中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

激光剥蚀-扇形磁场电感耦合等离子体质谱法同时测定锆石U-Pb年龄和微量元素含量

赵令浩, 孙冬阳, 胡明月, 袁继海, 范晨子, 詹秀春. 激光剥蚀-扇形磁场电感耦合等离子体质谱法同时测定锆石U-Pb年龄和微量元素含量[J]. 岩矿测试, 2024, 43(1): 47-62. doi: 10.15898/j.ykcs.202309110151
引用本文: 赵令浩, 孙冬阳, 胡明月, 袁继海, 范晨子, 詹秀春. 激光剥蚀-扇形磁场电感耦合等离子体质谱法同时测定锆石U-Pb年龄和微量元素含量[J]. 岩矿测试, 2024, 43(1): 47-62. doi: 10.15898/j.ykcs.202309110151
ZHAO Linghao, SUN Dongyang, HU Mingyue, YUAN Jihai, FAN Chenzi, ZHAN Xiuchun. Simultaneous Determination of U-Pb Age and Trace Elements of Zircon by Laser Ablation Sector Field Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2024, 43(1): 47-62. doi: 10.15898/j.ykcs.202309110151
Citation: ZHAO Linghao, SUN Dongyang, HU Mingyue, YUAN Jihai, FAN Chenzi, ZHAN Xiuchun. Simultaneous Determination of U-Pb Age and Trace Elements of Zircon by Laser Ablation Sector Field Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2024, 43(1): 47-62. doi: 10.15898/j.ykcs.202309110151

激光剥蚀-扇形磁场电感耦合等离子体质谱法同时测定锆石U-Pb年龄和微量元素含量

  • 基金项目: 国家重点研发计划项目(2021YFC2903101);中国地质科学院基本科研业务费项目(CSJ202201)
详细信息
    作者简介: 赵令浩,博士,副研究员,从事地球化学及构造地质学研究。E-mail:linghaozhao@126.com
  • 中图分类号: P597.3;O657.63

Simultaneous Determination of U-Pb Age and Trace Elements of Zircon by Laser Ablation Sector Field Inductively Coupled Plasma-Mass Spectrometry

  • 激光剥蚀-扇形磁场电感耦合等离子体质谱(LA-SF-ICP-MS)具有高灵敏度特征,被广泛应用于锆石等含U矿物原位微区U-Pb定年研究,但磁偏转式质量分析器的使用导致该质谱仪扫描速度相对较慢,可能影响U-Pb同位素与其他关键微量元素的同时采集。本文通过优化仪器信号稳定性和实验方法,对目前常用的7种锆石U-Pb标准样品进行U-Pb定年和Ti、REEs、Hf等关键元素同时定量分析,探讨了多元素同时分析方法的可行性及对于U-Pb定年结果的影响。实验结果表明,相对于LA-SF-ICP-MS仅检测U-Pb同位素方法,同时开展多元素含量检测可能会使U-Pb同位素信号强度稳定性下降,导致单点U-Pb年龄结果误差及离散程度增大。与仅测定U-Pb同位素年龄的测定结果相比较,根据不同锆石样品中U-Pb同位素含量高低,多元素同时检测获得分析点的206Pb/238U年龄和207Pb/235U年龄变化范围不同程度地增大,其中207Pb/235U年龄受影响明显,单点207Pb/235U年龄误差从~1.5%增大至~2.0%,单点年龄的相对标准偏差(RSD)从0.5%~1.3%增大至1.2%~3.3%。尽管如此,多元素同时检测方法对于各样品最终测定年龄没有明显的影响,相对于TIMS年龄,各样品的谐和年龄和206Pb/238U加权平均年龄偏差分别小于1.0%和0.7%,完全满足U-Pb同位素地质年代学测试要求。同时测定锆石样品中的关键微量元素含与其推荐值相对误差小于10%。因此,采用LA-SF-ICP-MS可以同时准确地测定锆石U-Pb年龄和微量元素含量,该方法亦可用于其他副矿物U-Pb年龄与关键微量元素同时测定。

  • 加载中
  • 图 1  LA-SF-ICP-MS锆石U-Pb定年结果(激光斑束25μm)

    Figure 1. 

    图 2  LA-SF-ICP-MS锆石U-Pb定年结果(激光斑束25μm)

    Figure 2. 

    图 3  (a)NIST612和KL2-G测定值与文献推荐值相对误差;(b)91500和SA01锆石微量元素含量测定值与文献推荐值相对误差

    Figure 3. 

    图 4  锆石样品稀土元素配分模式图

    Figure 4. 

    表 1  LA-SF-ICP-MS仪器工作条件

    Table 1.  Working conditions for LA-SF-ICP-MS instrument.

    激光剥蚀系统(NWR 193UC)高分辨电感耦合等离子体质谱仪(Element Ⅱ)
    实验参数工作条件实验参数工作条件
    波长193nm射频功率1200W
    脉冲时间15ns冷却气(Ar)流速16L/min
    激光斑束25μm辅助气(Ar)流速0.9L/min
    激光频率8Hz样品气(Ar)流速0.82L/min
    能量密度~3.2J/cm2分辨率低 (MM=300)
    载气流速(He)0.8L/min扫描模式E-Scan
    增敏气流速(N2)1mL/min扫描质量29Si,49Ti,89Y,91Zr,139La,140Ce,141Pr,
    146Nd,147Sm,151Eu,157Gd,159Tb,163Dy,
    165Ho,166Er,169Tm,172Yb,175Lu,178Hf,
    206Pb,207Pb,208Pb,232Th,238U
    剥蚀时间40s接收器模式Both模式(Counting和Analog)
    下载: 导出CSV

    表 2  两种不同方法锆石U-Pb定年结果对比

    Table 2.  Zircon U-Pb dating results by LA-(SF)ICP-MS with two methods

    标准
    样品
    仅U-Pb定年方法 U-Pb定年+测定微量元素含量方法
    206Pb/238U 207Pb/235U 谐和年龄
    (Ma)
    206Pb/238U
    加权平
    均年龄
    (Ma)
    206Pb/238U 207Pb/235U 谐和年龄
    (Ma)
    206Pb/238U
    加权平
    均年龄
    (Ma)
    年龄
    (Ma)
    2σ RSD
    (%)
    年龄
    (Ma)
    2σ RSD
    (%)
    年龄
    (Ma)
    2σ RSD
    (%)
    年龄
    (Ma)
    2σ RSD
    (%)
    91500 1045.3~1076.8 15.0~16.2 0.8 1047.7~1106.4 0.8~11.7 1.3 1065.9±2.4 1065.4±6.8 1045.7~1080.5 20.3~22.7 1.0 1044~1093 14.7~21.7 1.2 1063.3±2.4 1062.5±7.3
    GJ-1 598.2~603.9 8.6~8.9 0.2 587.6~603.5 6.9~7.7 0.6 600.5±1.3 601.7±3.8 599~610 11.4~12.4 0.4 563~618 9.8~12.7 1.8 603.8±1.6 604.0±3.8
    Tanz 556.3~568.1 8.3~8.6 0.5 554.6~569.4 6.9~7.3 0.8 563.2±1.3 564.6±3.7 550~570 10.9~11.9 0.8 546~577 9.1~11.5 1.6 559.5±1.7 562.7±4.2
    SA01 525.0~539.6 7.9~9.6 0.6 527.8~537.5 7.8~9.3 0.5 532.9±1.5 533.2±3.8 526~542 10.1~12.1 0.8 519~548 10~17.2 1.4 533.8±2.0 534.5±4.7
    Temora1 413.8~421.9 6.5~6.8 0.5 412.6~427.2 5.6~7.3 1.0 418.2±1.1 418.2±2.9 401~427 8.1~11.3 1.0 404~456 7~19.7 2.7 417.5±1.5 416.7±3.4
    Plešovice 333.9~341.8 4.8~6.4 0.6 330.1~340.9 4.4~5.8 0.6 337.7±0.9 337.8±2.3 326~340 4.8~6.9 1.0 321~342 4.8~6.9 1.8 334.6±1.0 335.8±2.5
    Qinghu 161.8~156.6 2.6~3.1 0.9 165.5~156.2 2.7~3.2 1.3 159.4±0.5 159.1±1.3 156.3~164.9 2.9~3.2 1.4 154.3~176.4 3.1~4.1 3.3 160.1±0.6 160.5±1.3
    下载: 导出CSV

    表 3  LA-SF-ICP-MS锆石多元素同时分析微量元素定量结果

    Table 3.  Trace element results measured by LA-SF-ICP-MS, determining U-Pb and key trace elements simultaneously.

     元素  检出限
    (μg/g)
    NIST612 KL2-G 91500 SA01 GJ-1 Plešovice Qinghu Tanz Temora1
    平均值
    (μg/g)
    RSD
    (%)
    SE
    (%)
    平均值
    (μg/g)
    RSD
    (%)
    SE
    (%)
    Si内标
    (μg/g)
    Zr内标
    (μg/g)
    文献值48
    (μg/g)
    Si内标
    (μg/g)
    Zr内标
    (μg/g)
    文献值35
    (μg/g)
    Ti 0.302 40.3 4.8 8.5 14053 1.0 8.4 5.9±2.5 5.1±2.8 6±1 12.1±3.49 11.2±1.08 12.1±0.3 3.6±1.57 87.8±21.4 17.2±3.78 15.1±2.68 12.4±1.97
    Y 0.025 40.1 1.1 4.8 23.8 1.5 6.5 124±5.2 117±3 140±14 402±14.9 382±6.67 284±10.3 501±121 700±153 183±10.8 1063±307
    La 0.020 36.8 1.4 2.2 12.1 1.2 8.0 0.03±0.03 0.03±0.04 0.006±0.003 0.104±0.02 0.096±0.03 0.108±0.02 0.162±0.173 0.02±0.006 0.072±0.027
    Ce 0.017 38.3 1.1 0.3 30.0 1.4 7.3 2.3±0.08 2.1±0.14 2.6±0.3 16.8±0.566 15.4±0.464 17.8±1.1 14±0.6 2.99±1.35 10.3±1.77 7.27±0.429 3.67±0.687
    Pr 0.013 38.1 1.1 0.7 4.3 1.6 6.9 0.03±0.02 0.02±0.01 0.024±0.015 0.615±0.043 0.586±0.037 0.67±0.04 0.034±0.008 0.251±0.203 0.245±0.112 0.05±0.01 0.184±0.076
    Nd 0.056 36.8 1.7 3.6 19.7 1.9 8.9 0.23±0.05 0.2±0.09 0.24±0.04 7.89±0.482 7.94±0.328 8.94±0.51 0.655±0.19 2.5±1.21 1.59±0.691 0.963±0.118 2.64±1.04
    Sm 0.045 38.9 1.6 3.2 5.4 2.6 2.6 0.44±0.06 0.41±0.1 0.5±0.08 8.39±0.307 9.31±0.436 10.1±0.47 1.61±0.29 4.05±1.32 3.73±1.4 2.76±0.383 4.38±1.71
    Eu 0.024 36.4 0.8 2.4 1.8 2.7 7.2 0.25±0.02 0.23±0.04 0.24±0.03 5.04±0.171 5.34±0.136 6.04±0.36 1.16±0.129 1.08±0.418 0.389±0.177 1.52±0.197 0.951±0.315
    Gd 0.073 38.6 2.6 3.4 5.6 4.8 5.9 2.2±0.08 2.1±0.19 2.2±0.3 23±1.06 23.7±0.777 25.1±1.5 7.48±0.53 14.4±4.42 14.8±4.66 11.6±1.33 20.8±7.31
    Tb 0.017 38.1 1.0 1.4 0.8 4.1 9.0 0.74±0.04 0.74±0.05 0.86±0.07 5.34±0.271 5.4±0.15 5.94±0.36 2.15±0.153 5.24±1.46 5.5±1.51 2.91±0.333 7.32±2.56
    Dy 0.062 37.3 1.7 5.0 4.7 3.4 9.6 10±0.42 10±0.48 12±1 49.4±0.869 50.4±1.5 53.3±3 22.2±0.936 58.3±15.6 65.8±16.7 25.2±2.23 89.1±30.5
    Ho 0.011 39.5 1.3 3.1 0.9 3.2 4.2 4.1±0.14 4.1±0.14 4.8±0.4 14±0.421 13.7±0.244 14.9±0.9 7.55±0.245 15.6±3.87 23.1±5.42 6.17±0.382 34.4±10.7
    Er 0.041 39.6 2.1 4.2 2.5 4.6 3.3 23±0.86 22±0.76 25±3 55.7±2.37 52.2±1.32 56.2±2.1 32.9±1.4 56.1±13.2 104±21.6 21.2±1.25 162±45
    Tm 0.009 38.7 1.0 5.1 0.4 5.6 7.0 6.7±0.21 6±0.17 6.9±0.4 10.1±0.478 11±0.236 11.3±0.7 7.1±0.359 10.2±2.45 25±5.18 3.79±0.254 34.4±8.54
    Yb 0.071 40.1 2.5 2.2 2.0 4.1 3.2 78±1.9 71±2.2 74±4 87.7±3.24 105±2.71 107±4.6 72.2±4.3 78.9±21.2 245±46.6 31.3±3.03 334±76.3
    Lu 0.011 38.0 1.3 2.7 0.3 5.5 5.4 12±0.5 9.6±0.26 13±1 16.5±0.588 13.1±0.297 15.4±0.7 14.5±1.15 8.27±2.14 40.5±6.4 4.02±0.399 66.4±14
    Hf 0.043 37.9 1.3 3.2 3.8 4.2 4.2 6027±325 5424±85 5900±300 9650±610 8647±151 10019±579 7220±297 10420±546 10027±359 10925±617 8252±538
    Pb 0.015 38.9 1.2 0.8 1.9 3.0 6.5 15±0.41 13±0.36 15±2 13±0.4 11.2±0.591 22.5±9.7 43.7±2.28 53±18.2 20.7±5.23 35.2±2.18 13.2±6.16
    Th 0.004 39.1 1.1 3.6 1.0 3.3 4.1 25±0.8 24±0.55 30±3 139±4.44 128±2.18 140±11 7.59±0.366 97.8±42.8 357±93 71.2±7.87 72.6±33.8
    U 0.002 37.8 1.2 1.1 0.6 1.5 17.5 71±2.4 67±2.2 80±8 105±3.63 94.4±4.86 114±13 430±18 972±345 657±159 366±15.9 169±78.6
    注:“—”表示文献未报道;“<”表示测试数据低于方法检出限。
    下载: 导出CSV
  • [1]

    Engi M. Petrochronology based on REE-minerals: Monazite, allanite, xenotime, apatite[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 365−418. doi: 10.2138/rmg.2017.83.12

    [2]

    赵令浩, 詹秀春, 曾令森, 等. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753.

    Zhao L H, Zhan X C, Zeng L S, et al. Direct calibration method for LA-HR-ICP-MS apatite U-Pb dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744−753.

    [3]

    Chew D M, Spikings R A. Apatite U-Pb thermochronology: A review[J]. Minerals, 2021, 11(10): 1095−1116. doi: 10.3390/min11101095

    [4]

    赵令浩, 曾令森, 詹秀春, 等. 榍石LA-SF-ICP-MS U-Pb定年及对结晶和封闭温度的指示[J]. 岩石学报, 2020, 36(10): 2983−2994. doi: 10.18654/1000-0569/2020.10.04

    Zhao L H, Zeng L S, Zhan X C, et al. In situ U-Pb dating of titanite by LA-SF-ICP-MS and insights into titanite crystallization and closure temperature[J]. Acta Petrologica Sinica, 2020, 36(10): 2983−2994. doi: 10.18654/1000-0569/2020.10.04

    [5]

    Luo T, Zhao H, Zhang W, et al. Non-matrix-matched analysis of U-Th-Pb geochronology of bastnäsite by laser ablation inductively coupled plasma mass spectrometry[J]. Science China: Earth Sciences, 2021, 64(4): 667−676. doi: 10.1007/s11430-020-9715-1

    [6]

    Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27−62. doi: 10.2113/0530027

    [7]

    Toscano M, Pascual E, Nesbitt R W, et al. Geochemical discrimination of hydrothermal and igneous zircon in the Iberian Pyrite Belt, Spain[J]. Ore Geology Reviews, 2014, 56: 301−311. doi: 10.1016/j.oregeorev.2013.06.007

    [8]

    Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1-2): 123−138. doi: 10.1016/S0009-2541(01)00355-2

    [9]

    Pyle J, Spear F. Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions[J]. American Mineralogist, 2003,88(4): 708.

    [10]

    Henrichs I A, Chew D M, O’Sullivan G J, et al. Trace element (Mn-Sr-Y-Th-REE) and U-Pb isotope systematics of metapelitic apatite during progressive greenschist- to amphibolite-facies barrovian metamorphism[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(8): 4103−4129. doi: 10.1029/2019GC008359

    [11]

    O’Sullivan G, Chew D, Kenny G, et al. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 2020, 201: 103044. doi: 10.1016/j.earscirev.2019.103044

    [12]

    Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723): 841−844. doi: 10.1126/science.1110873

    [13]

    Hayden L A, Watson E B, Wark D A. A thermobarometer for sphene (titanite)[J]. Contributions to Mineralogy and Petrology, 2008, 155(4): 529−540. doi: 10.1007/s00410-007-0256-y

    [14]

    Ballard J R, Palin J M, Campbell I H. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon: Application to porphyry copper deposits of Northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144(3): 347−364. doi: 10.1007/s00410-002-0402-5

    [15]

    Zeng L, Asimow P D, Saleeby J B. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source[J]. Geochimica et Cosmochimica Acta, 2005, 69(14): 3671−3682. doi: 10.1016/j.gca.2005.02.035

    [16]

    Zeng L, Gao L E, Zhao L, et al. The role of titanite in shaping the geochemistry of amphibolite-derived melts[J]. Lithos, 2021, 402-403: 106312. doi: 10.1016/j.lithos.2021.106312

    [17]

    赵令浩, 曾令森, 胡明月, 等. 金红石-榍石转变过程中元素地球化学行为——以雅鲁藏布江缝合带角闪岩为例[J]. 岩石学报, 2017, 33(8): 2494−2508.

    Zhao L H, Zeng L S, Hu M Y, et al. Rutile to titanite trasformation in amphibolite and its geochemical consequences: A case study of the amphibolite from Yarlung Tsangpo suture zone[J]. Acta Petrologica Sinica, 2017, 33(8): 2494−2508.

    [18]

    赵令浩, 曾令森, 高利娥, 等. 变基性岩部分熔融过程中榍石的微量元素效应: 以南迦巴瓦混合岩为例[J]. 岩石学报, 2020, 36(9): 2714−2728. doi: 10.18654/1000-0569/2020.09.07

    Zhao L H, Zeng L S, Gao L E, et al. Role of titanite in the redistribution of key trace elements during partial melting of meta-mafic rocks: An example from Namche Barwa migmatite[J]. Acta Petrologica Sinica, 2020, 36(9): 2714−2728. doi: 10.18654/1000-0569/2020.09.07

    [19]

    Zhao L, Zeng L, Gao L, et al. Rutile to titanite transformation in eclogites and its geochemical consequences: An example from the Sumdo Eclogite, Tibet[J]. Acta Geologica Sinica-English Edition, 2023, 97(1): 122−133. doi: 10.1111/1755-6724.14919

    [20]

    Engi M, Lanari P, Kohn M. Significant ages—An introduction to petrochronology[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 1−12.

    [21]

    Wei Q D, Yang M, Romer R L, et al. In situ U-Pb geochronology of vesuvianite by LA-SF-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(1): 69−81. doi: 10.1039/D1JA00303H

    [22]

    Seman S, Stockli D F, McLean N M. U-Pb geochronology of grossular-andradite garnet[J]. Chemical Geology, 2017, 460: 106−116. doi: 10.1016/j.chemgeo.2017.04.020

    [23]

    Woodhead J, Petrus J. Exploring the advantages and limitations of in situ U-Pb carbonate geochronology using speleothems[J]. Geochronology, 2019, 1: 69−84. doi: 10.5194/gchron-1-69-2019

    [24]

    Li D, Tan C, Miao F, et al. Initiation of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China: Constraints from U-Pb dating of grossular-rich garnet[J]. Ore Geology Reviews, 2019, 107: 587−599. doi: 10.1016/j.oregeorev.2019.03.011

    [25]

    Yang Y H, Wu F Y, Yang J H, et al. U-Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 231−239. doi: 10.1039/C7JA00315C

    [26]

    Kylander-Clark A R C, Hacker B R, Cottle J M. Laser-ablation split-stream ICP petrochronology[J]. Chemical Geology, 2013, 345: 99−112. doi: 10.1016/j.chemgeo.2013.02.019

    [27]

    Hattendorf B, Latkoczy C, Günther D. Peer reviewed: Laser ablation-ICPMS[J]. Analytical Chemistry, 2003, 75(15): 341A−347A. doi: 10.1021/ac031283r

    [28]

    Kooijman E, Berndt J, Mezger K. U-Pb dating of zircon by laser ablation ICP-MS: Recent improvements and new insights[J]. European Journal of Mineralogy, 2012, 24: 5−21. doi: 10.1127/0935-1221/2012/0024-2170

    [29]

    Wu S, Yang M, Yang Y, et al. Improved in situ zircon U-Pb dating at high spatial resolution (5-16μm) by laser ablation-single collector-sector field-ICP-MS using jet sample and X skimmer cones[J]. International Journal of Mass Spectrometry, 2020, 456: 116394. doi: 10.1016/j.ijms.2020.116394

    [30]

    Roberts N M W, Rasbury E T, Parrish R R, et al. A calcite reference material for LA-ICP-MS U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807−2814. doi: 10.1002/2016GC006784

    [31]

    Latkoczy C, Günther D. Enhanced sensitivity in inductively coupled plasma sector field mass spectrometry for direct solid analysis using laser ablation (LA-ICP-SFMS)[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(10): 1264−1270. doi: 10.1039/B204532J

    [32]

    Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1): 1−23. doi: 10.1111/j.1751-908X.1995.tb00147.x

    [33]

    Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211: 47−69. doi: 10.1016/j.chemgeo.2004.06.017

    [34]

    Hu Z, Li X H, Luo T, et al. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U-Pb ages and Zr-O isotopes[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(12): 2715−2734. doi: 10.1039/D1JA00311A

    [35]

    Huang C, Wang H, Yang J H, et al. SA01—A proposed zircon reference material for microbeam U-Pb age and Hf-O isotopic determination[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 103−123. doi: 10.1111/ggr.12307

    [36]

    Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200(1): 155−170.

    [37]

    Sláma J, Košler J, Condon D J, et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1−35. doi: 10.1016/j.chemgeo.2007.11.005

    [38]

    李献华, 唐国强, 龚冰, 等. Qinghu(清湖)锆石: 一个新的U-Pb年龄和O, Hf同位素微区分析工作标样[J]. 科学通报, 2013, 58(20): 1954−1961. doi: 10.1360/csb2013-58-20-1954

    Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working reference for microbeam analusis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(20): 1954−1961. doi: 10.1360/csb2013-58-20-1954

    [39]

    Horn I, Günther D. The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: Implications for LA-ICP-MS[J]. Applied Surface Science, 2003, 207(1-4): 144−157. doi: 10.1016/S0169-4332(02)01324-7

    [40]

    Hu Z, Gao S, Liu Y, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093−1101. doi: 10.1039/b804760j

    [41]

    Griffin W, Powell W, Pearson N J, et al. GLITTER: Data reduction software for laser ablation ICP-MS[M]//Sylvester P. Laser ablation-ICP-MS in the Earth sciences. Mineralogical Association of Canada, 2008: 204-207.

    [42]

    Ludwig K R. User’s manual for Isoplot 3.6: A geochronological toolkit for Microsoft excel[M]. Berkeley Geochronology Center, 2003.

    [43]

    李献华, 柳小明, 刘勇胜, 等. LA-ICPMS锆石U-Pb定年的准确度: 多实验室对比分析[J]. 中国科学: 地球科学, 2015, 45(9): 1294-1303.

    Li X H, Liu X M, Liu Y S, et al. Accuracy of LA-ICPMS zircon U-Pb age determination: An inter-laboratory comparison[J]. Science China: Earth Sciences, 2015, 58: 1722-1730.

    [44]

    Horstwood M, Košler J, Gehrels G, et al. Community-derived standards for LA-ICP-MS U-(Th)-Pb geochronology—Uncertainty propagation, age interpretation and data reporting[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 311−332. doi: 10.1111/j.1751-908X.2016.00379.x

    [45]

    Fisher C, Longerich H, Jackson S, et al. Data acquisition and calculation of U-Pb isotopic analyses using laser ablation (single collector) inductively coupled plasma mass sperometry[J]. Journal of Analytical Atomic Spectrometry, 2010, 25: 1905−1920. doi: 10.1039/c004955g

    [46]

    Schoene B, Condon D, Morgan L, et al. Precision and accuracy in geochronology[J]. Ekements, 2013, 9: 19−24.

    [47]

    Liu Y, Hu Z, Zong K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535−1546. doi: 10.1007/s11434-010-3052-4

    [48]

    Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 9−39. doi: 10.1111/j.1751-908X.2004.tb01041.x

    [49]

    Zhao K D, Jiang S Y, Ling H F, et al. Reliability of LA-ICP-MS U-Pb dating of zircons with high U concentrations: A case study from the U-bearing Douzhashan granite in South China[J]. Chemical Geology, 2014, 389: 110−121. doi: 10.1016/j.chemgeo.2014.09.018

    [50]

    Marillo-Sialer E, Woodhead J, Hanchar J M, et al. An investigation of the laser-induced zircon ‘matrix effect’[J]. Chemical Geology, 2016, 438: 11−24. doi: 10.1016/j.chemgeo.2016.05.014

  • 加载中

(4)

(3)

计量
  • 文章访问数:  670
  • PDF下载数:  112
  • 施引文献:  0
出版历程
收稿日期:  2023-09-11
修回日期:  2024-01-02
录用日期:  2024-01-15
刊出日期:  2024-02-29

目录