中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

不同尺寸纳米塑料团聚行为的定量研究

胡婷婷, 李志雄, 陈家玮. 不同尺寸纳米塑料团聚行为的定量研究[J]. 岩矿测试, 2024, 43(1): 101-113. doi: 10.15898/j.ykcs.202305020058
引用本文: 胡婷婷, 李志雄, 陈家玮. 不同尺寸纳米塑料团聚行为的定量研究[J]. 岩矿测试, 2024, 43(1): 101-113. doi: 10.15898/j.ykcs.202305020058
HU Tingting, LI Zhixiong, CHEN Jiawei. Quantitative Investigation of the Size-dependent Aggregation of Nanoplastics[J]. Rock and Mineral Analysis, 2024, 43(1): 101-113. doi: 10.15898/j.ykcs.202305020058
Citation: HU Tingting, LI Zhixiong, CHEN Jiawei. Quantitative Investigation of the Size-dependent Aggregation of Nanoplastics[J]. Rock and Mineral Analysis, 2024, 43(1): 101-113. doi: 10.15898/j.ykcs.202305020058

不同尺寸纳米塑料团聚行为的定量研究

  • 基金项目: 国家自然科学基金项目(42107265)
详细信息
    作者简介: 胡婷婷,硕士研究生,从事环境地球化学研究。E-mail:2001210098@email.cugb.edu.cn
    通讯作者: 陈家玮,博士,教授,从事环境地球化学研究。E-mail:chenjiawei@cugb.edu.cn
  • 中图分类号: TB484.3

Quantitative Investigation of the Size-dependent Aggregation of Nanoplastics

More Information
  • 由于塑料制品大量使用和不当处置,环境中微塑料(尤其是纳米塑料)的地球化学行为已成为全球关注的热点问题。团聚效应是控制纳米塑料地球化学行为的重要因素。自然界中纳米塑料大小不一,然而已有的研究结果对于纳米塑料尺寸与团聚效应的关联性还存在一定矛盾。为揭示不同尺寸纳米塑料的团聚行为及影响作用机制,本文以50nm、100nm、200nm聚苯乙烯纳米塑料(PS50、PS100、PS200)为研究对象,利用动态光散射技术实时监测不同pH(3.0~10.0)及NaCl溶液(浓度0~800mmol/L)中纳米塑料的Zeta电位(ζ 电位)和水动力直径,并通过理论计算得到三种粒径纳米塑料的临界团聚浓度(CCC)和总相互作用能。PS50、PS100和PS200去离子水中的初始ζ电位分别为−35.2mV、−35.1mV和−38.2mV,高的表面负电荷使其在水中保持分散。离子强度增加引起的电荷屏蔽效应促进了纳米塑料的团聚,PS50、PS100、PS200在NaCl溶液中CCC值分别为325mmol/L、296mmol/L、264mmol/L,表明初始ζ电位值接近时,粒径越小的纳米塑料越稳定,能够在环境中较长时间地迁移。随着pH从酸性增加至碱性,纳米塑料表面酸性官能团发生去质子化,负电荷增多,导致其团聚行为受到抑制。当pH=7时,即使是在较高离子强度下(400mmol/L NaCl),PS100 和 PS200基本恢复稳定,但 PS50 仍发生快速团聚,可能因为在此条 件下 PS50 的 ζ 电位仍较小(−19.3mV)。通过回归分析可知,三种尺寸纳米塑料的团聚行为与ζ电位密切相关(r2为0.70~0.88)。因此在实际应用中,需要综合考虑溶液pH、离子强度以及纳米塑料自身尺寸等容易影响ζ电位的因素,以更精准地预测和评估纳米塑料在自然环境中的地球化学行为。

  • 加载中
  • 图 1  不同尺寸PSNPs的表征:a~c分别为PS50、PS100和PS200的TEM图像;d~f分别为与之对应DLS测量的平均水动力直径;g~i为三种PSNPs的 ζ 电位值随pH值的变化情况

    Figure 1. 

    图 2  PS50 (a)、PS100 (b)、PS200 (c)在不同浓度氯化钠溶液中(0~800mmol/L)水动力直径(Dh)随时间的变化

    Figure 2. 

    图 3  PS50、PS100 和 PS200在不同浓度氯化钠溶液中(0~800mmol/L)的附着效率(a)及ζ电位(b)

    Figure 3. 

    图 4  在不同pH条件下(pH=3、7、10)PS50 (a,d)、PS100 (b,e)、PS200 (c,f)在400mmol/L 氯化钠溶液中的团聚动力学和ζ电位值

    Figure 4. 

    图 5  DLVO理论拟合获得PS50 (a)、PS100 (b)、PS200 (c)在氯化钠溶液中的相互作用能

    Figure 5. 

    图 6  在所有实验条件下PS50 (a)、PS100 (b)、PS200 (c)附着效率与ζ电位之间的线性回归模型 (红色区域和蓝色区域分别代表95%置信区间和预测区间)

    Figure 6. 

  • [1]

    Koelmans A A, Redondo-Hasselerharm P E, Nor N H M, et al. Risk assessment of microplastic particles[J]. Nature Reviews Materials, 2022, 7(2): 138−152. doi: 10.1038/s41578-021-00411-y

    [2]

    McDevitt J P, Criddle C S, Morse M, et al. Addressing the issue of microplastics in the wake of the microbead-free waters act—A new standard can facilitate improved policy[J]. Environmental Science & Technology, 2017, 51(12): 6611−6617.

    [3]

    Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838−838. doi: 10.1126/science.1094559

    [4]

    Halle T A, Ladirat L, Gendre X, et al. Understanding the fragmentation pattern of marine plastic debris[J]. Environmental Science & Technology, 2016, 50(11): 5668−5675.

    [5]

    Vethaak A D, Legler J. Microplastics and human health[J]. Science, 2021, 371(6530): 672−674. doi: 10.1126/science.abe5041

    [6]

    刘沙沙, 梁绮彤, 陈诺, 等. 纳米塑料对生物的毒性效应及作用机制研究进展[J]. 生态毒理学报, 2022, 17(4): 99-108.

    Liu S S, Liang Q T, Chen N, et al. Research progress on toxic effects and mechanisms of nanoplastics on organisms[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 99-108.

    [7]

    Alimi O S, Farner B J, Hernandez L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704−1724.

    [8]

    胡婷婷, 陈家玮. 土壤中微塑料的吸附迁移及老化作用对污染物环境行为的影响研究进展[J]. 岩矿测试, 2022, 41(3): 353−363. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203002

    Hu T T, Chen J W. A review on adsorption and transport of microplastics in soil and the effect of ageing on environmental behavior of pollutants[J]. Rock and Mineral Analysis, 2022, 41(3): 353−363. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203002

    [9]

    Halle T A, Jeanneau L, Martignac M, et al. Nanoplastic in the North Atlantic subtropical gyre[J]. Environmental Science & Technology, 2017, 51(23): 13689−13697.

    [10]

    Gigault J, Halle A T, Baudrimont M, et al. Current opinion: What is a nanoplastic?[J]. Environmental Pollution, 2018, 235: 1030−1034. doi: 10.1016/j.envpol.2018.01.024

    [11]

    Ni B J, Thomas K V, Kim E J. Microplastics and nanoplastics in urban waters[J]. Water Research, 2023, 229: 119473. doi: 10.1016/j.watres.2022.119473

    [12]

    Liu L, Xu K X, Zhang B W, et al. Cellular internalization and release of polystyrene microplastics and nanoplastics[J]. Science of the Total Environment, 2021, 779: 146523. doi: 10.1016/j.scitotenv.2021.146523

    [13]

    Gigault J, El Hadri H, Nguyen B, et al. Nanoplastics are neither microplastics nor engineered nanoparticles[J]. Nature Nanotechnology, 2021, 16(5): 501−507. doi: 10.1038/s41565-021-00886-4

    [14]

    Liu Y J, Hu Y B, Yang C, et al. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments[J]. Water Research, 2019, 163: 114870. doi: 10.1016/j.watres.2019.114870

    [15]

    Yuan B, Gan W H, Sun J, et al. Depth profiles of microplastics in sediments from inland water to coast and their influential factors[J]. Science of the Total Environment, 2023, 903: 166151.

    [16]

    Praetorius A, Badetti E, Brunelli A, et al. Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments[J]. Environmental Science:Nano, 2020, 7(2): 351−367. doi: 10.1039/C9EN01016E

    [17]

    Wang X J, Bolan N, Tsang D C W, et al. A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications[J]. Journal of Hazardous Materials, 2021, 402: 123496. doi: 10.1016/j.jhazmat.2020.123496

    [18]

    Wang J Y, Zhao X L, Wu A M, et al. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters[J]. Environmental Pollution, 2021, 268: 114240. doi: 10.1016/j.envpol.2020.114240

    [19]

    Lee C H, Fang J K H. Effects of temperature and particle concentration on aggregation of nanoplastics in freshwater and seawater[J]. Science of the Total Environment, 2022, 817: 152562. doi: 10.1016/j.scitotenv.2021.152562

    [20]

    Kim M J, Herchenova Y, Chung J, et al. Thermodynamic investigation of nanoplastic aggregation in aquatic environments[J]. Water Research, 2022, 226: 119286. doi: 10.1016/j.watres.2022.119286

    [21]

    Mao Y F, Li H, Huangfu X L, et al. Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations[J]. Environmental Pollution, 2020, 258: 113760. doi: 10.1016/j.envpol.2019.113760

    [22]

    Liu L, Song J, Zhang M, et al. Aggregation and deposition kinetics of polystyrene microplastics and nanoplastics in aquatic environment[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 741−747. doi: 10.1007/s00128-021-03239-y

    [23]

    Li X, He E, Xia B, et al. Protein corona induced aggregation of differently sized nanoplastics: Impacts of protein type and concentration[J]. Environmental Science: Nano, 2021, 8(6): 1560−1570. doi: 10.1039/D1EN00115A

    [24]

    Quevedo I R, Tufenkji N. Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand[J]. Environmental Science & Technology, 2012, 46(8): 4449−4457.

    [25]

    Gong Y Y, Bai Y, Zhao D Y, et al. Aggregation of carboxyl-modified polystyrene nanoplastics in water with aluminum chloride: Structural characterization and theoretical calculation[J]. Water Research, 2022, 208: 117884. doi: 10.1016/j.watres.2021.117884

    [26]

    Li J, Yang X J, Zhang Z Z, et al. Aggregation kinetics of diesel soot nanoparticles in artificial and human sweat solutions: Effects of sweat constituents, pH, and temperature[J]. Journal of Hazardous Materials, 2020, 403: 123614.

    [27]

    Chen C Y, Huang W L. Aggregation kinetics of diesel soot nanoparticles in wet environments[J]. Environmental Science & Technology, 2017, 51(4): 2077−2086.

    [28]

    Liu J J, Dai C, Hu Y D. Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid[J]. Environmental Research, 2018, 161: 49−60. doi: 10.1016/j.envres.2017.10.045

    [29]

    Petosa A R, Jaisi D P, Quevedo I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions[J]. Environmental Science & Technology, 2010, 44(17): 6532−6549.

    [30]

    Cai L, Hu L L, Shi H H, et al. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics[J]. Chemosphere, 2018, 197: 142−151. doi: 10.1016/j.chemosphere.2018.01.052

    [31]

    Lowry G V, Hill R J, Harper S, et al. Guidance to improve the scientific value of Zeta-potential measurements in nanoEHS[J]. Environmental Science:Nano, 2016, 3(5): 953−965. doi: 10.1039/C6EN00136J

    [32]

    Yu S J, Shen M H, Li S S, et al. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes[J]. Environmental Pollution, 2019, 255: 113302. doi: 10.1016/j.envpol.2019.113302

    [33]

    Lu S H, Zhu K R, Song W C, et al. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions[J]. Science of the Total Environment, 2018, 630: 951−959. doi: 10.1016/j.scitotenv.2018.02.296

    [34]

    Tang H, Zhao Y, Yang X N, et al. New insight into the aggregation of graphene oxide using molecular dynamics simulations and extended Derjaguin-Landau-Verwey-Overbeek theory[J]. Environmental Science & Technology, 2017, 51(17): 9674−9682.

    [35]

    董会军, 董建芳, 王昕洲, 等. pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响[J]. 岩矿测试, 2019, 38(5): 510−517. doi: 10.15898/j.cnki.11-2131/td.201808230096

    Dong H J, Dong J F, Wang X Z, et al. Effect of pH on determination of various arsenic species in water by HPLC-ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(5): 510−517. doi: 10.15898/j.cnki.11-2131/td.201808230096

    [36]

    孟瑞芳, 杨会峰, 白华, 等. 海河流域大清河平原区地下水化学特征及演化规律分析[J]. 岩矿测试, 2023, 42(2): 383−395.

    Meng R F, Yang H F, Bai H, et al. Chemical characteristics and evolutionary patterns of groundwater in the Daqing River Plain area of Haihe Basin[J]. Rock and Mineral Analysis, 2023, 42(2): 383−395.

    [37]

    曹寒, 张月, 金洁, 等. 土壤中碘的赋存形态及迁移转化研究进展[J]. 岩矿测试, 2022, 41(4): 521−530. doi: 10.15898/j.cnki.11-2131/td.202203170055

    Cao H, Zhang Y, Jin J, et al. Iodine speciation, transportation, and transformation in soils: A critical review[J]. Rock and Mineral Analysis, 2022, 41(4): 521−530. doi: 10.15898/j.cnki.11-2131/td.202203170055

    [38]

    Chen K L, Elimelech M. Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties[J]. Environmental Science & Technology, 2009, 43(19): 7270−7276.

    [39]

    Hsu J P, Liu B T. Effect of particle size on critical coagulation concentration[J]. Journal of Colloid and Interface Science, 1998, 198(1): 186−189. doi: 10.1006/jcis.1997.5275

    [40]

    Afshinnia K, Sikder M, Cai B, et al. Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics[J]. Journal of Colloid and Interface Science, 2017, 487: 192−200. doi: 10.1016/j.jcis.2016.10.037

    [41]

    Xu C Y, Zhou T T, Wang C L, et al. Aggregation of polydisperse soil colloidal particles: Dependence of Hamaker constant on particle size[J]. Geoderma, 2020, 359: 113999. doi: 10.1016/j.geoderma.2019.113999

    [42]

    Pochapski D J, Carvalho dos Santos C, Leite G W, et al. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: Effects of experimental conditions and electrokinetic models on the interpretation of results[J]. Langmuir, 2021, 37(45): 13379−13389. doi: 10.1021/acs.langmuir.1c02056

    [43]

    Chowdhury I, Duch M C, Mansukhani N D, et al. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment[J]. Environmental Science & Technology, 2013, 47(12): 6288−6296.

    [44]

    Dong Z Q, Qiu Y P, Zhang W, et al. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater[J]. Water Research, 2018, 143: 518−526. doi: 10.1016/j.watres.2018.07.007

  • 加载中

(6)

计量
  • 文章访问数:  1026
  • PDF下载数:  100
  • 施引文献:  0
出版历程
收稿日期:  2023-05-02
修回日期:  2023-08-29
录用日期:  2023-09-17
刊出日期:  2024-02-29

目录