中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用

王奇奇, 孙贺, 顾海欧, 侯振辉, 葛粲, 汪方跃, 周涛发. 磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用[J]. 岩矿测试, 2024, 43(1): 63-75. doi: 10.15898/j.ykcs.202309260154
引用本文: 王奇奇, 孙贺, 顾海欧, 侯振辉, 葛粲, 汪方跃, 周涛发. 磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用[J]. 岩矿测试, 2024, 43(1): 63-75. doi: 10.15898/j.ykcs.202309260154
WANG Qiqi, SUN He, GU Haiou, HOU Zhenhui, GE Can, WANG Fangyue, ZHOU Taofa. Elemental Distribution Behavior of Sulfonic Acid Cation-Exchange Resins and Applications to High-precision Isotope Analysis[J]. Rock and Mineral Analysis, 2024, 43(1): 63-75. doi: 10.15898/j.ykcs.202309260154
Citation: WANG Qiqi, SUN He, GU Haiou, HOU Zhenhui, GE Can, WANG Fangyue, ZHOU Taofa. Elemental Distribution Behavior of Sulfonic Acid Cation-Exchange Resins and Applications to High-precision Isotope Analysis[J]. Rock and Mineral Analysis, 2024, 43(1): 63-75. doi: 10.15898/j.ykcs.202309260154

磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用

  • 基金项目: 国家自然科学基金项目(42373001)
详细信息
    作者简介: 王奇奇,硕士研究生,主要从事地球化学研究。E-mail:256219701@qq.com
    通讯作者: 孙贺,博士,讲师,主要从事非传统稳定同位素地球化学研究。E-mail:sunhe@hfut.edu.cn
  • 中图分类号: O657.63

Elemental Distribution Behavior of Sulfonic Acid Cation-Exchange Resins and Applications to High-precision Isotope Analysis

More Information
  • 不同元素在离子交换树脂的分配系数是元素纯化和分离的基础,不同酸中各元素分配系数差异可用于设计高效的元素提纯流程,从而被广泛应用于现代高精度同位素分析。本文以AG®50W-X8阳离子树脂为研究对象,以分配系数(Kd)作为量化指标,通过系统实验研究不同元素在该树脂中的分配行为。在前人研究基础上,本实验增加了元素数量和酸的种类,涵盖了金属、类金属、非金属和稀土元素。结果表明:在盐酸和硝酸介质中,几乎所有元素的Kd都与酸度呈负相关,当酸度达到6mol/L时,除Th和Ca以外的所有元素都会被酸洗脱。稀土元素(REEs)和高场强元素在0.1~0.5mol/L稀硝酸和稀盐酸中强烈吸附在树脂上;而一些过渡金属、类金属和非金属元素(如Mo、W、Re、Ir、Sb、Ge、As、Se、Te等)在酸溶液中会形成含氧阴离子,不与阳离子树脂发生吸附。Al、Fe、Se、Pd、Cd、In等元素在盐酸中易与氯离子形成配位化合物或离子团,导致这些离子在盐酸中的分配系数显著降低。在硝酸和盐酸与氢氟酸的混合酸中,除稀土元素外,绝大部分元素随酸度增加Kd迅速降低。稀土元素在盐酸-氢氟酸混合介质中,随着盐酸的浓度增加(从0.1mol/L盐酸-0.2mol/L氢氟酸至6mol/L盐酸-0.2mol/L氢氟酸),稀土元素分配系数(KdREE)具有先增加后降低的趋势。氢氟酸的加入可显著降低Be、Al、Sc、Fe、Sn、Th、U、Ti、Zr、Hf等元素在稀盐酸和稀硝酸中的分配系数,使这些元素几乎不与树脂发生吸附。本研究揭示了不同酸介质中各类元素在阳离子交换树脂上的分配行为存在差异,尤其是氢氟酸的加入可显著改变高场强元素、部分过渡金属和稀土元素的分配系数,为应用该树脂开发和优化适用于高精度金属稳定同位素分析的元素提纯流程(如Li、Mg、K、Sr、Ce、U等)提供了数据支撑,并可有效地减少后续实验设计的工作量。

  • 加载中
  • 图 1  AG®50W-X8阳离子树脂在0.5mol/L和6mol/L硝酸介质中各元素Kd的重现性,除Th、Hf和Te元素外,两组平行实验获取的各元素的分配系数均靠近1∶1拟合线

    Figure 1. 

    图 2  代表性元素在AG®50W-X8阳离子树脂和0.5mol/L硝酸间Kd随交换平衡时间的变化曲线,大部分元素在10min前即达到平衡,而Al和V元素的平衡时间较长,分别需2h和8h

    Figure 2. 

    图 3  AG®50W-X8阳离子交换树脂在(a) 0.1~6mol/L硝酸介质和(b) 0.1~6mol/L盐酸介质中的元素分配系数(纵坐标为对数坐标,图中虚线代表在树脂中不吸附的元素)

    Figure 3. 

    图 4  AG®50W-X8阳离子交换树脂在(a) 0.1~6mol/L硝酸-0.2mol/L氢氟酸介质;(b) 0.1~6mol/L盐酸-0.2mol/L氢氟酸介质中的元素分配系数

    Figure 4. 

    表 1  ICP-MS仪器工作参数

    Table 1.  Working parameters of ICP-MS instrument

    灵敏度低质量数:Li(7)≥55×106cps/(μg/g)
    中质量数:Y(89)≥320×106cps/(μg/g)
    高质量数:U(238)≥350×106cps/(μg/g)
    检测限[3σ,ng/g]Be(9)≤0.2ng/g
    In(115)≤0.05ng/g
    Bi(209)≤0.08ng/g
    氧化物产率(Ce2+/Ce+)≤1.5%
    二价离子产率(Ce2+/Ce+)≤3.0%
    短期稳定性(RSD)≤2% (20min)
    长期稳定性(RSD)≤3% (2h/s)
    同位素精度107Ag/109Ag<0.1%
    下载: 导出CSV
  • [1]

    Lin J, Yang A, Lin R, et al. Review on in situ isotopic analysis by LA-MC-ICP-MS[J]. Journal of Earth Science, 2023, 34(6): 1663−1691. doi: 10.1007/s12583-023-2002-4

    [2]

    郭冬发, 李金英, 李伯平, 等. 电感耦合等离子体质谱分析方法的重要进展(2005~2016年)[J]. 质谱学报, 2017, 38(5): 599−610.

    Guo D F, Li J Y, Li B P, et al. Major advances in inductively coupled plasma mass spectrometry (2005—2006)[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(5): 599−610.

    [3]

    蒋少涌, 陈唯, 赵葵东, 等. 基于LA-(MC)-ICP-MS的矿物原位微区同位素分析技术及其应用[J]. 质谱学报, 2021, 42(5): 623−640.

    Jiang S Y, Chen W, Zhao K D, et al. In situ micro-analysis of isotopic compositions of solid minerals using LA-(MC)-ICP-MS methods and their applications[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 623−640.

    [4]

    杜媛媛, 朱振利, 郑洪涛, 等. 色谱与MC-ICP-MS联用在线同位素分析的研究进展[J]. 分析测试学报, 2022, 41(1): 32−42.

    Du Y Y, Zhu Z L, Zheng H T, et al. On-line isotopic analysis by chromatography coupled to MC-ICP-MS[J]. Journal of Instrumental Analysis, 2022, 41(1): 32−42.

    [5]

    Makishima A, Nakamura E J G N. Suppression of matrix effects in ICP‐MS by high power operation of ICP: Application to precise determination of Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U at ng g−1 levels in milligram silicate samples[J]. Geostandards Newsletter, 1997, 21(2): 307−319. doi: 10.1111/j.1751-908X.1997.tb00678.x

    [6]

    Horwitz E P, Dietz M L, Chiarizia R, et al. Separation and preconcentration of uranium from acidic media by extraction chromatography[J]. Analytica Chimica Acta, 1992, 266(1): 25−37. doi: 10.1016/0003-2670(92)85276-C

    [7]

    le Fèvre B, Pin C J A C A. A straightforward separation scheme for concomitant Lu-Hf and Sm-Nd isotope ratio and isotope dilution analysis[J]. Analytica Chimica Acta, 2005, 543(1-2): 209−221. doi: 10.1016/j.aca.2005.04.044

    [8]

    Strelow F W, Rethemeyer R, Bothma C J A C. Ion exchange selectivity scales for cations in nitric acid and sulfuric acid media with a sulfonated polystyrene resin[J]. Analytical Chemistry, 1965, 37(1): 106−111. doi: 10.1021/ac60220a027

    [9]

    李津, 唐索寒, 马健雄, 等. 金属同位素质谱分析中样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627−636.

    Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627−636.

    [10]

    Blichert-Toft J, Chauvel C, Albarède F J C T M, et al. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J]. Contributions to Mineralogy and Petrology, 1997, 127(3): 248−260. doi: 10.1007/s004100050278

    [11]

    Chen H, Tian Z, Tuller-Ross B, et al. High-precision potassium isotopic analysis by MC-ICP-MS: An inter-laboratory comparison and refined K atomic weight[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(1): 160−171. doi: 10.1039/C8JA00303C

    [12]

    周春山. 化学分离富集方法及应用[M]. 长沙: 中南工业大学出版社, 1996: 279-284.

    Zhou C S. Method and application of chemical separation and preconcentration[M]. Changsha: Central South University of Technology Press, 1996: 279-284.

    [13]

    刘文刚, 刘卉, 李国占, 等. 离子交换树脂在地质样品Sr-Nd同位素测定中的应用[J]. 地质学报, 2017, 91(11): 2584−2592.

    Liu W G, Liu H, Li G Z, et al. The application of ion exchange resins in Sr-Nd isotopic in geological samples[J]. Acta Geologica Sinica, 2017, 91(11): 2584−2592.

    [14]

    闫斌, 朱祥坤, 陈岳龙. 样品量的大小对铜锌同位素测定值的影响[J]. 岩矿测试, 2011, 30(4): 400−405.

    Yan B, Zhu X K, Chen Y L. Effects of sample size on Cu and Zn isotope ratio measurement[J]. Rock and Mineral Analysis, 2011, 30(4): 400−405.

    [15]

    尹鹏, 何倩, 何会军, 等. 离子交换树脂法分离沉积物中锶和钕的影响因素研究[J]. 岩矿测试, 2018, 37(4): 379−387.

    Yin P, He Q, He H J, et al. Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin[J]. Rock and Mineral Analysis, 2018, 37(4): 379−387.

    [16]

    李世珍, 马健雄, 朱祥坤, 等. 离子交换分离过程中铅同位素分馏评估及针对MC-ICPMS铅同位素测定的分离纯化方法的修正[J]. 岩石矿物学杂志, 2015, 34(5): 785−792.

    Li S Z, Ma J X, Zhu X K, et al. Pb isotopic fractionation during the ion exchange process and the modification of purification methods for isotope determination by MC-ICPMS[J]. Acta Petrologica et Mineralogica, 2015, 34(5): 785−792.

    [17]

    Gu H O, Sun H, Wang F Y, et al. A new practical isobaric interference correction model for the in situ Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1223−1232. doi: 10.1039/C9JA00024K

    [18]

    漆亮, 黄小文. 地质样品铂族元素及Re-Os同位素分析进展[J]. 矿物岩石地球化学通报, 2013, 32(2): 171−189.

    Qi L, Huang X W. A review on platinum-group elements and Re-Os isotopic analyses of geological samples[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2): 171−189.

    [19]

    冯林秀, 李正辉, 曹秋香, 等. 硼同位素分析测试技术研究进展[J]. 岩矿测试, 2023, 42(1): 16−38.

    Feng L X, Li Z H, Cao Q X, et al. A review on the development of boron isotope analytical techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 16−38.

    [20]

    苟龙飞, 金章东, 邓丽, 等. 高效分离Li及其同位素的MC-ICP-MS精确测定[J]. 地球化学, 2017, 46(6): 528−537.

    Gou L F, Jin Z D, Deng L, et al. Efficient for Li and high-precision and accuracy determination of Li isotopic compositions by MC-ICP-MS[J]. Geochimica, 2017, 46(6): 528−537.

    [21]

    李子夏, 贺茂勇, 逯海, 等. 多接收等离子质谱高精度测定现代人齿中Mg同位素[J]. 分析化学, 2016, 44(5): 787−791.

    Li Z X, He M Y, Lu H, et al. Separation and isotopic measurement of Mg isotope ratios in tooth samples using multiple collector-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(5): 787−791.

    [22]

    陈雅祺, 孙贺, 顾海欧, 等. 基于MC-ICP-MS的地质样品的高精度钾同位素分析方法[J]. 地质学报, 2023, 97(4): 1360−1370.

    Chen Y Q, Sun H, Gu H O, et al. High precision potassium isotope analysis of geological samples using MC-ICP-MS[J]. Acta Geologica Sinica, 2023, 97(4): 1360−1370.

    [23]

    刘峪菲, 祝红丽, 刘芳, 等. 钙同位素化学分离方法研究[J]. 地球化学, 2015, 44(5): 469−476.

    Liu Y F, Zhu H L, Liu F, et al. Methodological study of chemical separation of calcium for TIMS measurements[J]. Geochimica, 2015, 44(5): 469−476.

    [24]

    田兰兰, 于慧敏, 南晓云, 等. Ba同位素分析方法综述[J]. 高校地质学报, 2021, 27(3): 289−305.

    Tian L L, Yu H M, Nan X Y, et al. A review of barium isotope analytical methods[J]. Geological Journal of China Universities, 2021, 27(3): 289−305.

    [25]

    霍金晶, 韩延兵. 利用MC-ICP-MS测定铁同位素方法综述[J]. 西北地质, 2021, 54(4): 280−289.

    Huo J J, Han Y B. A review of MC-ICP-MS Fe isotope analytical methods[J]. Northwestern Geology, 2021, 54(4): 280−289.

    [26]

    史凯, 朱建明, 吴广亮, 等. 地质样品中高精度铬同位素分析纯化技术研究进展[J]. 岩矿测试, 2019, 38(3): 341−353.

    Shi K, Zhu J M, Wu G L, et al. A review on the progress of purification techniques for high precision determination of Cr isotopes in geological samples[J]. Rock and Mineral Analysis, 2019, 38(3): 341−353.

    [27]

    陈栩琦, 曾振, 于慧敏, 等. 高精度稳定锶同位素分析方法综述[J]. 高校地质学报, 2021, 27(3): 264−274.

    Chen X Q, Zeng Z, Yu H M, et al. High precision analytical method for stable strontium isotopes[J]. Geological Journal of China Universities, 2021, 27(3): 264−274.

    [28]

    万丹, 陈玖斌, 张婷, 等. 镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展[J]. 岩矿测试, 2022, 41(3): 341-352.

    Wan D, Chen J B, Zhang T, Cadmium isotope fractionation and its applications in tracing the source and fate of cadmium in the oil: A review[J]. Rock and Mineral Analysis, 2022, 41(3): 341-352.

    [29]

    张卓盈, 马金龙, 张乐, 等. 铷同位素分析方法及研究进展[J]. 地学前缘, 2020, 27(3): 123−132.

    Zhang Z Y, Ma J L, Zhang L, et al. Advances in rubidium isotope analysis method and applications in geological studies[J]. Earth Science Frontiers, 2020, 27(3): 123−132.

    [30]

    杨林, 石震, 于慧敏, 等. 多接收电感耦合等离子体质谱法测定岩石和土壤等国家标准物质的硅同位素组成[J]. 岩矿测试, 2023, 42(1): 136−145.

    Yang L, Shi Z, Yu H M, et al. Determination of silicon isotopic compositions of rock and soil reference materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(1): 136−145.

    [31]

    Nielsen S G, Prytulak J, Halliday A N J G, et al. Determination of precise and accurate 51V/50V isotope ratios by MC‐ICP‐MS. Part 1: Chemical separation of vanadium and mass spectrometric protocols[J]. Geostandards and Geoanalytical Research, 2011, 35(3): 293−306. doi: 10.1111/j.1751-908X.2011.00106.x

    [32]

    Prytulak J, Nielsen S G, Halliday A N J G, et al. Determination of precise and accurate 51V/50V isotope ratios by multi‐collector ICP‐MS. Part 2: Isotopic composition of six reference materials plus the allende chondrite and verification tests[J]. Geostandards and Geoanalytical Research, 2011, 35(3): 307−318. doi: 10.1111/j.1751-908X.2011.00105.x

    [33]

    赵博, 朱建明, 秦海波, 等. 锑同位素测试方法及其应用研究[J]. 矿物岩石地球化学通报, 2018, 37(6): 1181−1189.

    Zhao B, Zhu J M, Qin H B, et al. Research progress in measurement and application of antimony isotope[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(6): 1181−1189.

    [34]

    陈娟, 唐红峰, 王宁, 等. W同位素分析方法进展及全岩样品的消解研究[J]. 矿物岩石, 2013, 33(3): 86−92.

    Chen J, Tang H F, Wang N, et al. Progress in analytical methods of tungsten isotope and experimental research on digestion of whole rock samples[J]. Mineralogy and Petrology, 2013, 33(3): 86−92.

    [35]

    辛晓莹, 张天睿, 颜妍. 基于MC-ICP-MS测定水中铀同位素比值的富集方式对比研究[J]. 铀矿地质, 2022, 38(3): 537−544.

    Xin X Y, Zhang T R, Yan Y. Comparative study on enrichment methods for the determination of uranium isotope ratio in water by MC-ICP-MS[J]. Uranium Geology, 2022, 38(3): 537−544.

    [36]

    韦刚健, 黄方, 马金龙, 等. 近十年我国非传统稳定同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2022, 41(1): 1−44, 223.

    Wei G J, Huang F, Ma J L, et al. Progress of non-traditional stable isotope geochemistry of the past decade in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 1−44, 223.

    [37]

    Zhang Z, Ma J, Zhang L, et al. Rubidium purification via a single chemical column and its isotope measurement on geological standard materials by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 322−328. doi: 10.1039/C7JA00406K

    [38]

    Zhu H L, Zhang Z F, Wang G Q, et al. Calcium isotopic fractionation during ion-exchange column chemistry and thermal ionisation mass spectrometry (TIMS) determination[J]. Geostandards and Geoanalytical Research, 2016, 40(2): 185−194. doi: 10.1111/j.1751-908X.2015.00360.x

    [39]

    Davies C. Determination of distribution coefficients for cation exchange resin and optimisation of ion exchange chromatography for chromium separation for geological materials[D]. Manchester: The University of Manchester, 2012: 20-43.

    [40]

    Li H, Tissot F L H, Lee S G, et al. Distribution coefficients of the REEs, Sr, Y, Ba, Th, and U between α-HIBA and AG50W-X8 resin[J]. ACS Earth and Space Chemistry, 2020, 5(1): 55−65.

    [41]

    Pourmand A, Dauphas N J T. Distribution coefficients of 60 elements on TODGA resin: Application to Ca, Lu, Hf, U and Th isotope geochemistry[J]. Talanta, 2010, 81(3): 741−753. doi: 10.1016/j.talanta.2010.01.008

    [42]

    Rouxel O J, Luais B. Germanium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 601−656. doi: 10.2138/rmg.2017.82.14

    [43]

    Dellinger M, Hilton R G, Nowell G M. Measurements of rhenium isotopic composition in low-abundance samples[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(2): 377−387. doi: 10.1039/C9JA00288J

    [44]

    Miller C A, Peucker-Ehrenbrink B, Ball L. Precise determination of rhenium isotope composition by multi-collector inductively-coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(8): 1069−1078. doi: 10.1039/b818631f

    [45]

    Liu J, Chen J, Zhang T, et al. Chromatographic purification of antimony for accurate isotope analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(7): 1360−1367. doi: 10.1039/D0JA00136H

    [46]

    Hu X, Nan X Y, Yu H M, et al. High precision Rb isotope measurements by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(12): 2744−2755. doi: 10.1039/D1JA00315A

    [47]

    Huang C, Gu H O, Sun H, et al. High-precision determination of stable potassium and magnesium isotopes utilizing single column separation and multicollector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 181: 106232. doi: 10.1016/j.sab.2021.106232

  • 加载中

(4)

(1)

计量
  • 文章访问数:  911
  • PDF下载数:  110
  • 施引文献:  0
出版历程
收稿日期:  2023-09-26
修回日期:  2024-01-28
录用日期:  2024-02-05
刊出日期:  2024-02-29

目录