中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素

郭家凡, 陈笑语, 孙勇, 仲伟路, 朱少璇, 王琳. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素[J]. 岩矿测试, 2024, 43(5): 693-702. doi: 10.15898/j.ykcs.202407180159
引用本文: 郭家凡, 陈笑语, 孙勇, 仲伟路, 朱少璇, 王琳. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素[J]. 岩矿测试, 2024, 43(5): 693-702. doi: 10.15898/j.ykcs.202407180159
GUO Jiafan, CHEN Xiaoyu, SUN Yong, ZHONG Weilu, ZHU Shaoxuan, WANG Lin. Ultratrace Platinum Group Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulfide Fire Assay[J]. Rock and Mineral Analysis, 2024, 43(5): 693-702. doi: 10.15898/j.ykcs.202407180159
Citation: GUO Jiafan, CHEN Xiaoyu, SUN Yong, ZHONG Weilu, ZHU Shaoxuan, WANG Lin. Ultratrace Platinum Group Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulfide Fire Assay[J]. Rock and Mineral Analysis, 2024, 43(5): 693-702. doi: 10.15898/j.ykcs.202407180159

镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素

  • 基金项目: 河南省自然资源厅2023年度自然资源科研项目(2023-3);豫地矿科研项目([2021]Z-32);豫地矿勘查项目([2021]03)
详细信息
    作者简介: 郭家凡,硕士,高级工程师,主要从事贵金属分析方法研究。E-mail:guojiafan521@126.com
    通讯作者: 王琳,教授级高级工程师,主要从事贵金属分析方法研究。E-mail:wanglin0630@126.com
  • 中图分类号: P618.53;O657.63

Ultratrace Platinum Group Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulfide Fire Assay

More Information
  • 铂族元素(PGEs)六项元素钌、铑、钯、锇、铱和铂的物理化学性质相近,在地壳中丰度极低且分布不均匀,且具有明显的粒金效应,长期以来准确测定其含量始终是岩矿测试的难题。镍锍试金取样量大,可定量分离富集铂族元素,通常被应用于PGEs分析,但将其应用于超痕量PGEs分析的关键问题是流程空白高,质谱干扰严重。本文报道了一种同时测定样品中超痕量铂钯铑铱锇和钌的方法。检查全流程试剂空白后,使用镍锍试金富集样品中的PGEs,经杂质分离,利用电感耦合等离子体质谱(ICP-MS)动能歧视模式测定六项元素,有效地降低了质谱干扰。结果表明,方法的空白主要来自盐酸和捕集剂镍粉,选择合适厂家的试剂或对试金配料进行提纯,可降低全流程空白。同时,使用ICP-MS法测定六项元素时,在标准模式下,铂和钯的检出限小于0.2ng/g,铑、铱和锇的检出限小于0.02ng/g,钌的检出限大于0.1ng/g,钌的检出限无法满足超痕量PGEs的测定要求。使用动能歧视模式后,钌的背景等效浓度比标准模式降低近两个数量级,从而消除了镍对钌的质谱干扰,钌的检出限降低至0.005ng/g,使六项元素检出限同时满足超痕量PGEs测定要求。该方法用于分析土壤(GBW07288、GBW07294)、水系沉积物标准物质(GBW07289),六项元素的结果与标准值符合,相对误差为−10.9%~11.8%,相对标准偏差为3.85%~9.37%,加标回收率为92%~110%。该方法流程较短、操作简便,满足大批量地质样品中超痕量PGEs的检测要求。

  • 加载中
  • 图 1  两种模式下干扰元素镍对钌测定的影响

    Figure 1. 

    表 1  ICP-MS仪器工作参数

    Table 1.  Working parameters of ICP-MS instrument

    工作参数 设定值 工作参数 设定值
    射频功率 1550W 冷却气流速 15L/min
    采样深度 8mm 载气流速 1L/min
    雾化室温度 2℃ 辅助气流速 1L/min
    提取透镜电压 −165V 碰撞气(He)流速 3.6L/min
    下载: 导出CSV

    表 2  镍锍试金配料组成

    Table 2.  Composition of nickel sulfide fire assay ingredients

    样品类型 称样量
    (g)

    (g)
    羰基镍
    (g)
    羰基铁
    (g)
    硼砂
    (g)
    碳酸钠
    (g)
    二氧化硅
    (g)
    面粉
    (g)
    土壤 20 2 1.6 4 25 20 5 1
    水系沉积物 20 2 1.6 4 25 20 6 1
    下载: 导出CSV

    表 3  不同盐酸对应的流程空白

    Table 3.  Blank values corresponding to different classes of hydrochloric acid

    试剂 Ru
    (ng/g)
    Rh
    (ng/g)
    Pd
    (ng/g)
    Os
    (ng/g)
    Ir
    (ng/g)
    Pt
    (ng/g)
    Ⅰ-分析纯 0.0350 0.0003 0.0023 0.0006 <0.0001 0.0019
    Ⅰ-优级纯 0.0346 0.0004 0.0013 0.0005 <0.0001 0.0015
    Ⅱ-分析纯 0.0018 0.0001 0.0016 0.0002 <0.0001 0.0012
    Ⅱ-优级纯 0.0015 0.0002 0.0013 0.0002 <0.0001 0.0011
    下载: 导出CSV

    表 4  不同熔剂用量对应的流程空白

    Table 4.  Blank values corresponding to different amounts of flux

    熔剂用量
    (g)
    Ru
    (ng/g)
    Rh
    (ng/g)
    Pd
    (ng/g)
    Os
    (ng/g)
    Ir
    (ng/g)
    Pt
    (ng/g)
    20 0.390 0.051 0.340 0.010 0.014 0.141
    40 0.511 0.076 0.366 0.008 0.008 0.126
    60 0.303 0.071 0.361 0.009 0.009 0.125
    80 0.414 0.064 0.349 0.010 0.009 0.128
    下载: 导出CSV

    表 5  不同镍基体的铂族元素含量

    Table 5.  PGE contents in different Ni matrices

    试剂 Ru
    (ng/g)
    Rh
    (ng/g)
    Pd
    (ng/g)
    Os
    (ng/g)
    Ir
    (ng/g)
    Pt
    (ng/g)
    镍粉 0.469 0.095 0.509 4.977 1.962 0.590
    硝酸镍 0.779 0.169 0.918 1.107 0.573 0.753
    氧化镍 0.560 0.159 0.452 0.480 0.744 0.597
    Ⅴ-羰基镍 0.175 0.109 0.096 0.050 0.006 0.120
    Ⅵ-羰基镍 0.012 0.010 0.091 0.009 0.009 0.125
    下载: 导出CSV

    表 6  镍元素对钌元素测定结果的影响

    Table 6.  Influence of Ni on the determination results of Ru

    样品编号 Ru的加入量
    (ng/mL)
    Ni的加入量
    (ng/mL)
    Ru的测定值
    (ng/mL)
    Ru的回收率
    (%)
    1 0.04 500 0.042 105
    2 0.04 1000 0.047 116
    3 0.04 5000 0.053 133
    4 0.04 10000 0.060 150
    5 0.04 50000 0.086 214
    6 0.04 100000 0.122 304
    7 0.04 500000 0.209 521
    下载: 导出CSV

    表 7  动能歧视模式下铂族元素检出限和测定下限

    Table 7.  Detection limits and quantification limits for PGEs in kinetic energy discrimination model.

    方法参数 Ru
    (ng/g)
    Rh
    (ng/g)
    Pd
    (ng/g)
    Os
    (ng/g)
    Ir
    (ng/g)
    Pt
    (ng/g)
    空白平均值 0.013 0.008 0.155 0.015 0.011 0.112
    检出限(3s) 0.005 0.008 0.050 0.012 0.007 0.058
    测定下限(10s) 0.015 0.024 0.150 0.036 0.021 0.174
    下载: 导出CSV

    表 8  标准物质分析结果

    Table 8.  Analytical results of PGEs in national reference materials

    标准物质编号 元素 测定值
    (ng/g)
    RSD
    (%)
    标准值
    (ng/g)
    相对误差
    (%)
    加标量
    (ng/g)
    测定总值
    (ng/g)
    回收率
    (%)
    GBW07288
    (土壤)
    Ru 0.053 7.21 0.05 6.00 0.05 0.101 94
    Rh 0.019 7.31 0.017 11.8 0.05 0.068 98
    Pd 0.290 9.23 0.26 11.5 0.5 0.750 92
    Os 0.055 8.05 0.05 10.0 0.05 0.109 108
    Ir 0.035 8.55 0.032 9.38 0.05 0.081 92
    Pt 0.280 6.93 0.26 7.69 0.5 0.790 102
    GBW07289
    (水系沉积物)
    Ru 0.110 5.38 0.1 10.0 0.1 0.220 110
    Rh 0.103 7.08 0.095 8.42 0.1 0.198 95
    Pd 2.200 7.66 2.3 −4.35 5 7.660 109
    Os 0.066 7.96 0.06 10.0 0.05 0.120 108
    Ir 0.054 7.16 0.05 8.00 0.05 0.103 98
    Pt 1.700 5.33 1.6 6.25 1 2.790 109
    GBW07294
    (土壤)
    Ru 0.588 6.28 0.66 −10.9 0.5 1.051 93
    Rh 1.080 5.88 1.1 −1.82 1 2.010 93
    Pd 15.100 3.85 15.2 −0.66 10 25.600 105
    Os 0.650 9.37 0.64 1.56 0.5 1.170 104
    Ir 1.110 3.88 1.2 −7.50 1 2.131 102
    Pt 14.100 3.99 14.7 −4.08 10 23.500 94
    下载: 导出CSV
  • [1]

    王烨, 于亚辉, 王琳, 等. 地质样品中贵金属元素的预处理方法研究进展[J]. 岩矿测试, 2020, 39(1): 15−29. doi: 10.15898/j.cnki.11-2131/td.201905160064

    Wang Y, Yu Y H, Wang L, et al. Research progress on pretreatment methods for analysis of precious metal elements in geological samples[J]. Rock and Mineral Analysis, 2020, 39(1): 15−29. doi: 10.15898/j.cnki.11-2131/td.201905160064

    [2]

    Chandhuri H, Lim C R, Yun Y S. Amino- and sulfur-containing POSS for highly efficient and selective extraction of platinum group elements from acidic solution[J]. Journal of Ceaner Qroduction, 2024, 434: 139912. doi: 10.1016/j.jclepro.2023.139912

    [3]

    杨生鸿, 张明, 辛连君. 电感耦合等离子体质谱(ICP-MS)法测定碳质板岩样品中铂族元素[J]. 中国无机分析化学, 2019, 9(2): 42−45. doi: 10.3969/j.issn.2095-1035.2019.02.009

    Yang S H, Zhang M, Xin L J. Determination of platinum group elements in graphite rock samples by ICP-MS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(2): 42−45. doi: 10.3969/j.issn.2095-1035.2019.02.009

    [4]

    Mosai A K, Tutu H. Adsorption of platinum group elements (Pd(Ⅱ), Ir(Ⅲ) and Rh(Ⅲ) from aqueous solutions using 3-aminopropyl(diethoxy)methylsilane (APDEMS) functionalised bentonite[J]. Minerals Engineering, 2022, 176: 107342. doi: 10.1016/j.mineng.2021.107342

    [5]

    刘杨, 范兴祥, 董海刚, 等. 贵金属物料的溶解技术及进展[J]. 贵金属, 2013, 34(4): 65−72. doi: 10.3969/j.issn.1004-0676.2013.04.015

    Liu Y, Fan X X, Dong H G, et al. Dissolving techniques of precious metal materials and their development[J]. Precious Metals, 2013, 34(4): 65−72. doi: 10.3969/j.issn.1004-0676.2013.04.015

    [6]

    漆亮, 周美夫, 严再飞, 等. 改进的卡洛斯管溶样等离子体质谱法测定地质样品中低含量铂族元素及铼的含量[J]. 地球化学, 2006, 35(6): 667−674. doi: 10.19700/j.0379-1726.2006.06.013

    Qi L, Zhou M F, Yan Z F, et al. An improved carius tube technique for digesting geological samples in the determination of PGEs and Re by ICP-MS[J]. Geochimica, 2006, 35(6): 667−674. doi: 10.19700/j.0379-1726.2006.06.013

    [7]

    赵正, 漆亮, 黄智龙, 等. 地质样品中铂族元素的分析测定方法[J]. 地学前缘, 2009, 16(1): 181−193. doi: 10.3321/j.issn:1005-2321.2009.01.021

    Zhao Z, Qi L, Huang Z L, et al. The analytical methods for determination of platinum group elements in geological samples[J]. Earth Science Frontiers, 2009, 16(1): 181−193. doi: 10.3321/j.issn:1005-2321.2009.01.021

    [8]

    毋喆, 胡家祯, 高志军, 等. 镍锍试金-电感耦合等离子体质谱法测定铜精矿中6种铂族元素的含量[J]. 理化检验(化学分册), 2024, 60(7): 725−730. doi: 10.11973/lhjy-hx230321

    Wu Z, Hu J Z, Gao Z J, et al. Determination of 6 platinum group elements in copper concentrate by inductively coupled plasma mass spectrometry with nickel sulphide fire assay[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2024, 60(7): 725−730. doi: 10.11973/lhjy-hx230321

    [9]

    刘芳美, 甘聪, 廖彬玲, 等. 锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑[J]. 岩矿测试, 2023, 42(2): 298−306. doi: 10.15898/j.cnki.11-2131/td.202205160102

    Liu F M, Gan C, Liao B L, et al. Determination of iridium and rhodium in copper anode slime by inductively coupled plasma-mass spectrometry with nickel sulphide fire assay[J]. Rock and Mineral Analysis, 2023, 42(2): 298−306. doi: 10.15898/j.cnki.11-2131/td.202205160102

    [10]

    郭家凡, 来新泽, 王琳, 等. 火试金反应原理及熔渣影响因素探究[J]. 冶金分析, 2022, 42(12): 1−11. doi: 10.13228/j.boyuan.issn1000-7571.011985

    Guo J F, Lai X Z, Wang L, et al. Discussion on the slag of fire assay[J]. Metallurgical Analysis, 2022, 42(12): 1−11. doi: 10.13228/j.boyuan.issn1000-7571.011985

    [11]

    王君玉, 毋喆, 胡家贞, 等. 黑色岩系样品中铂族元素的分析方法[J]. 黄金, 2011, 32(7): 62−64. doi: 10.3969/j.issn.1001-1277.2011.07.015

    Wang J Y, Wu Z, Hu J Z, et al. Analysis method of platinum group elements in black rock samples[J]. Gold, 2011, 32(7): 62−64. doi: 10.3969/j.issn.1001-1277.2011.07.015

    [12]

    于亚辉, 王琳, 王明军, 等. 电感耦合等离子体质谱法测定地球化学样品中痕量铑的干扰消除方法探讨[J]. 冶金分析, 2017, 37(9): 25−32. doi: 10.13228/j.boyuan.issn1000-7571.010151

    Yu Y H, Wang L, Wang M J, et al. Discussion on elimination of interference in determination of trace rhodium in geochemical sample by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2017, 37(9): 25−32. doi: 10.13228/j.boyuan.issn1000-7571.010151

    [13]

    倪文山, 孟亚兰, 姚明星, 等. 铅试金富集-塞曼石墨炉原子吸收光谱法测定矿石样品中的铂钯铑铱[J]. 冶金分析, 2010, 30(3): 23−26. doi: 10.13228/j.issn.1000-7571.2010.03.016

    Ni W S, Meng Y L, Yao M X, et al. Determination of platinum, palladium, rhodium and iridium in ore samples by lead assay-Pieter Zeeman graphite furnace atomic absorption spectroscopy[J]. Metallurgical Analysis, 2010, 30(3): 23−26. doi: 10.13228/j.issn.1000-7571.2010.03.016

    [14]

    李可及, 刘淑君, 邵坤. 铋锑试金测定硫化铜镍矿中钌铑钯铱铂[J]. 分析化学, 2014, 42(6): 909−912. doi: 10.3724/SP.J.1096.2014.31193

    Li K J, Liu S J, Shao K. Determination of ruthenium, rhodium, palladium, iridium and platinum in copper-nickel sulfide ores by bismuth-antimony fire-assay[J]. Chinese Journal of Analytical Chemistry, 2014, 42(6): 909−912. doi: 10.3724/SP.J.1096.2014.31193

    [15]

    王君玉, 孙自军, 袁润蕾, 等. 锡试金富集-电感耦合等离子体质谱法测定黑色页岩中的铂族元素[J]. 理化检验(化学分册), 2013, 49(8): 972−978.

    Wang J Y, Sun Z J, Yuan R L, et al. ICP-MS determination of platinum metals in black shale enriched by tin fire assay[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2013, 49(8): 972−978.

    [16]

    吕彩芬, 何红蓼, 周肇茹, 等. 锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金 Ⅱ. 分析流程空白的降低[J]. 岩矿测试, 2002, 21(1): 7−11. doi: 10.3969/j.issn.0254-5357.2002.01.002

    Lyu C F, He H L, Zhou Z R, et al. Determination of the platinum group elements and gold in geochemical exploration samples by nickel sulphide fire assay-ICP-MS Ⅱ. Reduction of reagent blank[J]. Rock and Mineral Analysis, 2002, 21(1): 7−11. doi: 10.3969/j.issn.0254-5357.2002.01.002

    [17]

    毛香菊, 肖芳, 刘璐, 等. 锍镍试金-高分辨率连续光源石墨炉原子吸收光谱法测定铬铁矿中铂族元素[J]. 冶金分析, 2020, 40(7): 40−46. doi: 10.13228/j.boyuan.issn1000-7571.011021

    Mao X J, Xiao F, Liu L, et al. Determination of platinum group elements in chromite by nickel sulfide fire assay-high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(7): 40−46. doi: 10.13228/j.boyuan.issn1000-7571.011021

    [18]

    Ni W S, Mao X J, Zhang H L. Determination of ultratrace platinum, palladium, ruthenium, rhodium, and iridium in rocks and minerals by inductively coupled-plasma mass spectrometry following nickel sulfide fire assay preconcentration and open mixed acid digestion[J]. Analytical Letters, 2019, 52(11): 1699−1710. doi: 10.1080/00032719.2019.1566348

    [19]

    高颂, 张艳, 庞晓辉, 等. 高分辨电感耦合等离子体质谱法测定高纯镍中25种痕量元素[J]. 冶金分析, 2021, 41(6): 35−43. doi: 10.13228/j.boyuan.issn1000-7571.011262

    Gao S, Zhang Y, Pang X H, et al. Determination of 25 trace elements in high purity nickel by high resolution inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(6): 35−43. doi: 10.13228/j.boyuan.issn1000-7571.011262

    [20]

    杨国武, 侯艳霞, 刘庆斌, 等. 萃取分离-电感耦合等离子体质谱法测定高温合金中痕量镉[J]. 冶金分析, 2019, 39(4): 1−6. doi: 10.13228/j.boyuan.issn1000-7571.010600

    Yang G W, Hou Y X, Liu Q B, et al. Determination of trace cadmium in superalloys by extraction separation inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(4): 1−6. doi: 10.13228/j.boyuan.issn1000-7571.010600

    [21]

    张馨元, 胡净宇, 侯艳霞, 等. 碰撞反应池-电感耦合等离子体质谱法测定镍基高温合金中痕量铜锌钡[J]. 冶金分析, 2022, 42(5): 15−20. doi: 10.13228/j.boyuan.issn1000-7571.011643

    Zhang X Y, Hu J Y, Hou Y X, et al. Determination of trace copper, zinc and barium in nickel-based superalloy by inductively coupled plasma mass spectrometry with collision reaction cell[J]. Metallurgical Analysis, 2022, 42(5): 15−20. doi: 10.13228/j.boyuan.issn1000-7571.011643

  • 加载中

(1)

(8)

计量
  • 文章访问数:  212
  • PDF下载数:  97
  • 施引文献:  0
出版历程
收稿日期:  2024-07-18
修回日期:  2024-08-26
录用日期:  2024-09-02
刊出日期:  2024-09-30

目录