-
摘要:
前人使用配有 LDEB 或 LDE3H 的电子探针,建立了针对铍硅酸盐、铍氧化物以及铍硼酸盐中 Be 含量的定量分析方法。然而,缺乏对铍磷酸盐矿物中 Be含量的定量分析方法。目前,使用配备LSA300分光晶体的电子探针对铍磷酸盐矿物进行分析时,P元素的高级次阶峰会抬高Be Kα峰的上背景值,从而导致Be含量的测量结果不准确。本文使用配备LDE3H分光晶体的电子探针,对江西狮子岭花岗岩中的磷铍钙石,采用不同的加速电压和分析束流,进行最佳定量分析条件的探索。实验结果表明:磷铍钙石的最佳电子探针定量分析条件为:加速电压10kV,分析束流20nA。在此条件下,获得的磷铍钙石P2O5平均含量为43.23%,BeO平均含量为15.39%,CaO平均含量为33.89%,F平均含量为7.94%,BeO标准误差为0.3%。本研究发现配有LDE3H分光晶体的电子探针,可以设置合适的Be背景来消除P的高级次阶峰的干扰。此外,含Be矿物的测量难点与Be特征X射线本身的特征、含Be矿物的晶体结构、化学成分均有关。磷铍钙石定量分析方法的探索,解决了电子探针对铍磷酸盐矿物Be元素进行准确定量时,P元素产生的干扰难题,进一步提升电子探针对铍含量测量的准确度。
Abstract:Previously, researchers employed electron probe microanalysis (EPMA) furnishedwith LDEB or LDE3H to establish a quantitative analysis approach for the Be content in berylliumsilicates, beryllium oxides, and beryllium borates. Nevertheless, a quantitative analysis method forthe Be content in beryllophosphate minerals is still lacking. At present, when EPMA equippedwith LSA300 crystal is used to analyze beryllophosphate minerals, the higher-order peaks of Pwill raise the upper background value of the Be Kα peak, resulting in inaccurate measurementresults of Be content. In this study, the EPMA equipped with LDE3H crystal was used to explorethe optimal quantitative analysis conditions for herderite in Shiziling granite in Jiangxi Provinceby using different accelerating voltages and probe currents. The experimental results show that theoptimal EPMA quantitative analysis conditions for herderite are: acceleration voltage of 10kV, andprobe current of 20nA. Under these conditions, the average content of P2O5, BeO, CaO, F is43.23%, 15.39%, 33.89%, and 7.94%, respectively, and the standard error of BeO is 0.3%. It isfound that the EPMA equipped with LDE3H crystal can set a suitable Be background to eliminatethe interference of the higher order peaks of P. In addition, the difficulty of Be measurement isrelated to Be characteristic X-ray, crystal structures and chemical composition of Be minerals. Theexploration of a quantitative analysis method of herderite solves the problem of interference of Pelement when the EPMA accurately quantifies the Be element of beryllophosphate minerals, andfurther improves the accuracy of the measurement of beryllium content by EPMA.
-
Key words:
- electron probe microanalysis /
- Be /
- herderite /
- beryllophosphate minerals /
- Shiziling granite in Jiangxi
-
-
表 1 铍矿物电子探针定量分析条件及标准样品的选择
Table 1. Analytical conditions and selection of standard samples for Be-bearing minerals determined by EPMA.
电子探针型号 分光晶体 加速电压
(kV)探针电流(nA) 标准样品 含Be矿物 参考文献 CAMECA SX-50 PC3 10 40 金属Be 硅铍石、硼铍石 Dyar等[13] 日本电子JXA-8800 LDEB 10 20 金属Be 绿柱石 张文兰等[14] CAMECA SX-100 PC3 10 100~150 金绿宝石 马林斯基矿 Khiller等[9] 岛津EPMA-1720 LSA200 10 20 绿柱石 绿柱石 赵同新等[15] 岛津EPMA-1720H LSA300 12 50~200 硅铍石、绿柱石 绿柱石、硅铍石、羟硅铍石 吴润秋等[16] 日本电子JXA-8100 LDE3H 10 20 金属Be 绿柱石 张文兰等[17] 日本电子JXA-8100 LDE3H 10(锌日光
榴石15)20 硅铍石、金属Be 金绿宝石、硅铍石、硼铍石、锌日光榴石 张文兰等[11] 岛津 EPMA-1720H LSA300 10 50~100 硅铍石、绿柱石、日光
榴石、硅铍铝钠石(SPI)、合成闽江石绿柱石、硅铍石、羟硅铍石、日光榴石、
香花石、金绿宝石、镁塔菲石、孟宪民石、闽江石、磷钙铍石、磷锶铍石Wu等[18] 表 2 不同加速电压与束流下,磷铍钙石Be元素波谱扫描获得的峰背比值
Table 2. Peak to background ratio of herderite by element spectral scanning under different accelerating voltages and probe currents
参数 实验条件:分析束流100nA 实验条件:加速电压10kV 15kV 12kV 10kV 100nA 50nA 20nA 10nA 峰位计数(cps) 1609 1718 1831 1831 700 352 188 背景计数(cps) 1107 1071 917 917 443 188 116 峰背比 2.91 3.21 3.99 3.99 3.16 3.74 3.24 表 3 磷铍钙石全元素测量条件
Table 3. Measurement conditions of total elements in herderite
分光晶体 L值范围
(mm)驻留时间
(ms)步长
(μm)涉及的元素种类 LDE3H 140~220 1000 50 Be LDE1 75~95 500 50 F、Fe、Mn TAP 72.314~135 500 50 Na、Mg、Al、Si等 LiF 120~160 500 50 Fe、Mn等 PETH 90~210 500 50 P、Ca、K、Cl等 表 4 磷铍钙石定量分析条件
Table 4. Quantitative analysis conditions of herderite
元素 分光
晶体束斑
(μm)窗口
(V)偏压
(V)增益 计数管高压
(V)峰位
(mm)上背景
(mm)下背景
(mm)峰位计数
时间
(s)背景计数
时间
(s)寻峰
次数脉冲高度分析
模式设定
(Diff/Int)标准样品 F LDE1 10 9.3 0.7 64 1632 84.51 5 5 10 5 1 Dif 黄玉 Ca PETH 10 0 0.7 32 1676 107.561 5 5 10 5 1 Int 磷灰石 Be LDE3H 10 9.3 0.7 64 1736 171.777 11.5 27.5 60 30 1 Dif 金属铍 P PETH 10 0 0.7 32 1688 197.141 5 5 10 5 1 Int 五磷酸镧 表 5 磷铍钙石定量分析结果
Table 5. Quantitative analysis results of herderite
元素 元素含量(%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P2O5 43.08 44.39 42.38 44.70 43.28 42.16 42.77 43.58 44.35 42.49 42.72 43.01 41.48 43.47 44.64 BeO 14.51 15.56 15.78 15.56 15.43 15.16 15.67 15.43 15.50 15.14 15.76 15.39 15.46 15.44 15.12 CaO 33.70 33.84 33.91 33.67 33.91 33.83 34.14 33.86 33.57 34.14 34.12 33.88 33.89 33.84 34.16 F 7.53 8.61 8.01 8.60 8.15 7.67 7.03 8.17 8.14 7.69 8.03 7.45 8.17 8.17 7.69 H2O* 1.90 1.55 1.58 1.60 1.63 1.72 2.10 1.66 1.77 1.75 1.61 1.93 1.39 1.64 2.02 O=F 3.16 3.62 3.36 3.61 3.42 3.22 2.95 3.43 3.42 3.23 3.37 3.13 3.43 3.43 3.23 Total 97.69 100.34 98.57 100.87 98.97 98.52 99.42 99.60 100.63 98.59 99.05 98.77 97.69 99.13 100.56 元素 以P=1为基础 P 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Be 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Ca 0.990 0.965 1.013 0.953 0.992 1.016 1.010 0.983 0.958 1.017 1.011 0.997 1.034 0.980 0.968 F 0.653 0.725 0.706 0.718 0.703 0.679 0.614 0.700 0.685 0.676 0.702 0.647 0.736 0.698 0.644 OH* 0.347 0.275 0.294 0.282 0.297 0.321 0.386 0.300 0.315 0.324 0.298 0.353 0.264 0.302 0.356 元素 磷铍钙石中BeO分析结果 S.D 2.85 2.64 2.49 2.64 2.90 2.94 2.18 3.59 2.49 2.49 3.14 2.18 2.75 3.14 2.93 D.L 589 669 619 669 750 752 553 625 783 619 759 553 706 759 560 宜春雅山岩体中(羟)磷铍钙石 元素 黄小龙等[24,26] 车旭东等[25] 点号1 点号2 点号3 点号4 点号5 点号1 点号2 点号3 点号4 点号5 P2O5 44.61 42.98 42.52 42.35 41.64 43.60 44.40 43.42 43.10 42.84 BeO 15.76 15.27 15.05 14.96 14.78 15.45 15.65 15.30 15.21 15.37 CaO 33.34 32.17 32.50 32.58 32.30 33.88 32.68 33.33 33.96 33.24 F 5.31 7.03 5.91 7.28 5.19 4.70 4.96 5.05 5.48 5.10 H2O* 3.14 2.12 2.59 1.92 2.82 3.31 3.28 3.12 2.87 3.02 O=F 2.23 2.95 2.48 3.06 2.18 1.97 2.08 2.12 2.30 2.14 Total 99.93 96.62 96.09 96.04 94.55 98.96 98.89 98.10 98.32 97.43 元素 以P=1为基础 P 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Be 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Ca 0.946 0.947 0.967 0.974 0.966 0.983 0.931 0.971 0.997 0.996 F 0.445 0.611 0.519 0.642 0.445 0.403 0.417 0.434 0.475 0.445 OH* 0.555 0.389 0.481 0.358 0.555 0.597 0.583 0.566 0.525 0.555 注:“*”为计算值;S.D为标准偏差(%);D.L为最低探测极限(μg/g)。 -
[1] 梁飞, 赵汀, 王登红, 等. 中国铍资源供需预测与发展战略[J]. 中国矿业, 2018, 27(11): 6−10, 17. doi: 10.12075/j.issn.1004-4051
Liang F, Zhao T, Wang D H, et al. Supply and demand forecast and development strategy of beryllium resources in China[J]. China Mining Magazine, 2018, 27(11): 6−10, 17. doi: 10.12075/j.issn.1004-4051
[2] 李建康, 邹天人, 王登红, 等. 中国铍矿成矿规律[J]. 矿床地质, 2017, 36(4): 951−978. doi: 10.16111/j.0258-7106.2017.04.011
Li J K, Zou T R, Wang D H, et al. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 2017, 36(4): 951−978. doi: 10.16111/j.0258-7106.2017.04.011
[3] Bea F, Pereira M D, Stroh A. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study)[J]. Chemical Geology, 1994, 117(1-4): 291−312. doi: 10.1016/0009-2541(94)90133-3
[4] Hervig R L. Beryllium analyses by secondary ion mass spectrometry[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1): 319−332. doi: 10.1007/978-3-319-18806-5_4
[5] Ottolini L, Bottazzi P, Vannucci R. Quantification of lithium, beryllium, and boron in silicates by secondary-ion mass spectrometry using conventional energy filtering[J]. Analytical Chemistry, 1993, 65(15): 1960−1968. doi: 10.1021/ac00063a007
[6] Ottolini L, Cámara F, Hawthorne F C, et al. SIMS matrix effects in the analysis of light elements in silicate minerals: Comparison with SREF and EMPA data[J]. American Mineralogist, 2002, 87(10): 1477−1485. doi: https://doi.org/10.2138/am-2002-1025
[7] Gadas P, Novák M, Galiová M V, et al. Secondary beryl in cordierite/sekaninaite pseudomorphs from granitic pegmatites—A monitor of elevated content of beryllium in the precursor[J]. The Canadian Mineralogist, 2020, 58(6): 785−802. doi: https://doi.org/10.3749/canmin.2000014
[8] Allaz J M, Smyth J R, Henry R E, et al. Beryllium-silicon disorder and rare earth crystal chemistry in gadolinite from the White Cloud pegmatite, Colorado, USA[J]. The Canadian Mineralogist, 2020, 58(6): 829−845. doi: 10.3749/canmin.1900084
[9] Khiller V V. Detection of beryllium in oxides and silicates by electron-probe microanalysis[J]. News of the Ural State Mining University, 2017, 4(48): 52−56. doi: 10.21440/2307-2091-2017-4-52-56
[10] Wang R C, Che X D, Zhang W L, et al. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay# 3 pegmatite (Altai, NW China)[J]. European Journal of Mineralogy, 2009, 21(4): 795−809. doi: 10.1127/0935-1221/2009/0021-1936
[11] 张文兰, 汤志敏, 胡欢, 等. 含超轻元素Be矿物的电子探针定量分析——测试条件的约束[J]. 岩石学报, 2022, 38(7): 1879−1889. doi: 10.18654/100O-0569/2022.07.04
Zhang W L,Tang Z M, Hu H, et al. Quantitative analysis of ultra-light elements beryllium byelectron microprobe: Constraints of analysis conditions[J]. Acta Petrologica Sinica, 2022, 38(7): 1879−1889. doi: 10.18654/100O-0569/2022.07.04
[12] Hawthorne F C, Huminicki D M C. The crystal chemistry of beryllium[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1): 333−403. doi: 10.2138/rmg.2002.50.9
[13] Dyar M D, Wiedenbeck M, Robertson D, et al. Reference minerals for the microanalysis of light elements[J]. Geostandards Newsletter, 2001, 25(2−3): 441−463. doi: 10.1111/j.1751-908x.2001.tb00616.x
[14] 张文兰, 王汝成, 蔡淑月. 超轻元素Be元素的电子探针定量分析以绿柱石为例[J]. 电子显微学报, 2006, 25(S1): 293−294. doi: CNKI:SUN:DZXV.0.2006-S1-162
Zhang W L, Wang R C, Cai S Y. EPMA quantitative analysis of super-light element Be: As a sample of beryl[J]. Journal of Chinese Electron Microscopy Society, 2006, 25(S1): 293−294. doi: CNKI:SUN:DZXV.0.2006-S1-162
[15] 赵同新, 陈文迪, 殷婷, 等. 电子探针对含Be矿物绿柱石的定量分析[J]. 矿物学报, 2020, 40(2): 169−175. doi: 10.16461/j.cnki.1000-4734.2019.39.105
Zhao T X, Chen W D, Yin T, et al. EPMA quantitative analysis of beryllium mineral beryl[J]. Acta Mineralogica Sinica, 2020, 40(2): 169−175. doi: 10.16461/j.cnki.1000-4734.2019.39.105
[16] 吴润秋, 饶灿, 王琪, 等. 关键金属铍的电子探针分析[J]. 科学通报, 2020, 65(20): 2161−2168. doi: 10.1360/TB-2020-0082
Wu R Q, Rao C, Wang Q, et al. Electron probe microanalysis of the key metal beryllium[J]. Chinese Science Bulletin, 2020, 65(20): 2161−2168. doi: 10.1360/TB-2020-0082
[17] 张文兰, 车旭东, 王汝成, 等. 超轻元素铍的电子探针定量分析最佳条件探索: 以绿柱石为例[J]. 科学通报, 2020, 65(Z2): 3205−3216. doi: 10.1360/TB-2020-0316
Zhang W L, Che X D, Wang R C, et al. Optimum conditions for quantitative analysis of beryllium by electron probe microanalysis: A case study of beryl[J]. Chinese Science Bulletin, 2020, 65(Z2): 3205−3216. doi: 10.1360/TB-2020-0316
[18] Wu R Q, Rao C, Wang R C, et al. In situ quantitative analysis of beryllium by EPMA: Analytical conditions and further insights into beryllium geochemistry[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(9): 1824−1834. doi: 10.1039/D2JA00103A
[19] Lederer G W, Foley N K, Jaskula B W, et al. Beryllium—A critical mineral commodity—Resources, production, and supply chain[R]. US Geological Survey, 2016.
[20] Foley N K, Hofstra A H, Lindsey D A, et al. Occurrence model for volcanogenic beryllium deposits[R]. US Geological Survey, 2012.
[21] Ana M R. Beryl from the granitic pegmatite at Namivo, Alto Ligonha, Mozambique[J]. Neues Jahrbuch für Mineralogie-Abhandlungen, 2005, 181(2): 173−182. doi: 10.1127/0077-7757/2005/0015
[22] Charoy B. Beryllium speciation in evolved granitic magmas: Phosphates versus silicates[J]. European Journal of Mineralogy, 1999, 11: 135−148. doi: 10.1127/ejm/11/1/0135
[23] Galliski M Á, Černý P, Márquez-Zavalía M F, et al. An association of secondary Al-Li-Be-Ca-Sr phosphates in the San Elías pegmatite, San Luis, Argentina[J]. The Canadian Mineralogist, 2012, 50(4): 933−942. doi: 10.3749/ canmin.50.4.933
[24] Huang X L, Wang R C, Chen X M, et al. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, Southern China[J]. The Canadian Mineralogist, 2002, 40(4): 1047−1068. doi: https://doi.org/10.2113/gscanmin.40.4.1047
[25] 车旭东, 王汝成, 胡欢, 等. 江西宜春黄玉-锂云母花岗岩中的铍矿化作用: 铍磷酸盐矿物组合[J]. 岩石学报, 2007, 23(6): 1552−1560. doi: 10.3969/j.issn.1000-0569.2007.06.029
Che X D, Wang R C, Hu H, et al. Beryllium mineralization in the Yichun topaz-lepidolite granite, Jiangxi: Associations of beryllium phosphate minerals[J]. Acta Petrologica Sinica, 2007, 23(6): 1552−1560. doi: 10.3969/j.issn.1000-0569.2007.06.029
[26] 黄小龙, 王汝成, 陈小明, 等. 江西雅山富氟高磷花岗岩中的磷酸盐矿物及其成因意义[J]. 地质论评, 2001, 47(5): 542−550. doi: 10.16509/j.georeview.2001.05.018
Huang X L, Wang R C, Chen X M, et al. Phosphate minerals from the Yashan F- and P-rich granite in Yichun, Jiangxi Province: Genetic implications[J]. Geological Review, 2001, 47(5): 542−550. doi: 10.16509/j.georeview.2001.05.018
[27] 高云, 李文钟, 李斌. 状态分析的电子探针研究[J]. 云南大学学报(自然科学版), 1995(S1): 51−56. doi: CNKI:SUN:YNDZ.0.1995-S1-012
Gao Y, Li W Z, Li B. Study of electron microprobe on state analysis[J]. Journal of Yunnan University (Natural Sciences Edition), 1995(S1): 51−56. doi: CNKI:SUN:YNDZ.0.1995-S1-012
[28] Raudsepp M. Recent advances in the electron-probe micro-analysis of minerals for the light elements[J]. Canadian Mineralogist, 1995, 33(2): 203−218.
[29] Rao C, Hatert F, Wang R C, et al. Minjiangite, BaBe2(PO4)2, a new mineral from Nanping No. 31 pegmatite, Fujian Province, Southeastern China[J]. Mineralogical Magazine, 2015, 79(5): 1195−1202. doi: 10.1180/minmag.2015.079.5.13
[30] Rao C, Wang R, Hatert F, et al. Strontiohurlbutite, SrBe2(PO4)2, a new mineral from Nanping No. 31 pegmatite, Fujian Province, Southeastern China[J]. American Mineralogist, 2014, 99(2−3): 494−499. doi: 10.2138/am.2014.4547
-