中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

激光诱导荧光技术与地下水重金属原位检测应用进展

毛康, 薛家奇, 陈卓, 张华. 激光诱导荧光技术与地下水重金属原位检测应用进展[J]. 岩矿测试, 2025, 44(1): 19-34. doi: 10.15898/j.ykcs.202402230018
引用本文: 毛康, 薛家奇, 陈卓, 张华. 激光诱导荧光技术与地下水重金属原位检测应用进展[J]. 岩矿测试, 2025, 44(1): 19-34. doi: 10.15898/j.ykcs.202402230018
MAO Kang, XUE Jiaqi, CHEN Zhuo, ZHANG Hua. Laser Induced Fluorescence for In Situ Detection of Typical Heavy Metals in Groundwater[J]. Rock and Mineral Analysis, 2025, 44(1): 19-34. doi: 10.15898/j.ykcs.202402230018
Citation: MAO Kang, XUE Jiaqi, CHEN Zhuo, ZHANG Hua. Laser Induced Fluorescence for In Situ Detection of Typical Heavy Metals in Groundwater[J]. Rock and Mineral Analysis, 2025, 44(1): 19-34. doi: 10.15898/j.ykcs.202402230018

激光诱导荧光技术与地下水重金属原位检测应用进展

  • 基金项目: 国家重点研发计划项目“场地地下水典型重金属光/电协同原位一体化便携式检测装备研制及应用示范”(2020YFC1807300)
详细信息
    作者简介: 毛康,博士,副研究员,主要研究方向为环境健康分析。E-mail:maokang@mail.gyig.ac.cn
    通讯作者: 张华,博士,研究员,主要研究方向环境健康诊断与修复。E-mail:zhanghua@mail.gyig.ac.cn
  • 中图分类号: O657.3;X832

Laser Induced Fluorescence for In Situ Detection of Typical Heavy Metals in Groundwater

More Information
  • 对地下水重金属污染进行现场检测,是快速识别重金属种类和评价污染程度的重要手段。激光诱导荧光技术(LIF)利用特定荧光探针,在目标重金属存在下,通过激光诱导荧光探针产生/猝灭荧光,从而完成对重金属的识别和检测,具有快速甄别地下水重金属污染特性和无损获取其价态的优势。本文在简述LIF检测重金属原理和LIF原位检测地下水重金属装备基础上,重点从荧光探针合成及其在重金属传感检测方法的构建上总结了基于不同荧光探针的LIF现场检测重金属的研究进展。目前可用于重金属检测的荧光探针包括以小分子探针、有机大分子和聚集诱导发光为主的有机荧光探针和以金纳米簇、量子点和金属有机框架材料为代表的纳米荧光探针。这些探针的合成及其对应的传感检测方法的构建表明LIF技术在地下水重金属检测中具有巨大优势。而针对地下水重金属检测的LIF设备研发方面的成果虽不如荧光传感检测方法丰富,但已研制出部分重金属的传感器和检测装备,表现出良好的应用前景。未来研究将会聚焦在地下水重金属主控因子识别和抗干扰技术研发、荧光探针合成与LIF检测方法构建、重金属传感部件和检测装备集成研制,以及检测技术标准化,为后续场地地下水典型重金属LIF检测技术的研究提供参考。

  • 加载中
  • 图 1  LIF地下水重金属原位检测装置(a)外部结构示意图,(b)内部结构示意图,(c)光路图以及(d)修饰有选择性敏感材料的敏感膜结构示意图22

    Figure 1. 

    图 2  典型重金属检测有机荧光分子探针(据Pang等27、Wu等29、Su等30、He等32修改)

    Figure 2. 

    图 3  典型重金属检测纳米荧光探针(据Lei等51、Ren等52、Ghosh等53、Guo等54、Wu等55修改)

    Figure 3. 

    表 1  荧光探针检测重金属离子(有机荧光探针和纳米荧光探针)

    Table 1.  Fluorescent probes (organic and nanomaterial fluorescent probes) for the detection of heavy metals

    荧光探针
    材料类型
    荧光探针 识别元件 靶标 检出限 线性范围 样品 优点 缺点 参考
    文献
    有机
    荧光探针
    材料
    罗丹明衍生物 螺旋内酰胺 Pb2+ 0.56μg/L 0.21~210μg/L 海产品 可视化,检测范围宽 合成复杂 25
    喹啉类 羰基 Cd2+ 132μg/L / 活细胞 荧光稳定 低灵敏度 26
    香豆素类 硫代碳酸盐 Hg2+ 1678.3μg/L / 河水 高特异性 低灵敏度 27
    适配体基 三螺旋核酸分子 As(Ⅲ) 5ng/L 10ng/L~10mg/L 湖水 高特异性,高灵敏度和
    检测范围宽
    修饰复杂 28
    Pb2+适配体 Pb2+ 12.22μg/L 20.7~518.0μg/L 茶叶 高特异性,合成简单 成本较高 29
    AIE分子 萘酰亚胺 Hg2+ 4.35μg/L 20.7~103.6μg/L 湖水 重复性好,特异性强 线性范围窄 30
    偶氮四唑 Hg2+ 0.394μg/L 79.665μg/L~2.072mg/L 地下水 荧光稳定,特异性强 抗干扰能力弱 31
    改性壳聚糖 氨基、羟基 Hg2+/Hg+ 126.4/97.4μg/L / / 有机可溶,抗干扰能力和
    高重复性好
    合成复杂,成本高 32
    纳米
    荧光探针
    材料
    碳量子点 羟基、羧基 Cr6+ 3.7mg/L 5~200mg/L 井水和湖水 环境友好 低灵敏度,线性范围窄 33
    Cu@AuNCs 胸腺嘧啶 Hg2+ 1.385μg/L 140.8~1971.3μg/L 水产品 特异性强,稳定性好 / 34
    AuNCs 胸腺嘧啶 Hg2+ 0.59μg/L 2.8~84.486μg/L 河水和湖水 高灵敏度,高选择性 线性范围窄 35
    UCNPs-AuNCs UCNPs Pb2+ 0.216μg/L 0~2.63μg/L 污水 高选择性(可检测复合
    金属离子中的Pb2+)
    / 36
    AuNCs 适配体 Pb2+ 14.99ng/L 26.3~52595.8 ng/L 自来水 高灵敏度 检测时间长 37
    N-GQDs 羟基 Fe3+ 72.99μg/L 0~81102μg/L 水溶液 量子产率高,检测时间短 灵敏度低 38
    CQDs-AgNPs AgNPs Hg2+ 0.02816μg/L 0.14081~140.810μg/L 湖水和废水 量子产率高,重复性好 / 39
    ZnSe QDs 四乙氧基硅烷 Pb2+ 0.335μg/L 1~60μg/L 海水和湖水 重复性好,多通道检测 合成复杂 40
    N-CQDs 羟基、羧基 Pb2+ 0.507μg/L 0~10.52μg/L 自来水和池塘水 高灵敏度,抗干扰能力强 / 41
    ZIF-8 适配体 Cd2+ 0.018ng/L 0.02364~28.37ng/L 自来水 超高灵敏度 / 42
    2D-MOF 适配体 Pb2+ 0.174μg/L 0.263~52.6μg/L 自来水 高选择性,检测时间短 / 43
    ZnMOF-74 酚羟基 Fe3+ 2.22μg/L 5.55~5554.34μg/L 河水 高选择性 灵敏度低 44
    Eu3+@UIO-66 2,6-二羧基吡啶 Hg2+ 2.326μg/L 2.816~70.4μg/L 水溶液 稳定性好,特异性强 / 45
    下载: 导出CSV
  • [1]

    杨梦楠, 孙晗, 曹海龙, 等. 生物炭-壳聚糖磁性复合吸附剂的制备及去除地下水中铅和铜[J]. 岩矿测试, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155

    Yang M N, Sun H, Cao H L, et al. Preparation and application of biochar-chitosan magnetic composite adsorbent for removal of lead and copper from groundwater[J]. Rock and Mineral Analysis, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155

    [2]

    刘斯文, 黄园英, 赵文博, 等. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价[J]. 岩矿测试, 2022, 41(3): 488−498. doi: 10.15898/j.cnki.112131/td.202111080170

    Liu S W, Huang Y Y, Zhao W B, et al. Water quality and health risk assessment of ion type rare earth deposits in the Huangpi River Basin of Northern Jiangxi Province[J]. Rock and Mineral Analysis, 2022, 41(3): 488−498. doi: 10.15898/j.cnki.112131/td.202111080170

    [3]

    Huang C, Guo Z, Li T, et al. Source identification and migration fate of metal(loid)s in soil and groundwater from an abandoned Pb/Zn mine[J]. Science of the Total Environment, 2023, 895: 165037. doi: 10.1016/j.scitotenv.2023.165037

    [4]

    Xu M, Zhang K, Wang Y, et al. Health risk assessments and microbial community analyses of groundwater from a heavy metal-contaminated site in Hezhou City, Southwest China[J]. International Journal of Environmental Research and Public Health, 2023, 20(1): 604. doi: 10.3390/ijerph20010604

    [5]

    钟林健. 铅锌矿区地下水位对尾矿中重金属在土壤中吸附与迁移的影响研究[D]. 长沙: 中南大学, 2023.

    Zhong L J. Study on the influence of groundwater level on the adsorption and migration of heavy metals from tailings in soil in lead-zinc mining area[D]. Changsha: Central South University, 2023.

    [6]

    Lei K, Giubilato E, Critto A, et al. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China[J]. Environmental Science and Pollution Research, 2016, 23: 13128−13136. doi: 10.1007/s11356-016-6473-z

    [7]

    李谨丞, 曹文庚, 潘登, 等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(1): 120−132. doi: 10.15898/j.cnki.11-2131/td.202110080140

    Li J C, Cao W G, Pan D, et al. The impact of nitrogen cycling on arsenic migration and enrichment in shallow groundwater of the Yellow River alluvial fan plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120−132. doi: 10.15898/j.cnki.11-2131/td.202110080140

    [8]

    周兴辉, 胡敬芳, 宋钰, 等. 便携式水质重金属电化学检测仪的研究进展[J]. 传感器世界, 2020, 26(3): 7−13. doi: 10.16204/j.cnki.sw.2020.03.001

    Zhou X H, Hu J F, Song Y, et al. Research progress on portable electrochemical detection instruments for heavy metals in water quality[J]. Sensor World, 2020, 26(3): 7−13. doi: 10.16204/j.cnki.sw.2020.03.001

    [9]

    Yu L, Pang Y, Mo Z, et al. Coordination array for accurate colorimetric sensing of multiple heavy metal ions[J]. Talanta, 2021, 231: 122357. doi: 10.1016/j.talanta.2021.122357

    [10]

    Meng D, Zhao N, Wang Y, et al. On-line/on-site analysis of heavy metals in water and soils by laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 137: 39−45. doi: 10.1016/j.sab.2017.09.011

    [11]

    Yang Z, Ren J, Du M, et al. Enhanced laser-induced breakdown spectroscopy for heavy metal detection in agriculture: A review[J]. Sensors, 2022, 22(15): 5679. doi: 10.3390/s22155679

    [12]

    孔维恒, 曾令伟, 饶宇, 等. 基于预分类策略的激光诱导击穿光谱技术用于岩石样品定量分析[J]. 岩矿测试, 2023, 42(4): 760−770. doi: 10.15898/j.ykcs.202212190234

    Kong W H, Zeng L W, Rao Y, et al. Laser induced breakdown spectroscopy technology based on pre classification strategy for quantitative analysis of rock samples[J]. Rock and Mineral Analysis, 2023, 42(4): 760−770. doi: 10.15898/j.ykcs.202212190234

    [13]

    文志明. 荧光光度法及其在环境分析化学中的应用[J]. 中国环境监测, 1992, 8(2): 45−55. doi: 10.19316/j.issn.1002-6002.1992.02.018

    Wen Z M. Fluorescence spectrophotometry and its application in environmental analytical chemistry[J]. Environmental Monitoring in China, 1992, 8(2): 45−55. doi: 10.19316/j.issn.1002-6002.1992.02.018

    [14]

    李卿硕. 荧光光谱检测设计与研究[D]. 长春: 长春理工大学, 2008.

    Li Q S. Design and research of fluorescence spectroscopy detection[D]. Changchun: Changchun University of Technology, 2008.

    [15]

    梁锡辉, 区伟能, 任豪, 等. 激光诱导荧光检测技术[J]. 激光与光电子学进展, 2008(1): 65−72.

    Liang X H, Qu W N, Ren H, et al. Laser induced fluorescence detection technology[J]. Laser & Optoelectronics Progress, 2008(1): 65−72.

    [16]

    杨仁杰, 尚丽平, 鲍振博, 等. 激光诱导荧光快速直接检测土壤中多环芳烃污染物的可行性研究[J]. 光谱学与光谱分析, 2011, 31(8): 2148−2150. doi: 10.3964/j.issn.1000-0593(2011)08-2148-03

    Yang R J, Shang L P, Bao Z B, et al. Feasibility study on laser induced fluorescence for rapid and direct detection of polycyclic aromatic hydrocarbon pollutants in soil[J]. Spectroscopy and Spectral Analysis, 2011, 31(8): 2148−2150. doi: 10.3964/j.issn.1000-0593(2011)08-2148-03

    [17]

    王宁. 定量测量OH基浓度的PLIF技术研究及应用[D]. 北京: 国防科学技术大学, 2009.

    Wang N. Research and application of PLIF technology for quantitative measurement of hydroxyl radical concentration[D]. Beijing: National University of Defense Technology, 2009.

    [18]

    Zacharioudaki D E, Fitlis I, Kotti M. Review of fluorescence spectroscopy in environmental quality applications[J]. Molecules, 2022, 27(15): 4801. doi: 10.3390/molecules27154801

    [19]

    Li B, Zhang D, Liu J, et al. A review of femtosecond laser-induced emission techniques for combustion and flow field diagnostics[J]. Applied Sciences, 2019, 9(9): 1906. doi: 10.3390/app9091906

    [20]

    Radiul S M, Hazarika S. Variation of stokes shift and peak wavelength shift as a sensing probe for detection of lead in water using laser induced fluorescence resonance energy transfer[J]. Journal of Fluorescence, 2021, 31(3): 889−896. doi: 10.1007/s10895-021-02689-1

    [21]

    汪宝堆, 李欣悦, 张华, 等. 一种近红外二区甲基汞离子检测探针及其制备方法和应用: CN202210944448.3[P]. 2022-09-16.

    [22]

    朱鑫琦, 张佩, 王光辉, 等. 一种激光诱导荧光的地下水重金属原位检测装置: CN202122186045.0[P]. 2022-04-01.

    [23]

    汪宝堆, 常新月, 张华, 等. 一种超灵敏检测水中Cr(Ⅵ)离子敏感膜及其制备方法: CN202111157635.9[P]. 2021-11-19.

    [24]

    谢胜, 杨羽娇, 吴淑军, 等. 检测汞离子的荧光探针、固态传感薄膜及其制备和应用: CN20211127665.5[P]. 2021-09-26.

    [25]

    Wan J, Zhang K, Li C, et al. A novel fluorescent chemosensor based on a rhodamine 6G derivative for the detection of Pb2+ ion[J]. Sensors and Actuators B: Chemical, 2017, 246: 696−702. doi: 10.1016/j.snb.2017.02.126

    [26]

    Dai Y, Yao K, Fu J, et al. A novel 2-(hydroxymethyl)quinolin-8-ol-based selective and sensitive fluorescence probe for Cd2+ ion in water and living cells[J]. Sensors and Actuators B: Chemical, 2017, 251: 877−884. doi: 10.1016/j.snb.2017.05.103

    [27]

    Pang B J, Li Q, Li C R, et al. A highly selective and sensitive coumarin derived fluorescent probe for detecting Hg2+ in 100% aqueous solutions[J]. Journal of Luminescence, 2019, 205: 446−450. doi: 10.1016/j.jlumin.2018.09.042

    [28]

    Pan J, Li Q, Zhou D, et al. Ultrasensitive aptamer biosensor for arsenic(Ⅲ) detection based on label-free triple-helix molecular switch and fluorescence sensing platform[J]. Talanta, 2018, 189: 370−376. doi: 10.1016/j.talanta.2018.07.024

    [29]

    Wu Y, Shi Y, Deng S, et al. Metal-induced G-quadruplex polymorphism for ratiometric and label-free detection of lead pollution in tea[J]. Food Chemistry, 2020, 343: 128425. doi: 10.1016/j.foodchem.2020.128425

    [30]

    Su M, Liu C, Zhang Y, et al. Rational design of a water-soluble TICT-AIEE-active fluorescent probe for mercury ion detection[J]. Analytica Chimica Acta, 2022, 1230: 340337. doi: 10.1016/j.aca.2022.340337

    [31]

    Wu S, Yang Y, Cheng Y, et al. Fluorogenic detection of mercury ion in aqueous environment using hydrogel-based AIE sensing films[J]. Aggregate, 2022, 4: e287. doi: 10.1002/agt2.287

    [32]

    He J, Yun L, Cheng X. Organic-soluble chitosan-g-PHMA (PEMA/PBMA)-bodipy fluorescent probes and film by RAFT method for selective detection of Hg2+/Hg+ ions[J]. International Journal of Biological Macromolecules, 2023, 237: 124255. doi: 10.1016/j.ijbiomac.2023.124255

    [33]

    Yuan H, Ren T, Luo Q, et al. Fluorescent wood with non-cytotoxicity for effective adsorption and sensitive detection of heavy metals[J]. Journal of Hazardous Materials, 2021, 416: 126166. doi: 10.1016/j.jhazmat.2021.126166

    [34]

    Shi Y, Li W, Feng X, et al. Sensing of mercury ions in porphyra by copper@gold nanoclusters based ratiometric fluorescent aptasensor[J]. Food Chemistry, 2020, 344(5): 128694. doi: 10.1016/j.foodchem.2020.128694

    [35]

    Yao J, He Y, Li P Y, et al. Magnified fluorescent aptasensors based on a gold nanoparticle-DNA hybrid and DNase Ⅰ for the cycling detection of mercury(Ⅱ) ions in aqueous solution[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21201−21207. doi: 10.1021/acs.iecr.9b03622

    [36]

    Wang Y, Lv M, Chen Z, et al. A fluorescence resonance energy transfer probe based on DNA-modified upconversion and gold nanoparticles for detection of lead ions[J]. Frontiers in Chemistry, 2020, 8: 238. DOI: 10.3389/fchem.2020.00238.eCollection 2020.

    [37]

    Liu R, He B, Jin H, et al. A fluorescent aptasensor for Pb2+ detection based on gold nanoflowers and RecJf exonuclease-induced signal amplification[J]. Analytica Chimica Acta, 2022, 1192: 339329. doi: 10.1016/j.aca.2021.339329

    [38]

    Yang Y, Yang Y, Xiao X, et al. One-pot synthesis of N-doped graphene quantum dots as highly sensitive fluorescent sensor for detection of mercury ions water solutions[J]. Materials Research Express, 2019, 6(9): 095615. doi: 10.1088/2053-1591/ab3006

    [39]

    Abdolmohammad-Zadeh H, Azari Z, Pourbasheer E. Fluorescence resonance energy transfer between carbon quantum dots and silver nanoparticles: Application to mercuric ion sensing[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 245: 118924. doi: 10.1016/j.saa.2020.118924

    [40]

    Zhou J, Li B, Qi A, et al. ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip[J]. Sensors and Actuators B: Chemical, 2019, 305: 127462. doi: 10.1016/j.snb.2019.127462

    [41]

    Bandia R, Dadigalaa R, Gangapuram B R, et al. Green synthesis of highly fluorescent nitrogen-doped carbon dots from Lantana camara berries for effective detection of lead(Ⅱ) and bioimaging[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 178: 330−338. doi: 10.1016/j.jphotobiol.2017.11.010

    [42]

    Khoshbin Z, Moeenfard M, Zahraee H, et al. A fluorescence imaging-supported aptasensor for sensitive monitoring of cadmium pollutant in diverse samples: A critical role of metal organic frameworks[J]. Talanta, 2022, 246: 123514. doi: 10.1016/j.talanta.2022.123514

    [43]

    Chen G, Bai W, Jin Y, et al. Fluorescence and electrochemical assay for bimodal detection of lead ions based on metal-organic framework nanosheets[J]. Talanta, 2021, 232: 122405. doi: 10.1016/j.talanta.2021.122405

    [44]

    Hou L, Song Y, Xiao Y, et al. ZnMOF-74 responsive fluorescence sensing platform for detection of Fe3+[J]. Microchemical Journal, 2019, 150: 104154. doi: 10.1016/j.microc.2019.104154

    [45]

    Zhang X X, Zhang W J, Li C L, et al. Eu3+-postdoped UIO-66-type metal-organic framework as a luminescent sensor for Hg2+ detection in aqueous media[J]. Inorganic Chemistry, 2019, 58(6): 3910−3915. doi: 10.1021/acs.inorgchem.8b03555

    [46]

    Valeur B. Design principles of fluorescent molecular sensors for cation recognition[J]. Coordination Chemistry Reviews, 2000, 205: 3−40. doi: 10.1016/s0010-8545(00)00246-0

    [47]

    Fan Y, Li J, Amin K, et al. Advances in aptamers, and application of mycotoxins detection: A review[J]. Food Research International, 2023, 170: 113022. doi: 10.1016/j.foodres.2023.113022

    [48]

    Wu L, Wang Y, Xu X, et al. Aptamer-based detection of circulating targets for precision medicine[J]. Chemical Reviews, 2021, 121: 12035−12105. doi: 10.1021/acs.chemrev.0c01140

    [49]

    Luo J D, Xie Z L, Lam W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chemical Communications, 2001, 18: 1740−1741. doi: 10.1039/B105159H

    [50]

    Liu B, Zhuang J Y, Wei G. Recent advances in the design of colorimetric sensors for environmental monitoring[J]. Environmental Science: Nano, 2020, 7(8): 2195−2213. doi: 10.1039/d0en00449a

    [51]

    Lei X, Li H, Luo Y, et al. Novel fluorescent nanocellulose hydrogel based on gold nanoclusters for the effective adsorption and sensitive detection of mercury ions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123: 79−86. doi: 10.1016/j.jtice.2021.05.044

    [52]

    Ren J, Ledwaba M, Musyoka N M, et al. Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests[J]. Coordination Chemistry Reviews, 2017, 349: 169−197. doi: 10.1016/j.ccr.2017.08.017

    [53]

    Ghosh S, Steinke F, Rana A, et al. A fluorescent zirconium organic framework displaying rapid and nanomolar level detection of Hg(Ⅱ) and nitroantibiotics[J]. Inorganic Chemistry Frontiers, 2022, 9: 859−869. doi: 10.1039/D1QI01190A

    [54]

    Guo X R, Wei Y, Zeng Q, et al. Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots[J]. Journal of Hazardous Materials, 2020, 381: 120969. doi: 10.1016/j.jhazmat.2019.120969

    [55]

    Wu F N, Zhu J, Weng G J, et al. Gold nanocluster composites: Preparation strategies, optical and catalytic properties, and applications[J]. Journal of Materials Chemistry C, 2022, 10: 14812−14833. doi: 10.1039/D2TC02095E

    [56]

    Dai R, Zhang Y, Huang K, et al. Recent advances in the visual detection of ions and molecules based on gold and silver nanoclusters[J]. Analytical Methods, 2022, 14(29): 2820−2832. doi: 10.1039/d2ay00618a

    [57]

    Shang L, Xu J, Nienhaus G U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis[J]. Nano Today, 2019, 28: 100767 . doi: 10.1016/j.nantod.2019.100767

    [58]

    Yan Y, Yu H, Zhang K, et al. Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions[J]. Nano Research, 2016, 9(7): 2088−2096. doi: 10.1007/s12274-016-1099-5

    [59]

    Kirkwood N, Monchen J O V, Crisp R W, et al. Finding and fixing traps in Ⅱ–Ⅵ and Ⅲ–Ⅴ colloidal quantum Dots: The importance of Z-type ligand passivation[J]. Journal of the American Chemical Society, 2018, 140(46): 15712−15723. doi: 10.1021/jacs.8b07783

    [60]

    Roghabadi F A, Aghmiuni K O, Ahmadi V, et al. Optical and electrical simulation of hybrid solar cell based on conjugated polymer and size-tunable CdSe quantum dots: Influence of the QDs size[J]. Organic Electronics, 2016, 34: 164−171. doi: 10.1016/j.orgel.2016.04.013

    [61]

    Drummen G. Fluorescent probes and fluorescence (microscopy) techniques—Illuminating biological and biomedical research[J]. Molecules, 2012, 17(12): 14067−14090. doi: 10.3390/molecules171214067

    [62]

    Zhang L, Li P, Feng L, et al. Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: A visible light-driven photoelectrochemical sensor for the “signal-on” analysis of mercury(Ⅱ)[J]. Journal of Hazardous Materials, 2020, 387: 121715. doi: 10.1016/j.jhazmat.2019.121715

    [63]

    Patir K, Gogoi S K. Facile synthesis of photoluminescent graphitic carbon nitride quantum dots for Hg2+ detection and room temperature phosphorescence[J]. ACS Sustainable Chemistry & Engineering, 2017, 6(2): 1732−1743. doi: 10.1021/acssuschemeng.7b03008

    [64]

    Razavi S A A, Morsali A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap[J]. Coordination Chemistry Reviews, 2020, 415: 213299. doi: 10.1016/j.ccr.2020.213299

    [65]

    Wu T, Gao X J, Ge F, et al. Metal–organic frameworks (MOFs) as fluorescence sensors: Principles, development and prospects[J]. CrystEngComm, 2022, 24(45): 7881−7901. doi: 10.1039/d2ce01159j

    [66]

    Wu S, Min H, Shi W, et al. Multicenter metal-organic framework-based ratiometric fluorescent sensors[J]. Advanced Materials, 2019, 32(3): 1805871. doi: 10.1002/adma.201805871

    [67]

    Zhang D S, Gao Q, Chang Z, et al. Rational construction of highly tunable donor–acceptor materials based on a crystalline host–guest platform[J]. Advanced Materials, 2018, 30(50): 1804715. doi: 10.1002/adma.201804715

    [68]

    Wang Q, Ke W, Lou H, et al. A novel fluorescent metal-organic framework based on porphyrin and AIE for ultra-high sensitivity and selectivity detection of Pb2+ ions in aqueous solution[J]. Dyes and Pigments, 2021, 196: 109802. doi: 10.1016/j.dyepig.2021.109802

    [69]

    Samanta P, Desai A V, Sharma S, et al. Selective recognition of Hg2+ ion in water by a functionalized metal–organic framework (MOF) based chemodosimeter[J]. Inorganic Chemistry, 2018, 57(5): 2360−2364. doi: 10.1021/acs.inorgchem.7b02426

    [70]

    汪宝堆, 常新月, 张华, 等. 一种超灵敏检测水中Cr(Ⅵ)离子敏感膜及其制备方法: CN202111157635.9[P]. 2021-09-30.

    [71]

    Long X T, liu F, Zhou X, et al. Estimation of spatial distribution and health risk by arsenic and heavy metals in shallow groundwater around Dongting Lake Plain using GIS mapping[J]. Chemosphere, 2020, 269: 128698. doi: 10.1016/j.chemosphere.2020.128698

    [72]

    Dong L, Zhang J, Guo Z, et al. Distributions and interactions of dissolved organic matter and heavy metals in shallow groundwater in Guanzhong Basin of China[J]. Environmental Research, 2022, 207: 112099. doi: 10.1016/j.envres.2021.112099

  • 加载中

(3)

(1)

计量
  • 文章访问数:  761
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2024-02-23
修回日期:  2024-05-16
录用日期:  2024-06-06
网络出版日期:  2024-07-11
刊出日期:  2025-01-31

目录