中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分

范晨子, 孙冬阳, 赵令浩, 袁继海, 胡明月, 赵明. 激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分[J]. 岩矿测试, 2024, 43(1): 87-100. doi: 10.15898/j.ykcs.202305310072
引用本文: 范晨子, 孙冬阳, 赵令浩, 袁继海, 胡明月, 赵明. 激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分[J]. 岩矿测试, 2024, 43(1): 87-100. doi: 10.15898/j.ykcs.202305310072
FAN Chenzi, SUN Dongyang, ZHAO Linghao, YUAN Jihai, HU Mingyue, ZHAO Ming. In situ Quantitative Analysis of Chemical Composition of Lithium and Beryllium Minerals by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2024, 43(1): 87-100. doi: 10.15898/j.ykcs.202305310072
Citation: FAN Chenzi, SUN Dongyang, ZHAO Linghao, YUAN Jihai, HU Mingyue, ZHAO Ming. In situ Quantitative Analysis of Chemical Composition of Lithium and Beryllium Minerals by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2024, 43(1): 87-100. doi: 10.15898/j.ykcs.202305310072

激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分

  • 基金项目: 矿物加工科学与技术国家重点实验室开放基金(BGRIMM-KJSKL-2022-09);中国地质调查局地质调查项目(DD20230265);中国地质科学院基本科研业务费项目(JKYZD202324,CSJ-2022-01)
详细信息
    作者简介: 范晨子,博士,研究员,从事矿物微区分析技术研究。E-mail:czfan2013@163.com
  • 中图分类号: O657.63;P618.71;P618.72

In situ Quantitative Analysis of Chemical Composition of Lithium and Beryllium Minerals by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry

  • 锂、铍是当前全球战略性关键金属,采用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)建立分析方法可以实现微区原位定量分析天然矿物样品中的锂、铍元素含量,为锂铍资源高效利用以及赋存状态的研究提供分析技术支撑。锂辉石和绿柱石等矿物是提取锂、铍元素的主要原料,微区分析常用的电子探针方法对于能量较低的轻元素难以准确定量,而LA-ICP-MS方法亟待改进降低非基体匹配校准带来的基体效应提高分析的准确度和精密度。本文探讨了仪器工作条件(同位素选择及计数模式、载气He气流速、样品气Ar气流速、束斑直径、能量密度大小)和数据处理方法(外部标准物质、内标元素)对定量结果精密度和准确度的影响。实验结果表明:He 和Ar气体流速不仅会影响锂、铍信号强度,而且适当降低载气He流速(0.6L/min)可以减小相对误差。增加束斑直径虽可以将数据精密度提高10%以上,但是对于准确度影响不大;对于绿柱石这类硬度高的透明矿物应提高能量密度(相对强度>75%,通量>2.7J/cm2)以保证产生稳定剥蚀信号。测定7Li时选择现有标准物质中含量较高的GSE-1G校准、9Be选择NIST610校准,以Al作为内标补偿元素,计算结果相对误差较小。LA-ICP-MS方法通过调整仪器工作条件和数据处理方法,可以降低基体差异,提高数据准确度,解决微区原位准确定量分析锂、铍轻元素的难题,为锂、铍资源的勘探开发和高效利用提供有力的技术支撑。但是也亟待开发高锂、铍含量的微区标准物质,解决因现有标准物质与样品中含量差异造成的基体效应来进一步提高数据质量。

  • 加载中
  • 图 1  同位素选择及计数模式对Li含量测试的影响

    Figure 1. 

    图 2  He流速对Li(a)、Be(b)、Al2O3(c)、K2O(d)相对灵敏度因子(相对SiO2)的影响

    Figure 2. 

    图 3  样品气Ar流速对Li(a)、Be(b)、Al2O3(c)、K2O(d)相对灵敏度因子(相对SiO2)的影响

    Figure 3. 

    图 4  不同束斑直径条件下Li(a)、Be(b)、Al2O3(c)、K2O(d)相对灵敏度因子(相对SiO2

    Figure 4. 

    图 5  不同激光能量密度条件下Li(a)、Be(b)、Al2O3(c)、K2O(d)相对灵敏度因子(相对SiO2

    Figure 5. 

    表 1  锂辉石和绿柱石样品参考值

    Table 1.  Reference values of spodumene and beryl samples.

    样品 Li2O
    (%)
    BeO
    (%)
    SiO2
    (%)
    Al2O3
    (%)
    数据来源
    锂辉石 8.06 64.52 27.42 理论值
    锂辉石L1 7.89 61.54 26.34 Li采用大气压液体阴极辉光放电光谱仪测定;Si、Al采用XRF测定
    锂辉石K32 7.92 64.15 27.12 中国地质科学院矿产资源所电子探针微束分析实验室提供参考数值
    绿柱石 13.97 67.04 18.99 理论值
    绿柱石B1 12.80 63.77 18.12 Be采用碱熔结合ICP-OES测定;Si采用EMPA测定;Al采用XRF测定
    绿柱石C12 13.85 64.32 18.65 中国地质科学院矿产资源所电子探针微束分析实验室提供参考数值
    注:“−”表示无数据,下表同。
    下载: 导出CSV

    表 2  典型LA-ICP-MS仪器工作参数

    Table 2.  The typical operating conditions for LA-ICP-MS.

    等离子体质谱系统激光剥蚀系统
    冷却气(Ar)流速16.25L/min激光波长193nm、213nm
    辅助气Ar)流速0.93L/min能量密度50%、75%、100%
    样品气(Ar)流速0.7~0.9L/min激光频率8Hz
    RF功率1300W载气(He)
    流速
    0.6~0.8L/min
    分辨率300(低分辨率)束斑直径30μm、60μm、90μm
    检测模式计数(Counting),
    模拟(Analog)
    下载: 导出CSV

    表 3  He流速对锂辉石和绿柱石化学成分定量分析的影响

    Table 3.  Effect of He on quantitative analysis of spodumene and beryl chemical composition.

    元素
    (以氧化物计,%)
    He气流速
    (L/min)
    锂辉石L1(n=6)激光波长193nm 锂辉石K32(n=10)激光波长213nm
    内标法
    610 I.S.
    1σ 归一法
    610M.N.
    1σ 内标法
    610 I.S.
    1σ 归一法
    610M.N.
    1σ
    Li2O 0.6 7.11 0.72 7.39 0.62 7.90 0.33 7.92 0.28
    0.7 7.10 0.27 7.76 0.86 10.34 0.37 9.67 0.38
    0.8 7.63 0.28 7.86 0.25 10.20 0.70 9.62 0.63
    SiO2 0.6 61.54 64.09 1.48 64.15 64.28 0.96
    0.7 61.54 63.99 0.83 64.15 61.12 0.96
    0.8 61.54 63.43 0.41 64.15 61.15 0.88
    Al2O3 0.6 27.11 1.73 28.20 1.18 27.37 0.13 27.40 0.95
    0.7 26.68 0.88 27.90 0.69 29.33 1.41 28.80 0.85
    0.8 27.52 0.50 28.36 0.36 29.34 1.41 28.81 0.94
    元素
    (以氧化物计,%)
    He气流速
    (L/min)
    绿柱石C12(n=6)激光波长193nm 绿柱石C12(n=8)激光波长213nm
    内标法
    610 I.S.
    1σ 归一法
    610M.N.
    1σ 内标法
    610 I.S.
    1σ 归一法
    610M.N.
    1σ
    BeO 0.6 14.65 0.56 14.86 0.41 14.44 1.21 14.87 1.38
    0.7 15.45 0.74 15.35 0.57 15.11 0.44 15.71 0.97
    0.8 13.72 0.77 14.06 0.68 21.15 1.67 19.96 3.22
    SiO2 0.6 63.77 64.76 0.79 63.77 62.55 1.32
    0.7 63.77 63.39 0.75 63.77 62.05 1.63
    0.8 63.77 65.14 0.90 63.77 58.93 2.97
    Al2O3 0.6 18.84 0.58 19.10 0.64 20.10 0.28 20.57 1.10
    0.7 19.07 0.72 19.79 0.41 19.11 0.88 20.27 0.79
    0.8 18.69 0.29 19.29 0.38 20.86 1.33 19.24 0.84
    下载: 导出CSV

    表 4  样品气Ar流速对锂辉石和绿柱石化学成分定量分析的影响

    Table 4.  Effect of sample gas Ar on quantitative analysis of spodumene and beryl chemical composition.

    元素
    (以氧化物计,%)
    Ar气流速
    (L/min)
    锂辉石L1(n=6)绿柱石B1(n=6)
    内标法
    610 I.S.
    1σ归一法
    610M.N.
    1σ内标法
    610 I.S.
    1σ归一法
    610M.N.
    1σ
    Li2O0.77.590.057.740.12
    0.88.010.108.200.23
    0.97.990.327.990.46
    0.713.540.1713.970.31
    BeO0.813.690.1413.910.28
    0.913.480.1413.800.26
    SiO20.761.5462.830.5163.7765.770.73
    0.861.5462.990.3963.7764.770.46
    0.961.5461.641.7263.7765.290.59
    Al2O30.728.570.7929.160.5818.710.5919.290.40
    0.827.640.3628.300.2419.390.3819.690.26
    0.929.832.3129.831.3818.880.4819.330.32
    下载: 导出CSV

    表 5  激光束斑大小对锂辉石和绿柱石化学成分定量分析的影响

    Table 5.  Effect of spot size on the quantitative analysis of spodumene and beryl chemical composition.

    元素
    (以氧化物计,%)
    束斑大小
    (μm)
    锂辉石L1(n=6)绿柱石B1(n=6)
    内标法
    610 I.S.
    1σ归一法
    610M.N.
    内标法
    610 I.S.
    1σ归一法
    610M.N.
    1σ
    Li2O307.220.158.431.75
    609.720.199.650.40
    908.210.158.400.33
    BeO3015.321.2615.151.02
    6012.860.1313.230.28
    9015.390.1315.530.28
    SiO23061.5462.780.4463.7763.121.04
    6061.5461.080.5963.7765.651.02
    9061.5463.020.4163.7764.370.37
    Al2O33027.940.6628.490.4920.390.5320.170.39
    6029.200.9828.970.7319.101.2619.651.01
    9027.580.6428.230.5118.330.3118.500.25
    下载: 导出CSV

    表 6  激光能量密度对锂辉石和绿柱石化学成分定量分析的影响

    Table 6.  Effect of laser fluence on the quantitative analysis of spodumene and beryl chemical composition.

    元素
    (以氧化物计,%)
    能量密度
    (%)
    锂辉石K32(n=6)绿柱石B1(n=6)
    内标法
    610 I.S.
    1σ归一法
    610M.N.
    1σ内标法
    610 I.S.
    1σ归一法
    610M.N.
    1σ
    Li2O507.040.206.670.68
    757.110.137.020.20
    1007.140.057.150.14
    BeO50
    7515.710.0615.580.13
    10013.450.1513.850.40
    SiO25064.1562.493.00
    7564.1563.390.4263.7763.210.37
    10064.1564.210.4963.7765.670.31
    Al2O35030.913.0830.422.31
    7529.520.4729.160.2819.990.4819.810.36
    10028.270.8728.290.6518.400.3418.950.32
    下载: 导出CSV

    表 7  不同外部标准物质和内标元素对锂辉石和绿柱石化学成分定量分析的影响

    Table 7.  Effects of external standards and internal standard element on the quantitative analysis of spodumene and beryl chemical composition.

    元素
    (以氧化物计,%)
    外部标准 锂辉石K32(n=6) 绿柱石B1(n=6)
    内标法
    I.S.
    相对误差
    (%)
    内标法
    I.S.
    相对误差
    (%)
    Li2O NIST610 8.16 3.03
    GSE-1G 7.96 0.50
    CGSG-4 8.38 5.81
    BeO NIST610 13.45 5.01
    GSE-1G 17.38 35.78
    Al2O3 NIST610 28.27 4.24 18.40 1.65
    GSE-1G 27.65 1.96 18.01 0.61
    CGSG-4 30.65 13.02
    元素
    (以氧化物计,%)
    内标元素 锂辉石K32(n=6) 绿柱石B1(n=6)
    内标法
    610 I.S.
    相对误差
    (%)
    归一法
    610M.N.
    相对误差
    (%)
    内标法
    610 I.S.
    相对误差
    (%)
    归一法
    610M.N.
    相对误差
    (%)
    Li2O Si 8.19 3.41 8.11 2.39
    Al 7.88 0.50 8.07 1.89
    BeO Si 13.08 2.19 13.54 5.78
    Al 13.07 2.11 13.53 5.70
    下载: 导出CSV
  • [1]

    张苏江, 张彦文, 张立伟, 等. 中国锂矿资源现状及其可持续发展策略[J]. 无机盐工业, 2020, 52(7): 1−7.

    Zhang S J, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China’s lithium resources[J]. Inorganic Chemicals Industry, 2020, 52(7): 1−7.

    [2]

    邓伟, 颜世强, 谭洪旗, 等. 我国铍矿资源概况及选矿技术研究现状[J]. 矿产综合利用, 2023(1): 148−154.

    Deng W, Yan S Q, Tan H Q, et al. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023(1): 148−154.

    [3]

    李晓峰, 韦星林. 稀有金属锂铍矿床研究中的几个关键科学问题——代序[J]. 岩石学报, 2022, 38(7): 1843−1847. doi: 10.18654/1000-0569/2022.07.01

    Li X F, Wei X L. The key scientific problems for the research on the rare metal lithium-beryllium deposits[J]. Acta Petrologica Sinica, 2022, 38(7): 1843−1847. doi: 10.18654/1000-0569/2022.07.01

    [4]

    陈振宇, 李建康, 周振华, 等. 硬岩型锂-铍-铌-钽资源工艺矿物学评价指标体系[J]. 岩石学报, 2023, 39(7): 1887−1907. doi: 10.18654/1000-0569/2023.07.02

    Chen Z Y, Li J K, Zhou Z H, et al. Study on process mineralogical evaluation index system of hard rock lithium-beryllium-niobium-tantalum mineral resources[J]. Acta Petrologica Sinica, 2023, 39(7): 1887−1907. doi: 10.18654/1000-0569/2023.07.02

    [5]

    肖仪武, 叶小璐, 冯凯, 等. “四稀”金属矿工艺矿物学研究技术现状与展望[J]. 矿冶, 2022, 31(3): 6−13. doi: 10.3969/j.issn.1005-7854.2022.03.002

    Xiao Y W, Ye X L, Feng K, et al. Current situation and prospect of “Four Rare” process mineralogy research technology[J]. Mining and Metallurgy, 2022, 31(3): 6−13. doi: 10.3969/j.issn.1005-7854.2022.03.002

    [6]

    张凤英, 黄巧燕. 电子探针在工艺矿物学研究中的应用[J]. 地质论评, 2023, 69(S1): 457−460.

    Zhang F Y, Huang Q Y. Application of electron probe in technological mineralogy[J]. Geological Review, 2023, 69(S1): 457−460.

    [7]

    张文兰, 车旭东, 王汝成, 等. 超轻元素铍的电子探针定量分析最佳条件探索: 以绿柱石为例[J]. 科学通报, 2020, 65(28-29): 3205−3216. doi: 10.1360/TB-2020-0316

    Zhang W L, Che X D, Wang R C, et al. Optimum conditions for quantitative analysis of beryllium by electron probe microanalysis: A case study of beryl[J]. Chinese Science Bulletin, 2020, 65(28-29): 3205−3216. doi: 10.1360/TB-2020-0316

    [8]

    吴润秋, 饶灿, 王琪, 等. 关键金属铍的电子探针分析[J]. 科学通报, 2020, 65(20): 2161−2168. doi: 10.1360/TB-2020-0082

    Wu R Q, Rao C, Wang Q, et al. Electron probe microanalysis of the key metal beryllium[J]. Chinese Science Bulletin, 2020, 65(20): 2161−2168. doi: 10.1360/TB-2020-0082

    [9]

    赵同新, 陈文迪, 殷婷, 等. 电子探针对含Be矿物绿柱石的定量分析[J]. 矿物学报, 2020, 40(2): 169−175. doi: 10.16461/j.cnki.1000-4734.2019.39.105

    Zhao T X, Chen W D, Yin T, et al. EMPA quantitative analysis of beryllium mineral beryl[J]. Acta Mineralogica Sinica, 2020, 40(2): 169−175. doi: 10.16461/j.cnki.1000-4734.2019.39.105

    [10]

    王梦琴, 蔡克大, 李展平. 飞行时间二次离子质谱(TOF-SIMS)在矿物包裹体研究中的应用[J]. 岩石矿物学杂志, 2023, 42(3): 451−464.

    Wang M Q, Cai K D, Li Z P. Application of time-of-flight secondary ion mass spectrometry (TOS-SIMS) in the study of mineral inclusions[J]. Acta Petrologica et Mineralogica, 2023, 42(3): 451−464.

    [11]

    Otto S K, Moryson Y, Krauskopf T, et al. In-depth characterization of lithium-metal surfaces with XPS and TOF-SIMS: Toward better understanding of the passivation layer[J]. Chemistry of Materials, 2021, 33(3): 859−867. doi: 10.1021/acs.chemmater.0c03518

    [12]

    Ottolini L, Cámara F, Hawthorne F C, et al. SIMS matrix effects in the analysis of light elements in silicate minerals: Comparison with SREF and EMPA data[J]. American Mineralogist, 2002, 87: 1477−1485. doi: 10.2138/am-2002-1025

    [13]

    Zhou C, Yang Z, Sun H, et al. LA-ICP-MS trace element analysis of sphalerite and pyrite from the Beishan Pb-Zn ore district, South China: Implications for ore genesis[J]. Ore Geology Reviews, 2022, 150: 105128. doi: 10.1016/j.oregeorev.2022.105128

    [14]

    Abmadjan A, Kitawaki H. Applications of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to gemology[J]. Gems and Gemology, 2006, 42(2): 98−118. doi: 10.5741/GEMS.42.2.98

    [15]

    Chew D, Drost K, Marsh J H, et al. LA-ICP-MS imaging in the geosciences and its applications to geochronology[J]. Chemical Geology, 2021, 559: 119917. doi: 10.1016/j.chemgeo.2020.119917

    [16]

    Chen J, Wang R, Ma M, et al. Laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS)–based strategies applied for the analysis of metal-binding protein in biological samples: An update on recent advances[J]. Analytical and Bioanalytical Chemistry, 2022, 414(24): 7023−7033. doi: 10.1007/s00216-022-04185-2

    [17]

    Harte P, Evertz M, Schwieters T, et al. Adaptation and improvement of an elemental mapping method for lithium ion battery electrodes and separators by means of laser ablation-inductively coupled plasma-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2019, 411: 581−589. doi: 10.1007/s00216-018-1351-9

    [18]

    Conrey R M, Bailey D G, Singer J W, et al. Combined use of multiple external and internal standards in LA-ICP-MS analysis of bulk geological samples using lithium borate fused glass[J]. Geochemistry: Exploration, Environment, Analysis, 2023, 23(2): geochem2023-001.

    [19]

    Tiepolo M, Zanetti A, Vannucci R. Determination of lithium, beryllium and boron at trace levels by laser ablation-inductively coupled plasma-sector field mass spectrometry[J]. Geostandards and Geoanalytical Research, 2005, 29(2): 211−224. doi: 10.1111/j.1751-908X.2005.tb00893.x

    [20]

    Tan X, Koch J, Günther D, et al. In situ element analysis of spodumenes by fs-LA-ICPMS with non-matrix-matched calibration: Signal beat and accuracy[J]. Chemical Geology, 2021, 583: 120463. doi: 10.1016/j.chemgeo.2021.120463.

    [21]

    Monarumit N, Lhuaamporn T, Sakkaravej S, et al. The color center of beryllium-treated yellow sapphires[J]. Journal of Physics Communications, 2020, 4(10): 105018. doi: 10.1088/2399-6528/abc7ea

    [22]

    Monarumit N, Lhuaamporn T, Satitkune S, et al. Effect of beryllium heat treatment in synthetic ruby[J]. Journal of Applied Spectroscopy, 2019, 86: 486−492. doi: 10.1007/s10812-019-00845-x

    [23]

    Kent A, Ungerer C. Analysis of light lithophile elements (Li, Be, B) by laser ablation ICP-MS: Comparison between magnetic sector and quadrupole ICP-MS[J]. American Mineralogist, 2006, 91(8-9): 1401−1411. doi: 10.2138/am.2006.2030

    [24]

    胡明月, 何红蓼, 詹秀春, 等. 基体归一定量技术在激光烧蚀-等离子体质谱法锆石原位多元素分析中的应用[J]. 分析化学, 2008, 36(7): 947−953. doi: 10.3321/j.issn:0253-3820.2008.07.016

    Hu M Y, He H L, Zhan X C, et al. Matrix normalization for in-situ multi-element quantitative analysis of zircon in laser ablation-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2008, 36(7): 947−953. doi: 10.3321/j.issn:0253-3820.2008.07.016

    [25]

    Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(32): 3863−3878. doi: 10.1007/s11434-013-5901-4

    [26]

    孟久灵. 纳秒激光剥蚀行为影响剥蚀过程中基体效应和元素分馏效应物理机制[D]. 武汉: 中国地质大学(武汉), 2023: 1-8.

    Meng J L. Nanosecond laser ablation behavior affecting the physical mechanism of matrix effect and element fractionation effect during ablation[D]. Wuhan: China University of Geoscience (Wuhan), 2023: 1-8.

    [27]

    Jochum K P, Nohl U, Herwig K, et al. GeoReM: A new geochemical database for reference materials and isotopic standards[J]. Geostandards and Geoanalytical Research, 2005, 29(3): 333−338. doi: 10.1111/j.1751-908X.2005.tb00904.x

    [28]

    谭细娟, 郭超, 凤永刚, 等. 激光剥蚀系统气体流速变化对LA-ICP-MS锆石U-Pb定年精度的影响[J]. 岩矿测试, 2022, 41(4): 554−563. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204004

    Tan X J, Guo C, Feng Y G, et al. Effect of gas flow rates in laser ablation system on accuracy and precision of zircon U-Pb dating analysis by LA-ICP-MS[J]. Rock and Mineral Analysis, 2022, 41(4): 554−563. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204004

    [29]

    周亮亮, 魏均启, 王芳, 等. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4): 350−359. doi: 10.15898/j.cnki.11-2131/td.201701160007

    Zhou L L, Wei J Q, Wang F, et al. Optimization of the working parameters of LA-ICP-MS and its application to zircon U-Pb dating[J]. Rock and Mineral Analysis, 2017, 36(4): 350−359. doi: 10.15898/j.cnki.11-2131/td.201701160007

    [30]

    Luo T, Hu Z, Zhang W, et al. Reassessment of the influence of carrier gases He and Ar on signal intensities in 193 nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655−1663. doi: 10.1039/C8JA00163D

    [31]

    吴石头, 许春雪, Klaus Simon, 等. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451−459.

    Wu S T, Xu C X, Simon K, et al. Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451−459.

    [32]

    王辉, 汪方跃, 关炳庭, 等. 激光能量密度对LA-ICP-MS分析数据质量的影响研究[J]. 岩矿测试, 2019, 38(6): 609−619.

    Wang H, Wang F Y, Guan B T, et al. Effect of laser energy density on data quality during LA-ICP-MS measurement[J]. Rock and Mineral Analysis, 2019, 38(6): 609−619.

    [33]

    Kimura J I, Chang Q, Ishikawa T, et al. Influence of laser parameters on isotope fractionation and optimisation of lithium and boron isotope ratio measurements using laser ablation-multiple Faraday collector-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(11): 2305−2320. doi: 10.1039/C6JA00283H

    [34]

    Míková J, Košler J, Wiedenbeck M. Matrix effects during laser ablation MC-ICP-MS analysis of boron isotopes in tourmaline[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(5): 903−914. doi: 10.1039/c3ja50241d

    [35]

    Diwakar P K, Gonzalez J J, Harilal S S, et al. Ultrafast laser ablation ICP-MS: Role of spot size, laser fluence, and repetition rate in signal intensity and elemental fractionation[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(2): 339−346. doi: 10.1039/C3JA50315A

    [36]

    胡子奇, 张德贤, 刘磊. 束斑直径和能量密度对锆石U-Pb定年准确度的影响研究[J]. 现代地质, 2023, 37(3): 722−732.

    Hu Z Q, Zhang D X, Liu L. Discussion on spot size and energy density affecting zircon U-Pb dating precision[J]. Geoscience, 2023, 37(3): 722−732.

    [37]

    袁继海, 詹秀春, 孙冬阳, 等. 激光剥蚀电感耦合等离子体质谱分析硅酸盐矿物基体效应的研究[J]. 分析化学, 2011, 39(10): 1582−1588. doi: 10.1016/S1872-2040(10)60477-X

    Yuan J H, Zhan X C, Sun D Y, et al. Investigation on matrix effects in silicate minerals by laser ablation-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2011, 39(10): 1582−1588. doi: 10.1016/S1872-2040(10)60477-X

  • 加载中

(5)

(7)

计量
  • 文章访问数:  888
  • PDF下载数:  84
  • 施引文献:  0
出版历程
收稿日期:  2023-05-31
修回日期:  2023-08-30
录用日期:  2023-09-17
刊出日期:  2024-02-29

目录