中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

柳江盆地髫髻山组凝灰岩地球化学与熔体包裹体水含量特征

赵汇珍, 陈勇, 涂聪, 冯艳伟. 柳江盆地髫髻山组凝灰岩地球化学与熔体包裹体水含量特征[J]. 岩矿测试, 2025, 44(1): 88-101. doi: 10.15898/j.ykcs.202404030074
引用本文: 赵汇珍, 陈勇, 涂聪, 冯艳伟. 柳江盆地髫髻山组凝灰岩地球化学与熔体包裹体水含量特征[J]. 岩矿测试, 2025, 44(1): 88-101. doi: 10.15898/j.ykcs.202404030074
ZHAO Huizhen, CHEN Yong, TU Cong, FENG Yanwei. Geochemical Characteristics and Water Content of Melt Inclusions in the Tuff of the Tiaojishan Formation, Liujiang Basin[J]. Rock and Mineral Analysis, 2025, 44(1): 88-101. doi: 10.15898/j.ykcs.202404030074
Citation: ZHAO Huizhen, CHEN Yong, TU Cong, FENG Yanwei. Geochemical Characteristics and Water Content of Melt Inclusions in the Tuff of the Tiaojishan Formation, Liujiang Basin[J]. Rock and Mineral Analysis, 2025, 44(1): 88-101. doi: 10.15898/j.ykcs.202404030074

柳江盆地髫髻山组凝灰岩地球化学与熔体包裹体水含量特征

  • 基金项目: 国家自然科学基金项目(41873070,42173042)
详细信息
    作者简介: 赵汇珍,硕士研究生,地质学专业。E-mail:s22010030@s.upc.edu.cn
    通讯作者: 陈勇,博士,教授,长期从事流体包裹体地球化学与盆地成岩成藏流体相关研究。E-mail:yongchenzy@upc.edu.cn
  • 中图分类号: P575

Geochemical Characteristics and Water Content of Melt Inclusions in the Tuff of the Tiaojishan Formation, Liujiang Basin

More Information
  • 水作为岩浆体系中最主要的挥发组分,对岩浆的形成和演化有重要的影响,柳江盆地髫髻山组岩浆岩是燕山期火山活动的重要产物,尽管前人对其地球化学特征进行了大量研究,但关于柳江盆地燕山期岩浆中的水含量仍不清楚。熔体包裹体记录了原始岩浆信息,是获取岩浆水含量特征的最直接样品。本文基于全岩地球化学分析,利用标准样品建立了显微激光拉曼光谱定量熔体包裹体水含量的标定曲线,并对柳江盆地髫髻山组下部流纹质岩屑-晶屑凝灰岩中石英斑晶内的原生熔体包裹体进行了水含量定量分析。结果表明:髫髻山组下部凝灰岩样品具有富Si、Al、大离子亲石元素富集、高场强元素亏损、轻稀土富集、重稀土亏损、负Eu异常、Sr含量低等特点;熔体包裹体中水含量的定量分析结果为0.99%~4.98%,平均水含量为2.62%,与前人统计的酸性岩浆水含量基本一致。地球化学特征和熔体包裹体水含量分析结果共同揭示了研究区髫髻山期早期为富水酸性岩浆。结合髫髻山期样品的熔体包裹体水含量测定结果及其早期的大规模火山喷发背景,本文认为岩浆中高含水量增强了岩浆系统的喷发动力,是诱发研究区髫髻山期早期大规模火山爆发的有利因素之一。

  • 加载中
  • 图 1  研究区地质简图

    Figure 1. 

    图 2  不同水含量人工合成流纹质玻璃的拉曼光谱

    Figure 2. 

    图 3  含水流纹质玻璃水含量标定曲线

    Figure 3. 

    图 4  髫髻山组凝灰岩岩石地球化学特征

    Figure 4. 

    图 5  熔体包裹体镜下照片及熔体包裹体显微激光拉曼光谱图

    Figure 5. 

    表 1  不同水含量人工合成含水硅酸盐玻璃标准样品的积分面积等参数测量结果

    Table 1.  Measurement results of integrated area and other parameters of artificially synthesized water-containing silicate glasses standard samples with different water content

    人工合成含水玻璃
    标准样品编号
    ALF AWF AWF/ALF*
    (Tu等19测量值)
    AWF/ALF
    (转换值或实测值)
    CH2O
    (%)
    RH-1(Tu等,2023) / / 1.0700 0.3726 0.33
    RH-2(Tu等,2023) / / 1.3300 0.4631 0.41
    RH-3(Tu等,2023) / / 1.8400 0.6407 0.58
    RH-4(Tu等,2023) / / 3.2600 1.1351 1.48
    RH-5(Tu等,2023) / / 4.9400 1.7201 2.26
    RH-6(Tu等,2023) / / 6.3100 2.1971 3.01
    RH-7(Tu等,2023) / / 8.5100 2.9632 4.09
    RH-8(Tu等,2023) / / 11.7800 4.1018 5.27
    RH-9(Tu等,2023) / / 14.3000 4.9793 6.35
    RH-10(Tu等,2023) / / 15.4400 5.3762 6.84
    RH-11(Tu等,2023) / / 21.3100 7.4201 9.05
    标准样品1 292.6424 1264.846 / 4.3222 5.27
    标准样品2 244.9186 776.2908 / 3.1696 4.09
    标准样品3 229.9241 374.9651 / 1.6308 2.26
    标准样品4 189.5898 250.3734 / 1.3206 1.48

    注:RH-1至RH-11为Tu等19测试样品;标样1至标样4为本文中的实际测试样品,分别对应Tu等19的样品RH-8、RH-7、RH-5、RH-4。“/”代表本文未使用的数据。

    下载: 导出CSV

    表 2  髫髻山组凝灰岩全岩主量元素测试结果

    Table 2.  Analytical results of major elements in tuff of the Tiaojishan Formation

    凝灰岩样品
    编号
    Na2O
    (%)
    MgO
    (%)
    Al2O3
    (%)
    SiO2
    (%)
    P2O5
    (%)
    K2O
    (%)
    CaO
    (%)
    TiO2
    (%)
    MnO
    (%)
    Fe2O3
    (%)
    烧失量
    (%)
    Na2O+K2O
    (%)
    主量元素含量
    合计(%)
    TJS-11.451.2913.0275.180.032.601.100.140.042.283.384.04100.48
    TJS-21.670.6512.6177.140.022.580.140.140.031.063.044.2499.07
    注:为确保测试结果的可靠性,实验数据取同一样品两次测试结果的平均值。
    下载: 导出CSV

    表 3  髫髻山组凝灰岩全岩微量元素测试结果

    Table 3.  Analytical results of trace elements in tuff of the Tiaojishan Formation

    凝灰岩样品
    编号
    Li
    (μg/g)
    Be
    (μg/g)
    B
    (μg/g)
    Sc
    (μg/g)
    V
    (μg/g)
    Cr
    (μg/g)
    Co
    (μg/g)
    Ni
    (μg/g)
    Cu
    (μg/g)
    Zn
    (μg/g)
    Ga
    (μg/g)
    Ge
    (μg/g)
    As
    (μg/g)
    Rb
    (μg/g)
    Sr
    (μg/g)
    TJS-1 29.75 4.72 17.15 3.84 6.09 7.14 1.26 3.90 2.57 36.30 19.25 1.68 0.41 76.35 139.50
    TJS-2 10.46 3.78 15.55 4.89 6.59 4.43 0.72 1.69 2.39 18.56 17.55 0.80 0.47 74.13 97.87
    凝灰岩样品
    编号
    Y
    (μg/g)
    Zr
    (μg/g)
    Nb
    (μg/g)
    Mo
    (μg/g)
    Cd
    (μg/g)
    Cs
    (μg/g)
    Ba
    (μg/g)
    La
    (μg/g)
    Ce
    (μg/g)
    Pr
    (μg/g)
    Nd
    (μg/g)
    Sm
    (μg/g)
    Eu
    (μg/g)
    Gd
    (μg/g)
    Tb
    (μg/g)
    TJS-1 16.75 112.50 26.30 2.24 0.09 1.39 451.50 32.45 63.90 7.16 23.90 4.84 0.31 4.04 0.61
    TJS-2 13.50 100.77 27.64 1.80 0.04 0.99 386.05 24.29 52.86 5.53 17.92 3.56 0.24 2.80 0.45
    凝灰岩样品
    编号
    Dy
    (μg/g)
    Ho
    (μg/g)
    Er
    (μg/g)
    Tm
    (μg/g)
    Yb
    (μg/g)
    Lu
    (μg/g)
    Hf
    (μg/g)
    Ta
    (μg/g)
    W
    (μg/g)
    Tl
    (μg/g)
    Pb
    (μg/g)
    Bi
    (μg/g)
    Th
    (μg/g)
    U
    (μg/g)
    TJS-1 2.95 0.63 1.65 0.27 1.91 0.31 3.97 2.02 0.51 0.63 24.40 0.16 22.40 6.35
    TJS-2 2.45 0.50 1.44 0.25 1.70 0.27 3.68 2.04 0.70 0.60 20.70 0.10 21.60 5.50
    注:为确保测试结果的可靠性,实验数据取同一样品两次测试结果的平均值。
    下载: 导出CSV

    表 4  髫髻山组凝灰岩中熔体包裹体LF、WF积分面积及水含量计算结果

    Table 4.  Integrated areas of LF and WF, and water content of the melt inclusions in tuff of the Tiaojishan Formation

    包裹体样品编号 熔体包裹体类型 ALF AWF AWF/ALF 峰位(cm−1) CH2Ot (%)
    MI-1 玻璃质 120.2732 203.0257 1.6880 3631 2.13
    MI-2 玻璃质 119.9589 208.9559 1.7419 3631 2.19
    MI-3 玻璃质 297.2329 233.0028 0.7839 3643 0.99
    MI-4 玻璃质 198.5294 276.1755 1.3911 3636 1.75
    MI-5 玻璃质 180.3690 306.9109 1.7016 3631 2.14
    MI-6 玻璃质+气泡 78.6287 288.6345 3.6709 3636 4.63
    MI-7 玻璃质+气泡 222.9093 237.9510 1.0675 3637 1.35
    MI-8 玻璃质+气泡 526.2989 1446.2396 2.7479 3541 3.46
    MI-9 玻璃质+结晶质 186.4130 737.1156 3.9542 3568 4.98
    下载: 导出CSV
  • [1]

    李福春, 朱金初, 金章东. 岩浆中主要挥发份含量——熔融包裹体和淬火玻璃证据[J]. 地质地球化学, 2000, 28(2): 8−13.

    Li F C, Zhu J C, Jin Z D. Contents of main volatiles in magma: Evidence from melt inclusions and quenched glasses[J]. Geology Geochemistry, 2000, 28(2): 8−13.

    [2]

    李霓, 孙嘉祥. 火山岩中熔体包裹体研究进展[J]. 矿物岩石地球化学通报, 2018, 37(3): 414−423. doi: 10.19658/j.issn.1007-2802.2018.37.091

    Li N, Sun J X. A review on research progress of melt inclusion in volcanic rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 414−423. doi: 10.19658/j.issn.1007-2802.2018.37.091

    [3]

    Forte P, Castro J M. H2O-content and temperature limit the explosive potential of rhyolite magma during Plinian eruptions[J]. Earth and Planetary Science Letters, 2019, 506: 157−167. doi: 10.1016/j.jpgl.2018.10.041

    [4]

    Roedder E. Origin and significance of magmatic inclusions[J]. Bulletin de Mineralogie, 1979, 102(5): 487−510. doi: 10.3406/bulmi.1979.7299

    [5]

    Roedder E. Fluid inclusions[M]//Ribhe P H, ed. Reviews in mineralogy (Vol. 12). Washington DC: Mineralogical Society of America, 1984.

    [6]

    王蝶, 卢焕章, 单强. 岩浆熔体包裹体研究进展[J]. 岩石学报, 2017, 33(2): 653−666.

    Wang D, Lu H Z, Shan Q. Advances on melt inclusion studies[J]. Acta Petrologica Sinica, 2017, 33(2): 653−666.

    [7]

    Bennett E N, Jenner F E, Millet M A, et al. Deep roots for mid-ocean-ridge volcanoes revealed by plagioclase-hosted melt inclusions[J]. Nature, 2019, 572(7768): 235−239. doi: 10.1038/s41586-019-1448-0

    [8]

    Metrich N, Wallace P J. Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 363−402. doi: 10.2138/rmg.2008.69.10

    [9]

    Esposito R, Hunter J, Schiffbauer J D, et al. An assessment of the reliability of melt inclusions as recorders of the pre-eruptive volatile content of magmas[J]. American Mineralogist, 2014, 99(5−6): 976−998. doi: 10.2138/am.2014.4574

    [10]

    丁一, 刘吉强, 宗统, 等. 熔体包裹体挥发份应用的研究进展[J]. 岩石矿物学杂志, 2019, 38(6): 897−913. doi: 10.3969/j.issn.1000-6524.2019.06.018

    Ding Y, Liu J Q, Zong T, et al. A review on the application of volatiles in melt inclusions[J]. Acta Petrologica Sinica, 2019, 38(6): 897−913. doi: 10.3969/j.issn.1000-6524.2019.06.018

    [11]

    高晓英, 涂聪, 孟子岳. 激光拉曼光谱仪定量测定硅酸盐熔体包裹体中水含量及其地质应用[J]. 地球科学, 2022, 47(10): 3616−3632.

    Gao X Y, Tu C, Meng Z Y. Geological application of Raman spectroscopy to quantify trace water concentrations in silicate glasses[J]. Earth Science, 2022, 47(10): 3616−3632.

    [12]

    王玉琪, 丁兴, 邸健, 等. 激光拉曼快速标定花岗质玻璃的水含量[J]. 地球化学, 2023, 52(2): 250−260. doi: 10.19700/j.0379-1726.2023.02.010

    Wang Y Q, Ding X, Di J, et al. Rapid analysis of water content in granitic glass using in situ Raman spectroscopy[J]. Geochimica, 2023, 52(2): 250−260. doi: 10.19700/j.0379-1726.2023.02.010

    [13]

    孟庆国, 刘昌岭, 李承峰, 等. X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征[J]. 岩矿测试, 2021, 40(1): 85−94. doi: 10.15898/j.cnki.11-2131/td.202005290077

    Meng Q G, Liu C L, Li C F, et al. Study on the structure and spectroscopic characteristics of methane-containing binary hydrates using X-ray powder diffraction-Raman spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 85−94. doi: 10.15898/j.cnki.11-2131/td.202005290077

    [14]

    杨春梅, 黄梓芸, 覃静雯, 等. 应用钻石观测仪-红外光谱仪-激光诱导击穿光谱仪鉴定无机材料充填翡翠[J]. 岩矿测试, 2022, 41(2): 281−290. doi: 10.15898/j.cnki.11-2131/td.202109170123

    Yang C M, Huang Z Y, Qin J W, et al. Identification of inorganic material-filled jadeite using diamond observation instrument-infrared spectrometer-laser-induced breakdown spectrometer[J]. Rock and Mineral Analysis, 2022, 41(2): 281−290. doi: 10.15898/j.cnki.11-2131/td.202109170123

    [15]

    范晨子, 孙冬阳, 赵令浩, 等. 激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分[J]. 岩矿测试, 2024, 43(1): 87−100. doi: 10.15898/j.ykcs.202305310072

    Fan C Z, Sun D Y, Zhao L H, et al. Micro-area in-situ quantitative analysis of chemical composition of lithium-beryllium minerals using laser ablation inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2024, 43(1): 87−100. doi: 10.15898/j.ykcs.202305310072

    [16]

    Thomas R. Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy[J]. American Mineralogist, 2000, 85(5−6): 868−872. doi: 10.2138/am-2000-5-631

    [17]

    Chabiron A, Pironon J, Massare D. Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy[J]. Contributions to Mineralogy and Petrology, 2004, 146: 485−492. doi: 10.1007/s00410-003-0510-x

    [18]

    陈勇. 流体包裹体激光拉曼光谱分析方法及应用[M]. 北京: 中国石油大学出版社, 2015.

    Chen Y. Raman spectroscopy for fluid inclusion analysis and applications[M]. Beijing: China University of Petroleum Press, 2015.

    [19]

    Tu C, Meng Z Y, Gao X Y, et al. Quantification of water content and speciation in synthetic rhyolitic glasses: Optimising the analytical method of confocal Raman spectrometry[J]. Geostandards and Geoanalytical Research, 2023, 47(3): 549−567. doi: 10.1111/ggr.12490

    [20]

    赵越, 徐刚, 张拴宏, 等. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 2004, 11(3): 319−328. doi: 10.3321/j.issn:1005-2321.2004.03.030

    Zhao Y, Xu G, Zhang S H, et al. Yanshan movement and conversion of tectonic regimes in East Asia[J]. Earth Science Frontiers, 2004, 11(3): 319−328. doi: 10.3321/j.issn:1005-2321.2004.03.030

    [21]

    李伍平, 赵越, 李献华, 等. 燕山造山带中—晚侏罗世髫髻山期(蓝旗期)火山岩的成因及其动力学意义[J]. 岩石学报, 2007, 23(3): 557−564.

    Li W P, Zhao Y, Li X H, et al. Genesis and dynamic significance of the middle-late Jurassic Tiaojishan (Lanqi) volcanic rocks in the Yanshan orogenic belt[J]. Acta Petrologica Sinica, 2007, 23(3): 557−564.

    [22]

    段超, 毛景文, 谢桂青, 等. 太行山北段木吉村髫髻山组安山岩锆石 U-Pb 年龄和 Hf 同位素特征及其对区域成岩成矿规律的指示[J]. 地质学报, 2016, 90(2): 250−266.

    Duan C, Mao J W, Xie G Q, et al. Zircon U-Pb age and Hf isotopic characteristics of the Tiaojishan Formation andesite in Mujicun, Northern Taihang Mountains, and its implications for regional magmatism and metallogeny[J]. Acta Geologica Sinica, 2016, 90(2): 250−266.

    [23]

    于海飞, 张志诚, 帅歌伟, 等. 北京十三陵—西山髫髻山组火山岩年龄及其地质意义[J]. 地质论评, 2016, 62(4): 807−826. doi: 10.16509/j.georeview.2016.04.003

    Yu H F, Zhang Z C, Shuai G W, et al. Age and geological significance of the Tiaojishan Formation volcanic rocks in the Shisanling—Xishan area, Beijing[J]. Geological Review, 2016, 62(4): 807−826. doi: 10.16509/j.georeview.2016.04.003

    [24]

    李斌, 陈井胜, 刘淼, 等. 辽西髫髻山组的形成时代及地球化学特征[J]. 地质论评, 2019, 65(S1): 2. doi: 10.16509/j.georeview.2019.s1.029

    Li B, Chen J S, Liu M, et al. Formation age and geochemical characteristics of the Tiaojishan Formation in Western Liaoning[J]. Geological Review, 2019, 65(S1): 2. doi: 10.16509/j.georeview.2019.s1.029

    [25]

    赵瑞鹏, 陈亮, 刘道宏, 等. 河北秦皇岛石门寨中生代火山岩的地球化学特征和锆石LA-ICP-MS U-Pb年龄[J]. 地质论评, 2019, 65(4): 929−947. doi: 10.16509/j.georeview.2019.04.010

    Zhao R P, Chen L, Liu D H, et al. Geochemical characteristics and zircon LA-ICP-MS U-Pb age of Mesozoic volcanic rocks in Shimen Village, Qinhuangdao, Hebei[J]. Geological Review, 2019, 65(4): 929−947. doi: 10.16509/j.georeview.2019.04.010

    [26]

    吴孔友, 冀国盛. 秦皇岛地区地质认识实习指导书[M]. 北京: 中国石油大学出版社, 2007.

    Wu K Y, Ji G S. Field guide for geological understanding practice in the Qinhuangdao area[M]. Beijing: China University of Petroleum Press, 2007.

    [27]

    郑亚东, Davis G A, 王琮, 等. 燕山带中生代主要构造事件与板块构造背景问题[J]. 地质学报, 2000, 74(4): 289−302. doi: 10.3321/j.issn:0001-5717.2000.04.001

    Zheng Y D, Davis G A, Wang C, et al. Major Mesozoic tectonic events and plate tectonic background of the Yanshan belt[J]. Acta Geologica Sinica, 2000, 74(4): 289−302. doi: 10.3321/j.issn:0001-5717.2000.04.001

    [28]

    Mysen B O, Virgo D, Scarfe C M. Relations between the anionic structure and viscosity of silicate melts—A Raman spectroscopic study[J]. American Mineralogist, 1980, 65(7−8): 690−710.

    [29]

    Sharma S K, Mammone J F, Nicol M F. Raman investigation of ring configurations in vitreous silica[J]. Nature, 1981, 292(5819): 140−141. doi: 10.1038/292140a0

    [30]

    McMillan P. Structural studies of silicate glasses and melts—Applications and limitations of Raman spectroscopy[J]. American Mineralogist, 1984, 69(7−8): 622−644.

    [31]

    Matson D W, Sharma S K, Philpotts J A. Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins[J]. American Mineralogist, 1986, 71(5−6): 694−704.

    [32]

    Mysen B O, Virgo D, Seifert F A. The structure of silicate melts: Implications for chemical and physical properties of natural magma[J]. Reviews of Geophysics, 1982, 20(3): 353−383. doi: 10.1029/RG020i003p00353

    [33]

    McMillan P F, Remmele R L. Hydroxyl sites in SiO2 glass: A note on infrared and Raman spectra[J]. American Mineralogist, 1986, 71(5−6): 772−778.

    [34]

    Mysen B O, Holtz F, Pichavant M, et al. Solution mechanisms of phosphorus in quenched hydrous and anhydrous granitic glass as a function of peraluminosity[J]. Geochimica et Cosmochimica Acta, 1997, 61(18): 3913−3926. doi: 10.1016/S0016-7037(97)00193-2

    [35]

    Long D A. Raman spectroscopy[M]. New York: McGraw-Hill, 1977.

    [36]

    Irving A J, Frey F A. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis[J]. Geochimica et Cosmochimica Acta, 1984, 48(6): 1201−1221. doi: 10.1016/0016-7037(84)90056-5

    [37]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society Special Publications, 1989, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    [38]

    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[M]//Thorpe R S. Orogenic andesites and related rocks. John Wiley & Sons, 1982: 528−548.

    [39]

    McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3−4): 223−253. doi: 10.1016/0009-2541(94)00140-4

    [40]

    朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346−1356.

    Zhu R X, Xu Y G. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 49(9): 1346−1356.

    [41]

    牛俊杰. 下地壳埃达克质岩浆房的发现: 来自角闪石循环晶的证据[D].北京: 中国地质大学(北京), 2020.

    Niu J J. The hidden Adakitic magma reservoir in the lower crust revealed by amphibole antecrysts[D]. Beijing: China University of Geosciences (Beijing), 2020.

    [42]

    卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004.

    Lu H Z, Fan H R, Ni P, et al. Fluid inclusions[M]. Beijing: Science Press, 2004.

    [43]

    李霓, 樊祺诚, 孙谦, 等. 熔体包裹体对长白山天池火山千年大喷发的指示意义[J]. 岩石学报, 2008, 24(11): 2604−2614.

    Li N, Fan Q C, Sun Q, et al. The implication of melt inclusion for the millennium eruption of Changbaishan Tianchi volcano[J]. Acta Petrologica Sinica, 2008, 24(11): 2604−2614.

    [44]

    张道涵, 魏俊浩, 付乐兵, 等. 熔体包裹体的形成、改造和分析方法及其矿床学应用[J]. 地球科学, 2017, 42(6): 990−1007.

    Zhang D H, Wei J H, Fu L B, et al. Formation, modification and analytical techniques of melt inclusion, and their applications in economic geology[J]. Earth Science, 2017, 42(6): 990−1007.

    [45]

    Bowen N L. The evolution of the igneous rocks[M]. Princeton: Princeton University Press, 1928.

    [46]

    Hartung E, Weber G, Caricchi L. The role of H2O on the extraction of melt from crystallising magmas[J]. Earth and Planetary Science Letters, 2019, 508: 85−96. doi: 10.1016/j.jpgl.2018.12.010

    [47]

    Cerpa N G, Wada I, Wilson C R. Effects of fluid influx, fluid viscosity, and fluid density on fluid migration in the mantle wedge and their implications for hydrous melting[J]. Geosphere, 2019, 15(1): 1−23. doi: 10.1130/ges01660.1

    [48]

    Rasmussen D J, Plank T A, Roman D C, et al. Magmatic water content controls the pre-eruptive depth of arc magmas[J]. Science, 2022, 375(6585): 1169−1172. doi: 10.1126/science.abm5174

  • 加载中

(5)

(4)

计量
  • 文章访问数:  229
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2024-04-03
修回日期:  2024-07-31
录用日期:  2024-08-07
网络出版日期:  2024-09-05
刊出日期:  2025-01-31

目录