中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

光释光测年中铀钍钾含量ICP-MS和XRF测量方法

王娜, 吴磊, 王家松, 于洋, 曾江萍, 陈永胜, 王福. 光释光测年中铀钍钾含量ICP-MS和XRF测量方法[J]. 岩矿测试, 2024, 43(5): 793-801. doi: 10.15898/j.ykcs.202402280022
引用本文: 王娜, 吴磊, 王家松, 于洋, 曾江萍, 陈永胜, 王福. 光释光测年中铀钍钾含量ICP-MS和XRF测量方法[J]. 岩矿测试, 2024, 43(5): 793-801. doi: 10.15898/j.ykcs.202402280022
WANG Na, WU Lei, WANG Jiasong, YU Yang, ZENG Jiangping, CHEN Yongsheng, WANG Fu. Determination of Uranium, Thorium and Potassium for Optically Stimulated Luminescence Dating by ICP-MS and XRF[J]. Rock and Mineral Analysis, 2024, 43(5): 793-801. doi: 10.15898/j.ykcs.202402280022
Citation: WANG Na, WU Lei, WANG Jiasong, YU Yang, ZENG Jiangping, CHEN Yongsheng, WANG Fu. Determination of Uranium, Thorium and Potassium for Optically Stimulated Luminescence Dating by ICP-MS and XRF[J]. Rock and Mineral Analysis, 2024, 43(5): 793-801. doi: 10.15898/j.ykcs.202402280022

光释光测年中铀钍钾含量ICP-MS和XRF测量方法

  • 基金项目: 中国地质调查局地质调查项目“京津冀协同发展区暨雄安新区资源环境承载能力监测评价”(DD20221727)
详细信息
    作者简介: 王娜,硕士,高级工程师,主要从事光释光测年及岩石矿物分析研究。E-mail: hmilywna@163.com
    通讯作者: 曾江萍,硕士,高级工程师,主要从事岩石矿物分析研究。E-mail:5058228@qq.com
  • 中图分类号: O657.34;O657.63

Determination of Uranium, Thorium and Potassium for Optically Stimulated Luminescence Dating by ICP-MS and XRF

More Information
  • 光释光(OSL)测年包括等效剂量和环境剂量率的测量,准确测定铀钍钾含量是保证环境剂量率计算准确的重要环节,常用测量方法为电感耦合等离子体质谱与发射光谱法(ICP-MS/OES)联用,但铀钍钾不能同时测定,测量时间长。本文采用ICP-MS和X射线荧光光谱法(XRF)测定光释光沉积物样品中铀钍钾含量并用于环境剂量率的计算。在ICP-MS分析中,对高含量的钾采用电子稀释,减少进入检测器的钾离子,使铀钍钾离子在同一个数量级上,实现了高含量钾和低含量铀钍同时分析,方法检出限铀为6.38ng/L,钍为8.52ng/L,钾为926ng/L。研究了封闭酸溶法和敞口酸溶法对铀钍钾测定的影响,两种溶样方法处理10个沉积物和土壤标准物质,铀钍钾测定结果准确可靠,相对误差无显著差异,均在0~9.33%;但敞口酸溶法操作更简便,样品处理时间(约9h)短于封闭酸溶法(约60h),故ICP-MS分析时选取敞口酸溶法溶解样品。采用压片XRF法测定标准物质中铀钍钾的相对误差分别为4.78%~16.2%、1.20%~13.3%和0.00%~5.67%。ICP-MS和XRF测定20个渤海湾沉积物样品,计算获得环境剂量率的相对偏差在6%以内。XRF更适合测量钾含量高的释光样品;而ICP-MS测定铀钍的检出限更低,精密度和准确度更高,对于超痕量样品,该法测量结果更为准确。

  • 加载中
  • 表 1  电感耦合等离子体质谱仪工作参数

    Table 1.  Woking parameters of ICP-MS instrument

    工作参数 设定值 工作参数 设定值
    雾化器气体流速 0.8L/min 射频功率 1600V
    AMS气流速 0.3L/min 脉冲电压 900V
    辅助气流速 1.2L/min 模拟电压 −1875V
    等离子体气流速 15L/min 偏转电压 −10V
    甄别阈值 12mV 轴向场电压 475V
    下载: 导出CSV

    表 2  X射线荧光光谱仪工作参数

    Table 2.  Woking parameters of XRF instrument

    元素 分析线 晶体 准直器
    (μm)
    探测器 工作电压
    (kV)
    工作电流
    (mA)
    测量时间
    (s)
    2θ(°)
    峰值 背景
    U LiF200 150 Scint 50 50 30 26.14 28.85
    Th LiF200 150 Scint 50 50 30 27.43 27.65
    K LiF200 150 Flow 30 120 30 136.72 2.85
    下载: 导出CSV

    表 3  ICP-MS测定的线性参数和方法检出限

    Table 3.  Linearity parameters and detection limits of the method in ICP-MS instrument

    测定元素 线性回归方程 相关系数 空白测定结果
    (ng/mL)
    方法检出限
    (ng/L)
    K y=8.448×103x+6.39×102 0.9998 0.75 0.97 0.31 0.24 0.86 0.36 926
    0.69 0.18 0.44 0.94 0.28 0.14
    Th y=1.936×104x+0.91×102 0.9994 0.014 0.014 0.013 0.016 0.015 0.021 8.52
    0.018 0.017 0.021 0.017 0.021 0.018
    U y=2.563×104x+0.85×102 0.9991 0.012 0.014 0.010 0.015 0.015 0.016 6.38
    0.011 0.012 0.011 0.013 0.010 0.015
    下载: 导出CSV

    表 4  不同溶样条件下铀、钍、钾含量的ICP-MS测定结果

    Table 4.  Determination results of U, Th and K by ICP-MS under different sample dissolution conditions

    标准物质
    编号
    标准值 敞口酸溶法ICP-MS测定 封闭酸溶法ICP-MS测定
    U含量
    (μg/g)
    Th含量
    (μg/g)
    K含量
    (%)
    U含量 Th含量 K含量 U含量 Th含量 K含量
    测定值
    (μg/g)
    相对误差
    (%)
    测定值
    (μg/g)
    相对误差
    (%)
    测定值
    (%)
    相对误差
    (%)
    测定值
    (μg/g)
    相对误差
    (%)
    测定值
    (μg/g)
    相对误差
    (%)
    测定值
    (%)
    相对误差
    (%)
    GBW07310 2.10±0.20 5.00±0.30 0.10±0.01 2.00 4.76 5.15 3.00 0.10 0.00 1.97 6.19 4.70 6.00 0.10 0.00
    GBW07311 9.10±0.90 23.3±1.20 2.72±0.06 8.75 3.85 22.80 2.15 2.79 2.57 9.56 5.05 24.5 5.15 2.65 2.57
    GBW07312 7.80±1.0 21.4±1.7 2.41±0.05 7.65 1.92 20.70 3.27 2.35 2.49 8.03 2.95 22.0 2.80 2.45 1.66
    GBW07317 0.75±0.08 5.40±0.60 3.24±0.08 0.68 9.33 5.32 1.48 3.52 3.70 0.70 6.67 5.02 7.04 3.15 2.78
    GBW07358 2.20±0.20 8.30±0.90 1.91±0.02 2.12 3.64 7.96 4.10 2.01 5.23 2.38 8.18 8.78 5.78 1.89 1.05
    GBW07402 1.40±0.40 16.6±1.2 2.11±0.06 1.35 3.57 16.7 0.60 2.03 3.79 1.43 2.14 18.0 8.43 2.20 4.26
    GBW07403 1.30±0.40 6.00±0.70 2.52±0.06 1.20 7.69 6.50 8.33 2.52 0.00 1.20 7.69 6.55 9.17 2.65 5.15
    GBW07404 6.70±1.2 27.0±2.0 0.85±0.07 6.49 3.13 26.30 2.59 0.83 2.35 7.05 5.22 25.6 5.19 0.87 2.35
    GBW07405 6.50±1.1 23.0±2.0 1.24±0.05 6.21 4.46 22.06 4.09 1.21 2.42 6.48 0.31 24.5 6.52 1.29 4.03
    GBW07406 6.70±1.1 23.0±2.0 1.41±0.07 7.27 8.51 24.57 6.83 1.38 2.13 6.39 4.63 21.1 8.26 1.45 2.84
    下载: 导出CSV

    表 5  XRF测定方法的准确度

    Table 5.  Accuracy tests of the XRF method

    标准物质
    编号
    标准值 压片法XRF测定值 与标准值的相对误差
    U含量
    (μg/g)
    Th含量
    (μg/g)
    K含量
    (%)
    U含量
    (μg/g)
    Th含量
    (μg/g)
    K含量
    (%)
    U
    (%)
    Th
    (%)
    K
    (%)
    GBW07310 2.10±0.20 5.00±0.30 0.10±0.01 2.32 4.42 0.10 10.5 11.6 0.00
    GBW07311 9.10±0.90 23.3±1.20 2.72±0.06 9.75 24.50 2.67 7.14 5.15 1.84
    GBW07312 7.80±1.0 21.4±1.7 2.41±0.05 8.32 20.6 2.40 6.67 3.73 0.41
    GBW07317 0.75±0.08 5.40±0.60 3.24±0.08 0.85 5.03 3.33 13.3 6.85 2.78
    GBW07358 2.20±0.20 8.30±0.90 1.91±0.02 2.33 7.96 1.98 5.91 4.10 3.66
    GBW07402 1.40±0.40 16.6±1.2 2.11±0.06 1.60 16.8 2.07 14.3 1.20 1.90
    GBW07403 1.30±0.40 6.00±0.70 2.52±0.06 1.51 5.20 2.48 16.2 13.3 1.59
    GBW07404 6.70±1.2 27.0±2.0 0.85±0.07 7.02 29.30 0.82 4.78 8.52 3.53
    GBW07405 6.50±1.1 23.0±2.0 1.24±0.05 6.01 21.20 1.28 7.54 7.83 3.23
    GBW07406 6.70±1.1 23.0±2.0 1.41±0.07 7.03 21.60 1.49 4.93 6.09 5.67
    下载: 导出CSV

    表 6  ICP-MS法和XRF法分析沉积物样品结果

    Table 6.  The analytical results of sediment samples by ICP-MS and XRF

    样品编号 ICP-MS法测定值 XRF法测定值 剂量率D
    相对偏差
    (%)
    U含量
    (μg/g)
    Th含量
    (μg/g)
    K含量
    (%)
    剂量率D1
    (Gy/ka)
    U含量
    (μg/g)
    Th含量
    (μg/g)
    K含量
    (%)
    剂量率D2
    (Gy/ka)
    OSL01 2.30 13.15 2.30 3.78 2.01 12.11 2.25 3.56 5.97
    OSL02 1.90 10.12 2.20 3.32 1.70 10.55 2.20 3.29 0.77
    OSL03 1.94 9.67 2.28 3.36 2.04 10.15 2.26 3.42 1.59
    OSL04 2.50 13.66 2.44 4.01 2.79 14.91 2.36 4.13 3.09
    OSL05 1.72 8.95 2.03 3.02 2.00 7.35 2.07 3.01 0.46
    OSL06 1.72 9.12 2.33 3.29 1.85 8.56 2.37 3.32 0.83
    OSL07 1.68 9.62 2.35 3.34 1.80 9.60 2.37 3.39 1.56
    OSL08 2.57 12.61 2.02 3.58 2.86 12.32 2.14 3.75 4.58
    OSL09 1.77 9.44 2.22 3.24 1.96 9.10 2.19 3.24 0.13
    OSL10 1.77 9.42 2.28 3.29 2.13 9.56 2.29 3.42 3.91
    OSL11 1.82 10.02 1.95 3.07 1.79 9.88 2.01 3.10 0.99
    OSL12 2.90 12.32 2.27 3.87 3.13 11.35 2.31 3.90 0.61
    OSL13 2.72 12.46 2.14 3.72 2.35 12.38 2.21 3.66 1.64
    OSL14 3.16 16.48 2.15 4.20 3.32 16.49 2.03 4.15 1.26
    OSL15 3.11 14.90 2.50 4.35 2.55 13.60 2.59 4.15 4.81
    OSL16 1.75 9.17 2.45 3.41 1.75 9.67 2.41 3.42 0.23
    OSL17 3.30 14.73 2.24 4.17 2.55 14.53 2.33 4.00 4.17
    OSL18 2.28 12.35 2.19 3.62 1.96 11.50 2.31 3.55 1.87
    OSL19 2.58 15.09 2.04 3.81 2.40 16.06 2.09 3.88 1.79
    OSL20 2.13 11.55 2.07 3.40 2.01 10.02 2.10 3.26 4.19
    下载: 导出CSV
  • [1]

    姚生海, 盖海龙, 刘炜, 等. 柴达木盆地北缘断裂(阿木尼克山段)构造地貌及晚第四纪活动速率研究[J]. 第四纪研究, 2020, 40(5): 1312−1322. doi: 10.11928/j.issn.1001-7410.2020.05.19

    Yao S H, Gai H L, Liu W, et al. Tectonic geomorphology and late Quaternary slip rate of the Amunike segment, the North Qaidam thrust fault zone[J]. Quaternary Sciences, 2020, 40(5): 1312−1322. doi: 10.11928/j.issn.1001-7410.2020.05.19

    [2]

    高磊, 隆浩. 长江三角洲晚第四纪陆-海交互地层的光释光年代学[J]. 地球环境学报, 2018, 9(6): 527−540. doi: 10.7515/JEE182046

    Gao L, Long H. Optical dating of the land-sea interactive deposits of the Yangtze River Delta since the late Quaternary[J]. Journal of Earth Environment, 2018, 9(6): 527−540. doi: 10.7515/JEE182046

    [3]

    张云鹏, 张家富, 阮秋荣, 等. 新疆吉仁台沟口遗址地貌背景与遗址形成过程[J]. 第四纪研究, 2021, 41(5): 1376−1393. doi: 10.11928/j.issn.1001-7410.2021.05.13

    Zhang Y P, Zhang J F, Ruan Q R, et al. Geomorphological background and formation process of the Goukou site in Jirentai, Xinjiang[J]. Quaternary Sciences, 2021, 41(5): 1376−1393. doi: 10.11928/j.issn.1001-7410.2021.05.13

    [4]

    姜兴钰, 马宏伟, 李琰, 等. 辽东湾沿海平原中西部晚更新世以来低速、快速沉积的差别及其时空分布特征[J]. 华北地质, 2022, 45(3): 22−28. doi: 10.19948/j12-1471/P.2022.03.04

    Jiang X Y, Ma H W, Li Y, et al. Distinctive variations between slow- and rapid-sedimentations and their different spatiotemporal distributions in the central and western part of coastal plain of Lidaodong Bay since late Pleistocene[J]. North China Geology, 2022, 45(3): 22−28. doi: 10.19948/j12-1471/P.2022.03.04

    [5]

    陈淑娥, 李虎侯, 庞奖励. 释光测年的研究简史及研究现状[J]. 西北大学学报(自然科学版), 2003, 33(2): 209−212. doi: 10.16152/j.cnki.xdxbzr.2003.02.022

    Chen S E, Li H H, Pang J L. The advance of luminescence dating[J]. Journal of Northwest University (Natural Science Edition), 2003, 33(2): 209−212. doi: 10.16152/j.cnki.xdxbzr.2003.02.022

    [6]

    Li G Q, Yan Z F, Song Y G, et al. A comprehensive dataset of luminescence chronologies and environmental proxy indices of loess-paleosol deposits across Asia[J]. Npj Climate and Atmospheric Science, 2024, 7: 1−13. doi: 10.1038/s41612-023-00555-4

    [7]

    Gao L, Long H, Shen J, et al. Optical dating of Holocene tidal deposits from the southwestern coast of the South Yellow Sea using different grain-size quartz fractions[J]. Journal of Asian Earth Sciences, 2017(135): 155−165. doi: 10.1016/j.jseaes.2016.12.036

    [8]

    张克旗, 吴中海, 吕同艳, 等. 光释光测年法——综述及进展[J]. 地质通报, 2015, 34(1): 183−203. doi: 10.3969/j.issn.1671-2552.2015.01.015

    Zhang K Q, Wu Z H, Lyu T Y, et al. Review and progress of OSL dating[J]. Geological Bulletin of China, 2015, 34(1): 183−203. doi: 10.3969/j.issn.1671-2552.2015.01.015

    [9]

    Ataiken M J. An Introduction to optical dating[M]. London: Oxford University Press, 1988: 39-44.

    [10]

    赖忠平, 欧先交. 光释光测年基本流程[J]. 地理科学进展, 2013, 32(5): 683−693. doi: 10.11820/dlkxjz.2013.05.001

    Lai Z P, Ou X J. Basic procedures of optically stimulated luminescence (OSL) dating[J]. Progress in Geography, 2013, 32(5): 683−693. doi: 10.11820/dlkxjz.2013.05.001

    [11]

    Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J]. Radiation Measurements, 2006(41): 369−391. doi: 10.1016/j.radmeas.2005.11.001

    [12]

    Duller G A T. Luminescence dating of Quaternary sediments: Recent advances[J]. Journal of Quaternary Science, 2004, 19(2): 183−192. doi: 10.1002/jqs.809

    [13]

    Nian X M, Zhang W G, Qiu F Y, et al. Luminescence characteristics of quartz from Holocene delta deposits of the Yangtze River and their provenance implications[J]. Quaternary Geochronology, 2019, 49: 131−137. doi: 10.1016/j.quageo.2018.04.010

    [14]

    Lehmann B, Valla P G, King G E, et al. Investigation of OSL surface exposure dating to reconstruct post-LIA glacier fluctuations in the French Alps (Mer de Glace, Mont Blanc massif)[J]. Quaternary Geochronology, 2018(44): 63−74. doi: 10.1016/j.quageo.2017.12.002

    [15]

    Li Y, Tsukamoto S, Shang Z W, et al. Constraining the transgression history in the Bohai Coast China since the middle Pleistocene by luminescence dating[J]. Marine Geology, 2019(416): 1−17. doi: 10.1016/j.margeo.2019.105980

    [16]

    Long Z R, Wang Z B, Tu H, et al. OSL and radiocarbon dating of a core from the Bohai Sea in China and implication for late Quaternary transgression pattern[J]. Quaternary Geochronology, 2022(70): 1−8. doi: 10.1016/j.quageo.2022.101308

    [17]

    张克旗. 释光测年中环境剂量率影响因素研究[J]. 地质力学学报, 2012, 18(1): 62−71. doi: 10.3969/j.issn.1006-6616.2012.01.007

    Zhang K Q. Quantitative calculations of environmental dose rate at different influencing factors in luminescence dating[J]. Journal of Geomechanics, 2012, 18(1): 62−71. doi: 10.3969/j.issn.1006-6616.2012.01.007

    [18]

    秦亚丽, 陈喆, 吴伟明, 等. 光释光测年中铀、钍、钾的NAA分析[J]. 核电子学与探测技术, 2010, 30(12): 1653−1656. doi: 10.3969/j.issn.0258-0934.2010.12.025

    Qin Y L, Chen Z, Wu W M, et al. Determination of U, Th and K for optically stimulated luminescence dating by NAA[J]. Nuclear Electronics & Detection Technology, 2010, 30(12): 1653−1656. doi: 10.3969/j.issn.0258-0934.2010.12.025

    [19]

    陈敏, 张成江, 倪师军. 仪器中子活化法研究核设施周围土壤中的铀、钍、钾[J]. 核化学与放射化学, 2010, 32(5): 315−320.

    Chen M, Zhang C J, Ni S J. Study on uranium, thorium, and potassium in soil around a nuclear installation by using INAA[J]. Journal of Nuclear and Radiochemisry, 2010, 32(5): 315−320.

    [20]

    刘春茹, 黄静, 李建平, 等. X射线荧光光谱法测定水系沉积物ESR测年样品U、Th、K 含量[J]. 核技术, 2012, 35(11): 837−840.

    Liu C R, Huang J, Li J P, et al. Sediment U, Th, K content analyzed using X-ray fluorescence spectrometry for ESR dating samples[J]. Nuclear Techniques, 2012, 35(11): 837−840.

    [21]

    李多宏, 张继龙, 周志波, 等. XRF法分析铀矿比对样品中的40K[J]. 铀矿地质, 2018, 34(1): 46−52. doi: 10.3969/j.issn.1000-0658.2018.01.008

    Li D H, Zhang J L, Zhou Z B, et al. Determination of 40K in comparison uranium ore sample by X-ray fluorescence spectrometry[J]. Uranium Geology, 2018, 34(1): 46−52. doi: 10.3969/j.issn.1000-0658.2018.01.008

    [22]

    经辉. X射线荧光光谱法同时测定矿石中铀和钍[J]. 中国无机分析化学, 2015, 5(3): 34−40. doi: 10.3969/j.issn.2095-1035.2015.03.008

    Jing H. Simultaneous determination of uranium and thorium in ores by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3): 34−40. doi: 10.3969/j.issn.2095-1035.2015.03.008

    [23]

    卜道露, 杨旭, 李高湖, 等. ICP-MS测定地球化学样品中钍铀等14种元素[J]. 化学研究与应用, 2017, 29(8): 1254−1257. doi: 10.3969/j.issn.1004-1656.2017.08.028

    Bu D L, Yang X, Li G H, et al. Determination of 14 elements including thorium, uranium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Chemical Research and Application, 2017, 29(8): 1254−1257. doi: 10.3969/j.issn.1004-1656.2017.08.028

    [24]

    袁影, 王思广. 电感耦合等离子体质谱法测定单晶铜中痕量放射性核素钍和铀的含量[J]. 核技术, 2018, 41(9): 301−306. doi: 10.11889/j.0253-3219.2018.hjs.41.090301

    Yuan Y, Wang S G. Determination of thorium and uranium in copper using inductively coupled plasma mass spectrometry[J]. Nuclear Techniques, 2018, 41(9): 301−306. doi: 10.11889/j.0253-3219.2018.hjs.41.090301

    [25]

    宋茂生, 张鑫, 范鹏飞. 阴离子交换分离-电感耦合等离子体质谱法测定钛铁矿中的铀、钍[J]. 理化检验(化学分册), 2020, 56(5): 650−654. doi: 10.11973/lhjy-hx202006005

    Song M S, Zhang X, Fan P F. ICP-MS determination of uranium and thorium in ilmenite with separation by anion-exchange[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(5): 650−654. doi: 10.11973/lhjy-hx202006005

    [26]

    王家松, 王力强, 王娜, 等. 偏硼酸锂熔融分解锆英砂的实验条件优化研究[J]. 华北地质, 2022, 45(4): 48−52. doi: 10.19948/j.12-1471/P.2022.04.06

    Wang J S, Wang L Q, Wang N, et al. Optimization of experimental conditions for melting decomposition of zircon sands by lithium metaborate[J]. North China Geology, 2022, 45(4): 48−52. doi: 10.19948/j.12-1471/P.2022.04.06

    [27]

    张莉娟, 方蓬达, 王力强, 等. 微波消解-电感耦合等离子体发射光谱法测定砂岩型铀矿中的铀钍[J]. 岩矿测试, 2022, 41(5): 798−805. doi: 10.15898j.cnki.11-2131/td.202202170022

    Zhang L J, Fang P D, Wang L Q, et al. Determination of uranium and thorium in sandstone uranium deposits by inductively coupled plasma-optical emission spectrometrywith microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(5): 798−805. doi: 10.15898j.cnki.11-2131/td.202202170022

    [28]

    王小强. 电感耦合等离子体发射光谱法同时测定长石矿物中钾钠钙镁铝钛铁[J]. 岩矿测试, 2012, 31(3): 442−445. doi: 10.3969/j.issn.0254-5357.2012.03.011

    Wang X Q. Simultaneous quantification of K, Na, Ca, Mg, Al, Ti and Fe in feldspar samples by inductively coupled plasma atomic emission spectrometry[J]. Rock and Mineral Analysis, 2012, 31(3): 442−445. doi: 10.3969/j.issn.0254-5357.2012.03.011

    [29]

    罗居德, 文雯, 杜金花, 等. 光谱-质谱联用技术测定第四纪沉积物中铀、钍和钾[J]. 第四纪研究, 2022, 42(5): 1420−1429. doi: 10.11928/j.issn.1001-7410.2022.05.15

    Luo J D, Wen W, Du J H, et al. Determination of U, Th and K for Quaternary sediments by inductively coupled plasma atomic emission spectrometry-mass spectro-metry[J]. Quaternary Sciences, 2022, 42(5): 1420−1429. doi: 10.11928/j.issn.1001-7410.2022.05.15

    [30]

    刘环, 康佳红, 王玉学. 碱熔-电感耦合等离子体质谱法测定地质样品中铍铯镓铊铌钽锆铪铀钍[J]. 冶金分析, 2019, 39(3): 26−32. doi: 10.13228/j.boyuan.issn1000G7571.010574

    Liu H, Kang J H, Wang Y X. Determination of beryllium, cesium, gallium, thallium, niobium, tantalum, zirconium, hafnium, uranium and thorium in geological sample by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(3): 26−32. doi: 10.13228/j.boyuan.issn1000G7571.010574

    [31]

    曾江萍, 李小莉, 张楠, 等. 粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟[J]. 岩矿测试, 2019, 38(1): 71−76. doi: 10.5898/j.nki.11-2131/td.01804060038

    Zeng J P, Li X L, Zhang N, et al. Determination of high concentration of fluorine in lithium mica by X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2019, 38(1): 71−76. doi: 10.5898/j.nki.11-2131/td.01804060038

    [32]

    张楠, 徐铁民, 吴良英, 等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 644−649. doi: 10.15898/j.cnki.11-2131/td.201803160023

    Zhang N, Xu T M, Wu L Y, et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644−649. doi: 10.15898/j.cnki.11-2131/td.201803160023

  • 加载中

(6)

计量
  • 文章访问数:  383
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2024-02-28
修回日期:  2024-07-18
录用日期:  2024-07-25
刊出日期:  2024-09-30

目录