi: 10.1016/0009-2541(89)90063-6

    [68]

    Sjoeberg E L, Rickard D T. Calcite dissolution kinetics: Surface speciation and the origin of the variable pH dependence[J]. Chemical Geology, 1984, 42(1−4): 119−136. doi: 10.1016/0009-2541(84)90009-3

    [69]

    Holmes J A. Nonmarine ostracods as Quaternary palaeoenvironmental indicators[J]. Progress in Physical Geography, 1992, 16(4): 405−431. doi: 10.1177/030913339201600402

    [70]

    Holmes J A. Trace-element and stable-isotope geochemistry of non-marine ostracod shells in Quaternary palaeoenvironmental reconstruction[J]. Journal of Paleolimnology, 1996, 15: 223−235. doi: 10.1007/BF00213042

    [71]

    Börner N, de Baere B, Akita L G, et al. Stable isotopes and trace elements in modern ostracod shells: Implications for reconstructing past environments on the Tibetan Plateau, China[J]. Journal of Paleolimnology, 2017, 58(2): 191−211. doi: 10.1007/s10933-017-9971-1

    [72]

    Rodríguez M, de Baere B, François R, et al. An evaluation of cleaning methods, preservation and specimen stages on trace elements in modern shallow marine ostracod shells of Sinocytheridea impress and their implications as proxies[J]. Chemical Geology, 2021, 579: 120316. doi: 10.1016/j.chemgeo.2021.120316

    [73]

    Yang Q, Jochum K P, Stoll B, et al. Trace element variability in single ostracod valves as a proxy for hydrochemical change in Nam Co, Central Tibet, during the Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 225−235. doi: 10.1016/j.palaeo.2014.01.014

  • 加载中

(9)

(1)

计量
  • 文章访问数:  234
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2023-04-13
修回日期:  2024-07-17
录用日期:  2024-07-19
网络出版日期:  2024-09-09
刊出日期:  2025-01-31

目录