中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

碱熔-电感耦合等离子体质谱法测定铍矿石中的铍和锡

常学东, 杜晶, 孙文明, 徐国强, 阿米娜·胡吉, 董瑞瑞. 碱熔-电感耦合等离子体质谱法测定铍矿石中的铍和锡[J]. 岩矿测试, 2024, 43(5): 783-792. doi: 10.15898/j.ykcs.202403310073
引用本文: 常学东, 杜晶, 孙文明, 徐国强, 阿米娜·胡吉, 董瑞瑞. 碱熔-电感耦合等离子体质谱法测定铍矿石中的铍和锡[J]. 岩矿测试, 2024, 43(5): 783-792. doi: 10.15898/j.ykcs.202403310073
CHANG Xuedong, DU Jing, SUN Wenming, XU Guoqiang, HOJI Amina, DONG Ruirui. Determination of Beryllium and Tin in Beryllium Ore by Inductively Coupled Plasma-Mass Spectrometry with Alkali Fusion[J]. Rock and Mineral Analysis, 2024, 43(5): 783-792. doi: 10.15898/j.ykcs.202403310073
Citation: CHANG Xuedong, DU Jing, SUN Wenming, XU Guoqiang, HOJI Amina, DONG Ruirui. Determination of Beryllium and Tin in Beryllium Ore by Inductively Coupled Plasma-Mass Spectrometry with Alkali Fusion[J]. Rock and Mineral Analysis, 2024, 43(5): 783-792. doi: 10.15898/j.ykcs.202403310073

碱熔-电感耦合等离子体质谱法测定铍矿石中的铍和锡

  • 基金项目: 中国地质调查局地质调查项目“战略性矿产勘查岩矿测试技术支撑(乌鲁木齐中心)”(DD20243023),“康西瓦一带稀有金属矿重点调查区调查评价”(DD20242747)
详细信息
    作者简介: 常学东,高级工程师,主要从事地球化学样品分析测试方法研究。E-mail:155054377@qq.com
    通讯作者: 杜晶,高级工程师,主要从事地球化学样品分析测试方法研究。E-mail:584409782@qq.com
  • 中图分类号: O657.63

Determination of Beryllium and Tin in Beryllium Ore by Inductively Coupled Plasma-Mass Spectrometry with Alkali Fusion

More Information
  • 稀有金属矿物组成复杂,且矿物成分多样化,现有质谱方法对铍的测定以地质样品中或矿石样品中的低含量铍分析为主,也很少应用于分析铍矿石中伴生的难溶锡元素。本文以新疆大红柳滩高品位铍矿石并伴生较高含量锡元素的样品为研究对象,建立了铍矿石中难溶元素铍和锡同时测定的方法。利用高温熔融态过氧化钠强的复分解能力,将矿物中的坚固晶格破坏,使目标物转换为易溶盐被提取,通过10倍稀释降低样品基体盐分含量,保证长期测量的稳定性RSD低于5%,并对校准曲线进行基体匹配,以电感耦合等离子体质谱(ICP-MS)测定,铍和锡在5~2000ng/mL浓度范围内线性关系良好,相关系数均大于0.999,检出限为铍0.20μg/g、锡0.17μg/g;测量精密度高(RSD≤5%),测量上限为氧化铍5.6%,锡2%。本文方法线性范围宽,适合各种高品位铍矿石中铍和锡的分析。将建立的方法应用于分析新疆大红柳滩高品位铍矿等多金属稀有金属矿,氧化铍含量达到0.85%、锡含量达到0.078%的样品测量精密度良好;还适用于分析铍矿石中其他稀有元素锂铷铯铌钽和稀土元素。

  • 加载中
  • 图 1  铍(a)和锡(b)测定的校准曲线

    Figure 1. 

    表 1  电感耦合等离子体质谱仪主要工作参数

    Table 1.  Main working parameters of ICP-MS instrument

    工作参数 设定值 工作参数 设定值
    等离子体气体流速 13L/min 测量模式 标准
    辅助气流速 0.8L/min 测量间隔 0.2s
    雾化器气体流速 0.84L/min 泵速 40r/min
    分辨率模式 Normal 驻留时间 0.001s
    测量方式 单点跳峰 扫描次数 50
    下载: 导出CSV

    表 2  稀释倍数对铑内标信号的抑制程度对比

    Table 2.  Comparison of inhibition degree of Rh internal standard signal by different dilution ratios

    稀释倍数不同分析时间内标回收率(%)
    10min20min30min40min50min60min
    5.0倍21.220.118.717.215.412.9
    7.5倍35.934.532.029.927.825.7
    10倍39.440.338.841.139.539.0
    15倍53.952.550.451.849.750.2
    20倍68.466.765.967.268.366.8
    下载: 导出CSV

    表 3  连续高盐基体进样对铍和锡元素的测定准确度影响

    Table 3.  Effect of continuous high salt matrix injection on accuracy of Be and Sn determination

    测量时间
    间隔
    混合标准溶液校验点30ng/mL 混合标准溶液校验点800ng/mL
    Be含量
    (ng/mL)
    相对误差
    (%)
    Sn含量
    (ng/mL)
    相对误差
    (%)
    Be含量
    (ng/mL)
    相对误差
    (%)
    Sn含量
    (ng/mL)
    相对误差
    (%)
    10min 29.3 −2.3 30.1 0.33 807 0.88 787 −1.6
    20min 30.4 1.3 30.3 1.0 799 −0.13 793 −0.88
    30min 31.2 4.0 30.0 0.0 791 −1.1 806 0.75
    40min 29.7 −1.0 30.2 0.67 810 1.3 794 −0.75
    50min 29.5 −1.7 31.0 3.3 819 2.4 791 −1.1
    60min 30.8 2.7 31.2 4.0 809 1.1 790 −1.3
    RSD(%) 2.54 1.66 1.20 0.83
    下载: 导出CSV

    表 4  盐酸加入量对铍和锡检测结果的稳定性影响

    Table 4.  Effect of adding amount of hydrochloric acid on stability of Be and Sn determination

    组分 测定项目 盐酸加入量
    5.0mL 10.0mL 15.0mL 20.0mL 25.0mL
    BeO 测定平均值(%) 0.84 0.87 0.86 0.85 0.86
    RSD(%) 7.2 3.3 2.0 1.9 2.2
    Sn 测定平均值(%) 0.078 0.079 0.079 0.078 0.077
    RSD(%) 8.3 4.1 2.4 2.5 2.6
    注:为符合标准物质中铍和锡的结果表示形式和矿石类样品实际工作中报出要求,本文对样品测定结果铍均以BeO、锡以单质形式展示。
    下载: 导出CSV

    表 5  国家一级标准物质中铍和锡的测定结果误差

    Table 5.  Determination error of Be and Sn in national first-class standard materials

    标准物质
    编号
    BeO Sn
    标准值(%) 测定值(%) RSD(%) 相对误差(%) 标准值(%) 测定值(%) RSD(%) 相对误差(%)
    GBW07150 0.060±0.006 0.060 4.1 0.0
    GBW07151 0.365±0.026 0.359 2.3 −2.6
    GBW07152 0.018±0.001 0.019 4.7 5.6 0.0036 0.0034 4.9 −5.6
    GBW07153 0.026±0.003 0.026 3.5 0.0 0.0097±0.0005 0.0093 4.4 −4.1
    GBW07154 0.033±0.002 0.033 3.9 0.0 0.0052 0.0055 3.6 5.8
    GBW07155 0.033(0.032~0.009) 0.035 4.0 6.1 0.0063 0.0066 4.1 4.8
    GBW07311 0.0026±0.005 0.0025 4.8 −3.8 0.037±0.0068 0.037 3.8 0.0
    GBW07282 1.27±0.001 1.22 1.3 −3.9
    注:“−”表示没有定值;GBW07311中铍结果为单质。
    下载: 导出CSV

    表 6  实际样品中氧化铍和锡的测定精密度

    Table 6.  Precision of BeO and Sn in actual samples

    铍矿石实际样品
    编号
    BeO Sn
    测定值
    (%)
    RSD
    (%)
    测定值
    (%)
    RSD
    (%)
    样品1 0.052 5.0 0.021 4.3
    样品2 0.171 2.5 0.029 2.6
    样品3 0.350 3.4 0.040 3.7
    样品4 0.549 3.1 0.054 2.5
    样品5 0.850 3.0 0.078 1.2
    下载: 导出CSV

    表 7  国家一级标准物质中伴生的稀有金属测定准确度和精密度

    Table 7.  Determination accuracy and precision of associated rare metals in national first-class standard materials

    元素 GBW07151 GBW07152
    标准值
    (μg/g)
    测定值
    (μg/g)
    RSD
    (%)
    相对误差
    (%)
    标准值
    (μg/g)
    测定值
    (μg/g)
    RSD
    (%)
    相对误差
    (%)
    Li2O 0.46±0.01* 0.47 0.7 2.17
    Rb2O3 0.145±0.011* 0.147 1.1 1.38
    Cs2O3 0.037±0.003* 0.038 2.3 2.70
    Nb2O5 27.0±2.1 27.0 4.2 0.00
    Ta2O5 49.4±4.7 46.6 5.1 −5.67
    Y2O3 28.9±2.9 30.8 4.2 6.6 16.9±1.8 16.4 2.8 −2.96
    La2O3 7.7±0.7 7.2 5.0 −6.5 5.1±0.5 5.4 5.5 5.88
    CeO2 14.8±1.4 14.4 4.7 −2.7 9.0±0.7 8.6 5.5 −4.44
    Pr6O11 2.0±0.2 2.0 4.1 0.0 1.3±0.3 1.4 3.9 7.69
    Nd2O3 7.6±0.7 7.8 5.4 2.6 5.0±0.6 5.1 4.1 2.00
    Sm2O3 2.7±0.2 2.9 4.8 7.4 1.6±0.2 1.4 6.8 −12.50
    Eu2O3 0.15 0.12 10.2 −20.0 0.14 0.12 13.2 −14.29
    Gd2O3 3.8±0.4 4.1 5.2 7.9 2.1±0.3 2.3 5.7 9.52
    Tb4O7 0.8±0.1 0.84 3.7 5.0 0.43±0.05 0.46 3.8 6.98
    Dy2O3 4.6±0.5 4.9 1.9 6.5 2.5±0.3 2.5 3.3 0.00
    Ho2O3 0.87±0.16 0.92 3.4 5.7 0.45±0.10 0.45 5.3 0.00
    Er2O3 2.2±0.4 2.5 0.9 13.6 1.2±0.2 1.3 4.3 8.33
    Tm2O3 0.36±0.06 0.36 3.9 0.0 0.18±0.03 0.19 6.8 5.56
    Yb2O3 2.5±0.5 2.4 0.3 −4.0 1.3±0.03 1.4 2.2 7.69
    Lu2O3 0.31±0.05 0.34 2.5 9.7 0.18±0.04 0.20 4.4 11.11
    注:标注“*”数据单位为百分含量(%)。
    下载: 导出CSV

    表 8  实际样品中伴生的稀有金属测定精密度

    Table 8.  Determination precision of associated rare metals in actual samples

    铍矿石实际样品
    编号
    Li2O Rb203 Cs2O3 Nb2O5 Ta2O5
    测定值
    (%)
    RSD
    (%)
    测定值
    (%)
    RSD
    (%)
    测定值
    (%)
    RSD
    (%)
    测定值
    (μg/g)
    RSD
    (%)
    测定值
    (μg/g)
    RSD
    (%)
    样品1 0.53 2.3 0.133 1.1 0.013 1.7 92.9 2.0 42.8 3.4
    样品2 1.04 0.9 0.114 2.5 0.014 3.0 107 4.9 47.5 4.5
    样品3 1.76 1.9 0.088 1.9 0.013 1.4 117 4.9 56.7 4.1
    样品4 2.83 2.3 0.074 1.2 0.012 2 129 3.6 63.2 5.0
    样品5 4.30 2.0 0.045 3.5 0.007 1.2 152 3.6 79.6 2.2
    下载: 导出CSV
  • [1]

    梁飞, 赵汀, 王登红, 等. 中国铍资源供需预测与发展战略[J]. 中国矿业, 2018, 27(11): 6−10. doi: 10.12075/j.issn.1004-4051.2018.11.011

    Liang F, Zhao T, Wang D H, et al. Situation, supply and demand forecast and development strategy of beryllium resources in China[J]. China Mining Magazine, 2018, 27(11): 6−10. doi: 10.12075/j.issn.1004-4051.2018.11.011

    [2]

    梁飞. 我国铍资源特征、供需预测与发展探讨[D]. 北京: 中国地质科学院, 2018.

    Liang F. Characteristics, supply and demand forecast and development of beryllium resources in China[D]. Beijing: Chinese Academy of Geological Sciences, 2018.

    [3]

    林博磊, 尹丽文, 崔荣国, 等. 全球铍资源分布及供需格局[J]. 国土资源情报, 2018(1): 13−17.

    Lin B L, Yin L W, Cui R G, et al. Global beryllium resource distribution and supply and demand pattern[J]. Land and Resources Information, 2018(1): 13−17.

    [4]

    王仁财, 邢佳韵, 彭浩. 美国铍资源战略启示[J]. 中国矿业, 2014, 23(10): 21−24. doi: 10.3969/j.issn.1004-4051.2014.10.006

    Wang R C, Xing J Y, Peng H. Enlightenment of United States’beryllium resources strategy[J]. China Mining Magazine, 2014, 23(10): 21−24. doi: 10.3969/j.issn.1004-4051.2014.10.006

    [5]

    王登红, 王成辉, 孙艳, 等. 我国锂铍钽矿床调查研究进展及相关问题简述[J]. 中国地质调查, 2017, 4(5): 1−8. doi: 10.19388/j.zgdzdc.2017.05.01

    Wang D H, Wang C H, Sun Y, et al. New progresses and discussion on the survey and research of Li,Be,Ta ore deposits in China[J]. Geological Survey of China, 2017, 4(5): 1−8. doi: 10.19388/j.zgdzdc.2017.05.01

    [6]

    邓伟, 颜世强, 谭洪旗, 等. 我国铍矿资源概况及选矿技术研究现状[J]. 矿产综合利用, 2023(1): 148−154. doi: 10.3969/j.issn.1000-6532.2023.01.020

    Deng W, Yan S Q, Tan H Q, et al. General situation of beryllium mineral resources and research status of mineral processing technology in China[J]. Comprehensive Utilization of Mineral Resources, 2023(1): 148−154. doi: 10.3969/j.issn.1000-6532.2023.01.020

    [7]

    周仕林, 刘芳, 高明慧, 等. 稀土元素测定方法的研究进展[J]. 理化检验(化学分册), 2014, 50(3): 392−396.

    Zhou S L, Liu F, Gao M H, et al. Recent Advances of Researches on Determination of Rare-Earth Elements[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(3): 392−396.

    [8]

    陈波, 胡兰, 陈园园, 等. 地质样品中总锡测定方法的研究进展[J]. 理化检验(化学分册), 2017, 53(2): 236−241. doi: 10.11973/lhjy-hx201702026

    Chen B, Hu L, Chen Y Y, et al. Recent progress of research on methods for determination of total tin in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(2): 236−241. doi: 10.11973/lhjy-hx201702026

    [9]

    夏传波, 成学海, 姜云, 等. 密闭酸溶-电感耦合等离子体发射光谱/质谱法测定花岗伟晶岩中32种微量元素[J]. 岩矿测试, 2019, 43(2): 247−258. doi: 10.15898/j.ykcs.202307310105

    Xia C B, Cheng X H, Jiang Y, et al. Determination of 32 trace elements in granite pegmatite by inductively coupled plasma-optical emission spectrometry and mass spectrometry with closed acid dissolution[J]. Rock and Mineral Analysis, 2019, 43(2): 247−258. doi: 10.15898/j.ykcs.202307310105

    [10]

    于亚辉, 刘军, 李小辉, 等. 高压密闭消解-电感耦合等离子体质谱法测定地球化学样品中的50种元素[J]. 理化检验(化学分册), 2019, 55(7): 833−839. doi: 10.11973/lhjy-hx201907017

    Yu Y H, Liu J, Li X H, et al. High pressure sealed digestion-determination of 50 elements in geochemical samples by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(7): 833−839. doi: 10.11973/lhjy-hx201907017

    [11]

    张玉芹, 彭艳, 韦时宏, 等. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J]. 实验室研究与探索, 2021, 40(3): 29−32. doi: 10.19927/j.cnki.syyt.2021.03.007

    Zhang Y Q, Peng Y, Wei S H, et al. Determination of rare earth elements in geological samples by high-pressure closed digestion and ICP-MS[J]. Research and Exploration in Laboratory, 2021, 40(3): 29−32. doi: 10.19927/j.cnki.syyt.2021.03.007

    [12]

    程祎, 李志伟, 于亚辉, 等. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中铌、钽、锆、铪和16种稀土元素[J]. 理化检验(化学分册), 2019, 56(7): 782−787. doi: 10.11973/lhjy-hx202007007

    Cheng Y, Li Z W, Yu Y H, et al. Determination of niobium, tantalum, zirconium, hafnium and 16 rare earth elements in geological samples by high-pressure closed digestion and inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 56(7): 782−787. doi: 10.11973/lhjy-hx202007007

    [13]

    王记周, 燕洲泉, 徐磊, 等. 新疆大红柳滩地区伟晶岩型锂铍资源潜力分析[J]. 黄金科学技术, 2019, 27(6): 802−815. doi: 10.11872/j.issn.1005-2518.2019.06.802

    Wang J Z, Yan Z Q, Xu L, et al. Potential evaluation of pegmatite-type lithium-beryllium mineral resources in Dahongliutan,Xinjiang[J]. Gold Science and Technology, 2019, 27(6): 802−815. doi: 10.11872/j.issn.1005-2518.2019.06.802

    [14]

    常学东. 测定稀有金属矿中锂、铍、铌、钽的方法选择[J]. 新疆有色金属, 2016, 39(3): 64−66. doi: 10.16206/j.cnki.65-1136/tg.2016.03.026

    Chang X D. Selection of methods for the determination of lithium, beryllium, niobium and tantalum in rare metal ores[J]. Xinjiang Nonferrous Metals, 2016, 39(3): 64−66. doi: 10.16206/j.cnki.65-1136/tg.2016.03.026

    [15]

    Brügmann G, Berger D, Pernicka E. Determination of the tin stable isotopic composition in tin-bearing metals and minerals by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2017, 41(3): 437−448. doi: 10.1111/ggr.12166

    [16]

    郭琳, 于汀汀, 孙红宾, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定铍矿石中的铍及主量元素[J]. 岩矿测试, 2019, 43(2): 356−365. doi: 10.15898/j.ykcs.202308070129

    Guo L, Yu T T, Sun H B, et al. Determination of beryllium and major elements in beryllium ores by inductively coupled plasma-optical emission spectrometry with lithium metaborate melting[J]. Rock and Mineral Analysis, 2019, 43(2): 356−365. doi: 10.15898/j.ykcs.202308070129

    [17]

    刘环, 康佳红, 王玉学. 碱熔-电感耦合等离子体质谱法测定地质样品中铍铯镓铊铌钽锆铪铀钍[J]. 冶金分析, 2019, 39(3): 26−32. doi: 10.13228/j.boyuan.issn1000-7571.010574

    Liu H, Kang J H, Wang Y X. Determination of beryllium, cesium, gallium, thallium, niobium, tantalum, zirconium, hafnium, uranium and thorium in geological sample by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(3): 26−32. doi: 10.13228/j.boyuan.issn1000-7571.010574

    [18]

    罗艳, 杨侨. 碱熔、分离沉淀-电感耦合等离子体质谱法快速测定地球化学样品中的锡[J]. 分析试验室, 2017, 36(7): 827−830. doi: 10.13595/j.cnki.issn1000-0720.2017.0178

    Luo Y, Yang Q. Alkaline fusion, separate precipitation-inductively coupled plasma spectrometry and rapid measurement of tin from planet chemical samples[J]. Chinese Journal of Analysis Laboratory, 2017, 36(7): 827−830. doi: 10.13595/j.cnki.issn1000-0720.2017.0178

    [19]

    郝冬梅, 张翼明, 许涛, 等. ICP-MS法测定稀土铌钽矿中铍、铀、铌、钽、锆、铪量[J]. 稀土, 2010, 31(5): 67−69. doi: 10.16533/j.cnki.15-1099/tf.2010.05.020

    Hao D M, Zhang Y M, Xu T, et al. Determination of beryllium, uranium, niobium, tantalum, zirconium and hafnium in rare earth-niobium-tantalum mineralby by ICP-MS[J]. Chinese Rare Earths, 2010, 31(5): 67−69. doi: 10.16533/j.cnki.15-1099/tf.2010.05.020

    [20]

    雷占昌, 韩斯琴图, 蒋常菊, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J]. 岩矿测试, 2019, 38(3): 326−332. doi: 10.15898/j.cnki.11-2131/td.201812030127

    Lei Z C, Han S Q T, Jang C J, et al. Determination of tin in primary ore by inductively coupled plasma mass spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2019, 38(3): 326−332. doi: 10.15898/j.cnki.11-2131/td.201812030127

    [21]

    王凤祥. 电感耦合等离子体原子发射光谱法测定锡矿石中锡[J]. 冶金分析, 2017, 37(11): 59−63. doi: 10.13228/j.boyuan.issn1000-7571.010155

    Wang F X. Determination of tin in tin ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(11): 59−63. doi: 10.13228/j.boyuan.issn1000-7571.010155

    [22]

    孙孟华, 李晓敬, 王文娟, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定地质样品 中锆铌铪钽锂铍钒磷铀锰[J]. 冶金分析, 2022, 42(1): 78−84. doi: 10.13228/j.boyuan.issn1000-7571.011455

    Sun M H, Li X J, Wang W J, et al. Determination of zirconium, niobium, hafnium, tantalum, lithium, beryllium, vanadium, phosphorous uranium-manganese in geological samples by inductively coupled plasma mass spectrometry with sodium peroxide alkali fusion[J]. Metallurgical Analysis, 2022, 42(1): 78−84. doi: 10.13228/j.boyuan.issn1000-7571.011455

    [23]

    马龙, 付东磊, 马明, 等. 过氧化钠熔融-电感耦合等离子体质谱法测定锡矿石中锡[J]. 冶金分析, 2020, 40(8): 50−54. doi: 10.13228/j.boyuan.issn1000-7571.011020

    Ma L, Fu D L, Ma M, et al. Determination of tin in tin ore by inductively coupled plasma mass spectrometry after fusion with sodium peroxide[J]. Metallurgical Analysis, 2020, 40(8): 50−54. doi: 10.13228/j.boyuan.issn1000-7571.011020

    [24]

    杨林, 邹国庆, 周武权, 等. 碱熔-电感耦合等离子体发射光谱(ICP-OES)法测定钨锡矿石中钨锡钼铜铅锌硫砷[J]. 中国无机分析化学, 2019, 13(11): 1191−1196. doi: 10.3969/j.issn.2095-1035.2023.11.005

    Yang L, Zou G Q, Zhou W Q, et al. Determination of W, Sn, Mo, Cu, Pb, Zn, S and As in tungsten-tin ore by inductively coupled plasma optical emission spectro-metry (ICP-OES) with alkali fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 13(11): 1191−1196. doi: 10.3969/j.issn.2095-1035.2023.11.005

    [25]

    孔庆玲, 沈领兄, 曹开科. 电感耦合等离子体发射光谱法(ICP-OES)测定钨铋矿石中的 锡[J]. 矿产与地质, 2017, 31(4): 817−819. doi: 10.3969/j.issn.1001-5663.2017.04.026

    Kong Q L, Shen L X, Cao K K. Application of inductively coupled plasma atomic emission spectro-metry in determining tin from tungsten and bismuth ores[J]. Minerals Resources and Geology, 2017, 31(4): 817−819. doi: 10.3969/j.issn.1001-5663.2017.04.026

    [26]

    Daniel L, Laird D W, Hefter G T. Sodium peroxide fusion for reliable determination of gold in ores and metallurgical samples[J]. International Journal of Mineral Processing, 2017, 168: 35−39. doi: 10.1016/j.minpro.2017.09.001

    [27]

    李振, 钟莅湘, 崔承洋, 等. 碱熔-电感耦合等离子体质谱法测定铌钽矿中铌钽锂铍[J]. 矿产综合利用, 2024, 45(3): 200−204. doi: 10.3969/j.issn.1000-6532.2024.03.031

    Li Z, Zhong L X, Cui C Y, et al. Determination of niobium-tantalum lithium beryllium in niobium-tantalum ore by alkali fusion-inductively coupled plasma mass spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 200−204. doi: 10.3969/j.issn.1000-6532.2024.03.031

    [28]

    郑大中, 李小英, 郑若锋, 等. 过氧化钠超强熔矿能力的新认识[J]. 四川地质学报, 2010, 30(4): 488−492, 499. doi: 10.3969/j.issn.1006-0995.2010.04.031

    Zheng D Z, Li X Y, Zheng R F, et al. New acquaintances of super strong melting ore capacity of Na2O2[J]. Acta Geologica Sichuan, 2010, 30(4): 488−492, 499. doi: 10.3969/j.issn.1006-0995.2010.04.031

    [29]

    李文渊, 高永宝, 任广利, 等. 新疆大红柳滩伟晶岩型锂矿深部结构与区域成矿模型解释[J]. 地质学报, 2024, 98(5): 1440−1451. doi: 10.19762/j.cnki.dizhixuebao.2024063

    Li W Y, Gao Y B, Ren G L, et al. Deep structure and interpretation of regional metallogenic model of the dahongliutan pegmatite lithium ore deposit in Xinjiang , Western China[J]. Acta Geologica Sinica, 2024, 98(5): 1440−1451. doi: 10.19762/j.cnki.dizhixuebao.2024063

  • 加载中

(1)

(8)

计量
  • 文章访问数:  445
  • PDF下载数:  74
  • 施引文献:  0
出版历程
收稿日期:  2024-03-31
修回日期:  2024-07-10
录用日期:  2024-07-17
刊出日期:  2024-09-30

目录