中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

内蒙古中部碱长花岗岩型铌钽矿床典型岩矿光谱识别特征

汪翡翠, 汪大明, 栗旭升, 张博, 魏佳林, 曹思琦, 仝云霄. 内蒙古中部碱长花岗岩型铌钽矿床典型岩矿光谱识别特征[J]. 岩矿测试, 2025, 44(1): 102-114. doi: 10.15898/j.ykcs.202401090001
引用本文: 汪翡翠, 汪大明, 栗旭升, 张博, 魏佳林, 曹思琦, 仝云霄. 内蒙古中部碱长花岗岩型铌钽矿床典型岩矿光谱识别特征[J]. 岩矿测试, 2025, 44(1): 102-114. doi: 10.15898/j.ykcs.202401090001
WANG Feicui, WANG Daming, LI Xusheng, ZHANG Bo, WEI Jialin, CAO Siqi, TONG Yunxiao. Spectral Identification Characteristics of Typical Rocks and Minerals in Alkali Feldspar Granite Type Nb-Ta Deposits in Central Inner Mongolia[J]. Rock and Mineral Analysis, 2025, 44(1): 102-114. doi: 10.15898/j.ykcs.202401090001
Citation: WANG Feicui, WANG Daming, LI Xusheng, ZHANG Bo, WEI Jialin, CAO Siqi, TONG Yunxiao. Spectral Identification Characteristics of Typical Rocks and Minerals in Alkali Feldspar Granite Type Nb-Ta Deposits in Central Inner Mongolia[J]. Rock and Mineral Analysis, 2025, 44(1): 102-114. doi: 10.15898/j.ykcs.202401090001

内蒙古中部碱长花岗岩型铌钽矿床典型岩矿光谱识别特征

  • 基金项目: 国家重点研发计划项目(2022YFB3902000);中国地质调查局地质调查项目“华北陆块北缘成矿带战略性矿产调查”(DD20240058),“华北陆块北缘关键地区航空高光谱遥感调查”(DD20243407),“华北地块北缘铜铌钽锂多金属矿战略性矿产调查评价”(DD20230327)
详细信息
    作者简介: 汪翡翠,硕士,工程师,主要从事自然资源遥感监测研究。E-mail: wfeicui0503@126.com
    通讯作者: 汪大明,博士,教授级高级工程师,主要从事遥感技术在土地、能源和矿产等领域的应用研究。E-mail:wangdaming@mail.cgs.gov.cn
  • 中图分类号: P575.4

Spectral Identification Characteristics of Typical Rocks and Minerals in Alkali Feldspar Granite Type Nb-Ta Deposits in Central Inner Mongolia

More Information
  • 内蒙古中部地区,位于大兴安岭南段—华北陆块北缘成矿带,因其碱长花岗岩型铌钽矿的广泛分布而备受关注。尽管该地区铌钽矿资源丰富,但对其光谱学特征的系统认识尚不足,在一定程度上制约了矿产资源勘查的精确性和效率。本文以赵井沟大型铌钽矿床为例,利用便携式短波红外及热红外光谱仪对赵井沟典型岩矿样本开展光谱测量与分析,揭示富铌钽钠长花岗岩、天河石化钠长花岗岩、天河石伟晶岩、黑云母二长花岗岩、含黑钨矿石英脉波谱特征,并对其展开对比研究。研究表明:在近红外光谱范围内,与USGS光谱库中的标准钠长花岗岩光谱进行对比分析,发现2360nm处的弱吸收特征可作为天河石化钠长花岗岩与其他岩石及矿物区分的关键波段,此差异推测可能由岩石的蚀变矿化过程引起。在热红外光谱分析中,含黑钨矿石英脉因其显著的高反射率和“三峰”特征而易于区分与识别。尽管富铌钽钠长花岗岩、天河石伟晶岩和黑云母二长花岗岩在光谱形态上具有一定的相似性,但它们在2200nm附近的吸收深度的大小和峰强比的差异,为有效地区分这些矿物提供了重要依据。

  • 加载中
  • 图 1  内蒙古赵井沟钽铌矿矿区地质图及典型手标本及镜下图21

    Figure 1. 

    图 2  短波红外光谱特征参数

    Figure 2. 

    图 3  (a)典型岩矿近红外原始光谱; (b)典型岩矿近红外原始光谱平均值(背景上下线为±标准差, 代表波动范围)及USGS光谱库钠长石光谱

    Figure 3. 

    图 4  赵井沟主要岩石及矿物近红外连续统去除光谱曲线

    Figure 4. 

    图 5  (a)典型岩矿热红外原始光谱; (b)典型岩矿热红外原始光谱平均值(背景上下线为±标准差,代表波动范围)及USGS光谱库石英光谱

    Figure 5. 

    图 6  赵井沟主要岩石及矿物近热外连续统去除光谱曲线

    Figure 6. 

    表 1  典型岩矿石样品信息

    Table 1.  Information of typical rock samples

    样品编号岩性样品类型样品编号岩性样品类型
    23HT1-1富铌钽钠长花岗岩地表样品23HT3-2天河石伟晶岩地表样品
    23HT1-2富铌钽钠长花岗岩地表样品23HT3-3天河石伟晶岩地表样品
    23HT1-3富铌钽钠长花岗岩地表样品23HT4-1黑云母二长花岗岩地表样品
    23HT1-4富铌钽钠长花岗岩地表样品,发育天河石伟晶岩细脉23HT4-2黑云母二长花岗岩地表样品
    23HT2-1天河石化钠长花岗岩地表样品23HT4-3黑云母二长花岗岩地表样品
    23HT2-2天河石化钠长花岗岩地表样品23HT4-4黑云母二长花岗岩地表样品
    23HT2-3天河石化钠长花岗岩地表样品23HT5-1含黑钨矿石英脉地表样品
    23HT3-1天河石伟晶岩地表样品23HT5-2含黑钨矿石英脉地表样品
    下载: 导出CSV

    表 2  赵井沟主要岩石及矿物连续统去除光谱特征参数

    Table 2.  Characteristic parameters of continuum removal of the main rocks and minerals in Zhaojingou

    岩性吸收峰的位置P(nm)吸收深度D
    峰强比
    IC
    abcabc
    富铌钽钠长花岗岩1414191222070.0980.1710.1020.60
    天河石化钠长花岗岩1424192822510.0790.0900.0890.99
    天河石伟晶岩1415192222060.1000.2800.0510.18
    黑云母二长花岗岩1414191822080.0820.1710.1000.58
    含黑钨矿石英脉1770193021300.1620.2160.0870.40
    下载: 导出CSV

    表 3  赵井沟主要岩石及矿物连续统去除光谱特征参数

    Table 3.  Characteristic parameters of continuum removal for the main rocks and minerals in Zhaojingou

    岩性吸收峰的位置P(nm)吸收深度D
    abab
    富铌钽钠长花岗岩7.5212.250.9780.800
    天河石化钠长花岗岩7.4412.110.9740.788
    天河石伟晶岩7.7012.450.9640.778
    黑云母二长花岗岩7.5012.140.9550.766
    含黑钨矿石英脉7.3612.090.9890.924
    下载: 导出CSV
  • [1]

    尹兆波, 高利坤, 饶兵. 我国铌矿资源概况及选矿技术进展[J]. 矿产保护与利用, 2024, 44(1): 115−125. doi: 10.13779/j.cnki.issn1001-0076.2024.01.013

    Yin Z B, Gao L K, Rao B. Overview of niobium resources and progress in mineral processing technology in China[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 115−125. doi: 10.13779/j.cnki.issn1001-0076.2024.01.013

    [2]

    曹飞, 杨卉芃, 张亮, 等. 全球钽铌矿产资源开发利用现状及趋势[J]. 矿产保护与利用, 2019, 39(5): 56−67, 89. doi: 10.13779/j.cnki.issn1001-0076.2018.06.041

    Cao F, Yang H P, Zhang L, et al. Current situation and trend analysis of global tantalum and niobium mineral resources[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 56−67, 89. doi: 10.13779/j.cnki.issn1001-0076.2018.06.041

    [3]

    Ma J, Guo X, Xue H, et al. Niobium/tantalum-based materials: Synthesis and applications in electrochemical energy storage[J]. Chemical Engineering Journal, 2020, 380: 122428. doi: 10.1016/j.cej.2019.122428

    [4]

    王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189−1209. doi: 10.19762/j.cnki.dizhixuebao.2019186

    Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189−1209. doi: 10.19762/j.cnki.dizhixuebao.2019186

    [5]

    李建康, 李鹏, 王登红, 等. 中国铌钽矿成矿规律[J]. 科学通报, 2019, 64(15): 1545−1566. doi: 10.1360/N972018-00933

    Li J K, Li P, Wang D H, et al. A review of niobium and tantalum metallogenic regularity in China[J]. Chinese Science Bulletin, 2019, 64(15): 1545−1566. doi: 10.1360/N972018-00933

    [6]

    徐清俊, 叶发旺, 张川, 等. 基于高光谱技术的钻孔岩心蚀变信息研究: 以新疆白杨河铀矿床为例[J]. 东华理工大学学报(自然科学版), 2016, 39(2): 184−190. doi: 10.3969/j.issn.1674-3504.2016.02.013

    Xu Q J, Ye F W, Zhang C, et al. Alteration information of drill core in Baiyanghe uranium deposit, Xinjiang using hyperspectral technology[J]. Journal of East China Institute of Technology (Natural Science), 2016, 39(2): 184−190. doi: 10.3969/j.issn.1674-3504.2016.02.013

    [7]

    Dehnavi S, Maghsoudi Y, Valadanzoej M. Using spectrum differentiation and combination for target detection of minerals[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 55: 9−20. doi: 10.1016/j.jag.2016.10.005

    [8]

    张弘, 高卿楠, 郭东旭. 花岗伟晶岩型锂矿热红外反射光谱特征及锂元素定量反演研究[J]. 矿物岩石, 2021, 41(1): 25−31. doi: 10.19719/j.cnki.1001-6872.2021.01.03

    Zhang H, Gao Q N, Guo D X. Thermal infrared reflectance spectral characteristics of granitic pegmatite type lithium ore and quantitative inversion of lithium element[J]. Mineralogy and Petrology, 2021, 41(1): 25−31. doi: 10.19719/j.cnki.1001-6872.2021.01.03

    [9]

    Cardoso-Fernandes J, Silva J, Perrotta M M, et al. Interpretation of the reflectance spectra of lithium (Li) minerals and pegmatites: A case study for mineralogical and lithological identification in the Fregeneda—Almendra area[J]. Remote Sensing, 2021, 13(18): 3688.

    [10]

    成嘉伟, 刘新星, 张娟, 等. 河北邯邢地区白涧铁矿蚀变矿物红外光谱分析及找矿研究[J]. 地球科学, 2023, 48(4): 1551−1567. doi: 10.3799/dqkx.2022.303

    Cheng J W, Liu X X, Zhang J, et al. Infrared spectral analysis and prospecting of alteration minerals of Baijian skarn-type iron deposit in Han—Xing area[J]. Earth Science, 2023, 48(4): 1551−1567. doi: 10.3799/dqkx.2022.303

    [11]

    吴泽群, 田淑芳. 利用热红外遥感提取层状硅酸盐蚀变矿物信息研究——以甘肃北山地区为例[J]. 西北地质, 2016, 49(1): 241−248. doi: 10.3969/j.issn.1009-6248.2016.01.025

    Wu Z Q, Tian S F. Application of thermal infrared remote sensing in the extraction of altered phyllosilicate minerals: Example from Beishan area of Gansu Province[J]. Northwestern Geology, 2016, 49(1): 241−248. doi: 10.3969/j.issn.1009-6248.2016.01.025

    [12]

    田丰, 孙雨, 赵英俊, 等. 航空热红外高光谱在岩性识别中的应用——以甘肃柳园地区TASI数据为例[J]. 世界核地质科学, 2023, 40(3): 863−873. doi: 10.3969/j.issn.1672-0636.2023.03.017

    Tian F, Sun Y, Zhao Y J, et al. Application of airborne thermal infrared hyperspectroscopy in lithology identification: A case study of TASI data in Liuyuan, Gansu[J]. World Nuclear Geoscience, 2023, 40(3): 863−873. doi: 10.3969/j.issn.1672-0636.2023.03.017

    [13]

    田丰. 全波段(0.35~25μm)高光谱遥感矿物识别和定量化反演技术研究[D]. 北京: 中国地质大学(北京), 2010.

    Tian F. Identification and quantitative retrival of minerals information integrating VIS-NIR-MIR-TIR (0.35-25μm) hyspectral data[D]. Beijing: China University of Geosciences (Beijing), 2010.

    [14]

    Wan Y, Fan Y, Jin M. Application of hyperspectral remote sensing for supplementary investigation of polymetallic deposits in Huaniushan ore region, Northwestern China[J]. Scientific Reports, 2021, 11(1): 440. doi: 10.1038/s41598-020-79864-0

    [15]

    郭东旭, 张弘, 高卿楠, 等. 钻孔岩心红外光谱-便携式XRF-磁化率测试在攀西太和钒钛磁铁矿床勘查中的应用[J]. 岩矿测试, 2022, 41(1): 43−53. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201005

    Guo D X, Zhang H, Gao Q N, et al. Infrared spectroscopy, portable XRF and magnetic susceptibility analysis of drill core for exploration of the Taihe vanadium Titano—Magnetite deposit in the Panxi area, Sichuan Province[J]. Rock and Mineral Analysis, 2022, 41(1): 43−53. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201005

    [16]

    Xie B, Mao W, Peng B, et al. Thermal-infrared spectral feature analysis and spectral identification of monzonite using feature-oriented principal component analysis[J]. Minerals, 2022, 12: 508. doi: 10.3390/min12050508

    [17]

    赵龙贤, 代晶晶, 林彬, 等. 西藏甲玛3000 m深钻蚀变矿物短波-热红外光谱特征[J]. 地质学报, 2023, 97(4): 1342−1359. doi: 10.3969/j.issn.0001-5717.2023.04.022

    Zhao L X, Dai J J, Lin B, et al. Short- wave- thermal infrared spectra characteristics of altered minerals from the Jiama 3000m deep drill in Tibet[J]. Acta Geologica Sinica, 2023, 97(4): 1342−1359. doi: 10.3969/j.issn.0001-5717.2023.04.022

    [18]

    聂凤军, 王丰翔, 赵宇安, 等. 内蒙古赵井沟大型铌钽矿床地质特征及成因[J]. 矿床地质, 2013, 32(4): 730−743. doi: 10.3969/j.issn.0258-7106.2013.04.007

    Nie F J, Wang F X, Zhao Y A, et al. Geological features and origin of Zhaojinggou Nb-Ta deposit in Wuchuan County, Inner Mongolia[J]. Mineral Deposits, 2013, 32(4): 730−743. doi: 10.3969/j.issn.0258-7106.2013.04.007

    [19]

    鄂阿强. 内蒙古中部典型花岗岩型稀有金属矿床特征和控矿因素[J]. 有色金属科学与工程, 2018, 9(2): 62−69. doi: 13264/j.cnki.ysjskx.2018.02.011

    E A Q. Ore characteristics and ore controlling factors of rare metal deposits of typical granite type in the middle of the Inner Mongolia Autonomous Region[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 62−69. doi: 13264/j.cnki.ysjskx.2018.02.011

    [20]

    李志丹, 李效广, 崔玉荣, 等. 内蒙古赵井沟铌钽矿床燕山期成矿: 来自LA-MC-ICP-MS独居石、锆石U-Pb和黑云母40Ar-39Ar年龄的证据[J]. 地球科学, 2019, 44(1): 234−247. doi: 10.3799/dqkx.2018.100

    Li Z D, Li X G, Cui Y R, et al. Yanshanian mineralization of Zhaojinggou Nb-Ta deposit, Inner Mongolia: Evidences from the monazite and zircon LA-MC-ICP-MS U-Pb and biotite 40Ar-39Ar Geochronology[J]. Earth Science, 2019, 44(1): 234−247. doi: 10.3799/dqkx.2018.100

    [21]

    高允, 孙艳, 赵芝, 等. 内蒙古武川县赵井沟铌钽多金属矿床白云母40Ar-39Ar同位素年龄及地质意义[J]. 岩矿测试, 2017, 36(5): 551−558. doi: 10.15898/j.cnki.11-2131/td.201612290190

    Gao Y, Sun Y, Zhao Z, et al. 40Ar-39Ar Dating of muscovite from the Zhaojinggou Nb-Ta polymetallic deposit in Wuchuan County of Inner Mongolia and its geological implications[J]. Rock and Mineral Analysis, 2017, 36(5): 551−558. doi: 10.15898/j.cnki.11-2131/td.201612290190

    [22]

    Clark R N, King T V V, Klejwa M, et al. High spectral resolution reflectance spectroscopy of minerals[J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B8): 12653−12680. doi: 10.1029/JB095iB08p12653

    [23]

    Sitarz M, Handke M, Mozgawa W. Identification of silicooxygen rings in SiO2 based on IR spectra[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 56(9): 1819−1823. doi: 10.1016/S1386-1425(00)00241-9

    [24]

    回广骥, 高卿楠, 宋利强, 等. 新疆可可托海稀有金属矿床矿物和岩石热红外光谱特征[J]. 岩矿测试, 2021, 40(1): 134−144. doi: 0.15898/j.cnki.11-2131/td.202005060001

    Hui G J, Gao Q N, Song L Q, et al. Thermal infrared spectra characteristics of rare metal minerals and rock in the Keketuohai deposit, Xijiang[J]. Rock and Mineral Analysis, 2021, 40(1): 134−144. doi: 0.15898/j.cnki.11-2131/td.202005060001

    [25]

    翟文羽, 陈磊, 徐艺轩, 等. 利用光谱吸收深度定量反演碳酸盐矿物的影响因素及应用分析[J]. 光谱学与光谱分析, 2021, 41(7): 2226−2232. doi: 10.3964/j.issn.1000-0593(2021)07-2226-07

    Zhai W Y, Chen L, Xu Y X. et al. Analysis of impact factors and applications by using spectral absorption depth for quantitative inversion of carbonate mineral[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2226−2232. doi: 10.3964/j.issn.1000-0593(2021)07-2226-07

    [26]

    Bai J, Li X, Hu X, et al. Classification methods of the hyperspectral image based on the continuum-removed[J]. Computer Engineering & Applications, 2003, 4897: 325−329. doi: 10.1117/12.466729

    [27]

    Gomez C, Lagacherie P, Coulouma G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements[J]. Geoderma, 2008, 148(2): 141−148. doi: 10.1016/j.geoderma.2008.09.016

    [28]

    代晶晶, 赵龙贤, 姜琪, 等. 热红外高光谱技术在地质找矿中的应用综述[J]. 地质学报, 2020, 94(8): 2520−2533. doi: 10.3969/j.issn.0001-5717.2020.08.026

    Dai J J, Zhao L X, Jiang Q, et al. Review of thermal-infrared spectroscopy applied in geological ore exploration[J]. Acta Geologica Sinica, 2020, 94(8): 2520−2533. doi: 10.3969/j.issn.0001-5717.2020.08.026

    [29]

    李志, 苏武峥, 李新国, 等. 基于高光谱特征参数优选的土壤盐分含量建模及其验证[J]. 新疆农业科学, 2021, 58(12): 2342. doi: 10.6048/j.issn.1001-4330.2021.12.022

    Li Z, Su W Z, Li X G, et al. Modeling and verification of soil salt content based on hyperspectral characteristic parameter optimization[J]. Xinjiang Agricultural Sciences, 2021, 58(12): 2342. doi: 10.6048/j.issn.1001-4330.2021.12.022

    [30]

    王惠敏, 谭琨, 武复宇, 等. 基于光谱吸收特征的土壤重金属反演及吸附机理研究[J]. 光谱学与光谱分析, 2020, 40(1): 316−323. doi: 10.3964/j.issn.1000-0593(2020)01-0316-08

    Wang H M, Tan K, Wu F Y, et al. Study of the retrieval and adsorption mechanism of soil heavy metals based on spectral absorption characteristics[J]. Spectroscopy and Spectral Analysis, 2020, 40(1): 316−323. doi: 10.3964/j.issn.1000-0593(2020)01-0316-08

    [31]

    邱佳炜, 刘新星, 薛哲, 等. 湖北金银山锑矿蚀变矿物红外光谱特征及找矿应用[J]. 岩石矿物学杂志, 2024, 43(3): 776−786. doi: 10.20086/j.cnki.yskw.2024.0321

    Qiu J W, Liu X X, Xue Z, et al. Infrared spectroscopic characteristics and prospecting applications of altered minerals in the Jinyinshan antimony deposit in Hubei Province[J]. Acta Petrologica et Mineralogica, 2024, 43(3): 776−786. doi: 10.20086/j.cnki.yskw.2024.0321

    [32]

    王珊珊, 周可法, 白泳, 等. 新疆镜儿泉伟晶岩型锂矿岩矿光谱特征分析[J]. 地学前缘, 2023, 30(5): 205−215. doi: 10.13745/j.esf.sf.2023.5.19

    Wang S S, Zhou K F, Bai Y, et al. Spectral reflectance study of the Jing’erquan pegmatite lithium deposit, Xinjiang[J]. Earth Science Frontiers, 2023, 30(5): 205−215. doi: 10.13745/j.esf.sf.2023.5.19

    [33]

    田丰, 冷成彪, 张兴春, 等. 短波红外光谱技术在矿床勘查中的应用[J]. 矿物岩石地球化学通报, 2019, 38(3): 634−642. doi: 10.19658/j.issn.1007-2802.2019.38.042

    Tian F, Leng C B, Zhang X C, et al. Application of short wavelength infrared technique in exploration of mineral deposits: A review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(3): 634−642. doi: 10.19658/j.issn.1007-2802.2019.38.042

    [34]

    李雪, 王可勇, 孙国胜, 等. 内蒙古赵井沟钽铌矿床成矿作用探讨——来自天河石化、钠长石化花岗岩年代学、岩石地球化学的证据[J]. 岩石学报, 2021, 37(6): 1765−1784. doi: 10.18654/1000-0569/2021.06.08

    Li X, Wang K Y, Sun G S, et al. Discussion on metallogenesis of Zhaojinggou Ta-Nb deposit in Inner Mongolia: Evidence from amazonitization and albitization granite geochronology and geochemistry[J]. Acta Petrologica Sinica, 2021, 37(6): 1765−1784. doi: 10.18654/1000-0569/2021.06.08

    [35]

    LeGras M, Laukamp C, Lau I, et al. NVCL spectral reference library-phyllosilicates Part 2: Micas[R]. Canberra: Commonwealth Scientific and Industrial Research Organisation, 2018.

    [36]

    Mekonenn S A. Spectral analysis of lithium-bearing micas with shortwave and longwave infrared spectroscopy[D]. Holland: University of Twente, 2023.

    [37]

    Laukamp C, Rodger A, LeGras M, et al. Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra[J]. Minerals, 2021, 11(4): 347. doi: 10.3390/min11040347

    [38]

    申俊峰, 李胜荣, 杜柏松, 等. 金矿床的矿物蚀变与矿物标型及其找矿意义[J]. 矿物岩石地球化学通报, 2018, 37(2): 157−167. doi: 10.19658/j.issn.1007-2802.2018.37.018

    Shen J F, Li S R, Du B S, et al. Minerals alteration and typomorph in gold deposit and their implications for prospecting[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(2): 157−167. doi: 10.19658/j.issn.1007-2802.2018.37.018

  • 加载中

(6)

(3)

计量
  • 文章访问数:  251
  • PDF下载数:  53
  • 施引文献:  0
出版历程
收稿日期:  2024-01-09
修回日期:  2024-07-26
录用日期:  2024-08-01
网络出版日期:  2024-09-05
刊出日期:  2025-01-31

目录