中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

土壤中邻苯二甲酸酯成分分析标准物质研制

田芹, 佟玲, 潘萌, 安子怡, 许春雪, 张苗苗, 汪丽萍. 土壤中邻苯二甲酸酯成分分析标准物质研制[J]. 岩矿测试, 2024, 43(4): 603-613. doi: 10.15898/j.ykcs.202403050031
引用本文: 田芹, 佟玲, 潘萌, 安子怡, 许春雪, 张苗苗, 汪丽萍. 土壤中邻苯二甲酸酯成分分析标准物质研制[J]. 岩矿测试, 2024, 43(4): 603-613. doi: 10.15898/j.ykcs.202403050031
TIAN Qin, TONG Ling, PAN Meng, AN Ziyi, XU Chunxue, ZHANG Miaomiao, WANG Liping. Development of Certified Reference Materials of Phthalates in Soils[J]. Rock and Mineral Analysis, 2024, 43(4): 603-613. doi: 10.15898/j.ykcs.202403050031
Citation: TIAN Qin, TONG Ling, PAN Meng, AN Ziyi, XU Chunxue, ZHANG Miaomiao, WANG Liping. Development of Certified Reference Materials of Phthalates in Soils[J]. Rock and Mineral Analysis, 2024, 43(4): 603-613. doi: 10.15898/j.ykcs.202403050031

土壤中邻苯二甲酸酯成分分析标准物质研制

  • 基金项目: 中国地质调查局地质调查项目(DD20230546,DD20230418,DD20242860);中国地质科学院基本科研业务费项目(CSJ-2023-04)
详细信息
    作者简介: 田芹,博士,正高级工程师,主要从事有机污染物分析技术及标准化研究。E-mail:tqname81@163.com
    通讯作者: 佟玲,硕士,正高级工程师,从事有机污染物分析技术及标准方法研究。E-mail:winter_tl@sina.com
  • 中图分类号: O657.63

Development of Certified Reference Materials of Phthalates in Soils

More Information
  • 邻苯二甲酸酯类化合物(Phthalates,PAEs)作为一类持续释放并存在于环境中的有机污染物,被列入优先控制污染物名单。土壤是PAEs在环境中的最后归宿之一,中国对土壤中PAEs的污染调查和防控已全面展开。分析测试是环境监测和科学研究的基础,土壤基体标准物质是保证实验数据的准确性和可靠性的重要手段,然而,目前现有的相关标准物质无法满足实际需要。本文针对中国土壤中PAEs污染特征及实际样品分析质量控制需求,采用多家实验室联合定值的方式,研制了4种适用于土壤中不同污染水平PAEs分析的标准物质。候选物样品主要采自农田土壤、地膜覆盖土壤、塑料垃圾回收站周围土壤和塑料制品加工厂周围土壤,经过均匀性、长期稳定性和短期稳定性检验,结果表明均匀性和稳定性均满足要求;在定值过程中,针对PAEs分析空白不易控制的难点,对空白的污染源进行识别和确认,制定严格的质量控制措施,保证了全流程空白值稳定在一定范围内;9家实验室采用气相色谱-质谱法(GC-MS)对候选物中4种PAEs进行协作定值,并评估其不确定度,特性量值范围在36~2870µg/kg,同时邀请权威实验室采用同位素稀释质谱法对定值结果进行验证,确保定值结果的准确性。该系列标准物质已被批准为国家一级标准物质(编号GBW07595~GBW07598),可以满足PAEs分析质量保证与质量控制的要求,为生态地质调查评价提供技术支撑。

  • 加载中
  • 表 1  候选物GSSO-12均匀性检验结果

    Table 1.  Homogeneity test for candidate GSSO-12

    参数 DMP DiBP DBP DEHP
    目标物平均值 (µg/kg) 37.5 409 754 653
    RSD (%) 10.4 7.59 7.39 10.7
    $ {M}_{\mathrm{b}\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{e}\mathrm{e}\mathrm{n}} $(µg 2/kg2) 15.84 1029 2924 5255
    $ {M}_{\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{n}} $(µg 2/kg2) 12.62 816 2263 4156
    F实测值 1.292 1.261 1.291 1.265
    $ {S}_{\mathrm{b}\mathrm{b}} $ (µg/kg) 1.05 8.43 14.9 19.2
    注:F0.05(24,50) = 1.737。
    下载: 导出CSV

    表 2  候选物GSSO-12长期稳定性检验(4℃)数据和短期稳定性检验(50℃)数据

    Table 2.  Long stability test (4℃) and short stability test (50℃) data for candidate GSSO-12

    PAEs
    化合物
    长期稳定性检验(4℃) 短期稳定性检验(50℃)
    含量平均值
    (µg/kg)
    RSD
    (%)
    b1 $t_{0.05} \times S(b_1) $ us1
    (µg/kg)
    含量平均值
    (µg/kg)
    RSD
    (%)
    b1 $t_{0.05} \times S(b_1) $ uss
    (µg/kg)
    DMP 36.5 5.84 −0.062 0.981 3.71 36.2 4.29 0.0095 0.829 2.61
    DiBP 406 5.05 −0.242 9.57 36.2 401 2.93 −0.279 6.43 20.3
    DBP 769 5.56 4.86 16.7 63.2 750 3.17 −2.917 11.1 34.9
    DEHP 642 5.62 0.016 16.8 63.4 654 2.56 1.244 8.56 27.0
    下载: 导出CSV

    表 3  候选物GSSO-12定值校准用溶液标准物质引入的不确定度

    Table 3.  The uncertainty introduced by certified reference materials in calibration solutions for candidate GSSO-12

    PAEs
    化合物
    定值用溶液标准物质 候选物GSSO-12校准溶液引入的不确定度
    标准物质编号 标准值
    (µg/mL)
    相对扩展不确定度(%)
    (k=2)
    相对不确定度
    (%)
    量值
    (µg/kg)
    uB1
    (µg/kg)
    DMP GBW(E)100221 237 2 1 35.9 0.36
    DiBP GBW(E)100284 1000 2 1 397 3.97
    DBP GBW10134 500 3 1.5 757 11.4
    DEHP GBW10165 500 3 1.5 669 10.1
    下载: 导出CSV

    表 4  候选物GSSO-12溶液配制引入的不确定度

    Table 4.  The uncertainty introduced by calibration solution preparation for candidate GSSO-12

    PAEs
    化合物
    候选物GSSO-12
    量值
    (µg/kg)
    相对不确定度
    (%)
    uB2
    (µg/kg)
    DMP 35.9 0.287 0.11
    DiBP 397 0.457 1.83
    DBP 757 0.287 2.18
    DEHP 669 0.287 1.93
    下载: 导出CSV

    表 5  候选物GSSO-12标准曲线拟合引入的不确定度

    Table 5.  The uncertainty introduced by calibration curve fitting for candidate GSSO-12

    PAEs
    化合物
    候选物GSSO-12
    量值
    (µg/kg)
    uB3
    (µg/kg)
    相对不确定度
    (%)
    DMP 35.9 1.02 2.85
    DiBP 397 2.45 0.61
    DBP 757 3.23 0.43
    DEHP 669 4.80 0.72
    下载: 导出CSV

    表 6  候选物GSSO-12样品称量引入的不确定度uB4和添加内标溶液引入的不确定度uB5

    Table 6.  The uncertainty introduced by sampling weigh and adding internal standard solution for candidate GSSO-12

    PAEs化合物 候选物GSSO-12
    量值
    (µg/kg)
    样品称量引入的不确定度 添加内标量引入的不确定度
    相对不确定度
    (%)
    uB4
    (µg/kg)
    相对不确定度
    (%)
    uB5
    (µg/kg)
    DMP 35.9 0.0892 0.032 0.326 0.12
    DiBP 397 0.0892 0.36 0.326 1.31
    DBP 757 0.0892 0.68 0.326 2.47
    DEHP 669 0.0892 0.60 0.326 2.19
    下载: 导出CSV

    表 7  候选物GSSO-12的不确定度

    Table 7.  The uncertainty of candidate GSSO-12

    PAEs化合物量值
    (µg/kg)
    ubb
    (µg/kg)
    usl
    (µg/kg)
    uss
    (µg/kg)
    uA
    (µg/kg)
    uB1
    (µg/kg)
    uB2
    (µg/kg)
    uB3
    (µg/kg)
    uB4
    (µg/kg)
    uB5
    (µg/kg)
    uCRM
    (µg/kg)
    UCRM
    (µg/kg)
    DMP35.91.053.712.611.380.360.111.020.0320.124.9810
    DiBP3978.4336.220.310.73.971.832.450.361.3144.088
    DBP75714.963.234.919.511.42.183.230.682.4777.2160
    DEHP66919.263.427.013.710.11.934.800.602.1973.9150
    下载: 导出CSV

    表 8  四个PAEs成分分析标准物质的标准值及扩展不确定度

    Table 8.  Certified values and expanded uncertainties for four PAE certified reference materials

    特性量标准物质的特性量值及扩展不确定度(µg/kg)
    GBW07595
    (GSSO-12)
    GBW07596
    (GSSO-13)
    GBW07597
    (GSSO-14)
    GBW07598
    (GSSO-15)
    DMP36±1074±18
    DiBP397±881.13×103±0.25×10388±24314±73
    DBP0.76×103±0.16×1031.21×103±0.26×103413±96302±69
    DEHP0.67×103±0.15×1032.87×103±0.53×103412±982.46×103±0.48×103
    注:“—”表示该化合物未定值。
    下载: 导出CSV
  • [1]

    Jiang N, Song P, Li X, et al. Dibutyl phthalate induced oxidative stress and genotoxicity on adult Zebrafish (Danio rerio) Brain[J]. Journal of Hazardous Materials, 2022, 424: 127749. doi: 10.1016/j.jhazmat.2021.127749

    [2]

    Lee Y M, Lee J E, Choe W, et al. Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea[J]. Environmental International, 2019, 126: 635−643. doi: 10.1016/j.envint.2019.02.059

    [3]

    Sun S, Wang M, Yang X, et al. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil of the Yellow River Delta, China[J]. Environmental Science and Pollution Research, 2023, 30: 53370−53380. doi: 10.1007/s11356-023-26104-3

    [4]

    Wang M, Su Y, Lu J, et al. Content level and risk assessment of phthalate esters in surface water of Bosten Lake, China[J]. Environmental Science and Pollution Research, 2023, 30: 74991−75001. doi: 10.1007/s11356-023-27627-5

    [5]

    Mi L, Xie Z, Xu W, et al. Air-sea exchange and atmospheric deposition of phthalate esters in the South China Sea[J]. Environmental Science & Technology, 2023, 57: 11195−11205.

    [6]

    Wang X, Zhang Y, Huang B, et al. Atmospheric phthalate pollution in plastic agricultural greenhouses in Shaanxi Province, China[J]. Environmental Pollution, 2021, 269: 116096. doi: 10.1016/j.envpol.2020.116096

    [7]

    Cao Y, Li J, Wu R, et al. Phthalate esters in seawater and sediment of the Northern South China Sea: Occurrence, distribution, and ecological risks[J]. Science of the Total Environment, 2022, 811: 151412. doi: 10.1016/j.scitotenv.2021.151412

    [8]

    Pausekki A, Kim S K. Horizontal and vertical distribution of phthalates ester (PAEs) in seawater and sediment of East China Sea and Korean South Sea: Traces of plastic debris[J]. Marine Pollution Bulletin, 2020, 151: 110831. doi: 10.1016/j.marpolbul.2019.110831

    [9]

    Liu B, Lv L, Ding L, et al. Comparison of phthalate esters (PAEs) in freshwater and marine food webs: Occurrence, bioaccumulation, and trophodynamics[J]. Journal of Hazardous Materials, 2024, 466: 133534. doi: 10.1016/j.jhazmat.2024.133534

    [10]

    Alkan N, Alkan A, Castro-Jimenez J, et al. Environmental occurrence of phthalate and organophosphate esters in sediments across the Gulf of Lion (NW Mediterranean Sea)[J]. Science of the Total Environment, 2021, 760: 143412. doi: 10.1016/j.scitotenv.2020.143412

    [11]

    Ramirez M M B, Caamal R D, von Osten J R. Occurrence and seasonal distribution of microplastics and phthalates in sediments from the urban channel of the Ria and coast of Campeche Mexico[J]. Science of the Total Environment, 2019, 672: 97−105.472. doi: 10.1016/j.scitotenv.2019.03.472

    [12]

    Li Y, Cheng S, Fang H, et al. Composition, distribution, health risks, and drivers of phthalates in typical red paddy soils[J]. Environmental Science and Pollution Research, 2023, 30: 94814−94826. doi: 10.1007/s11356-023-28815-z

    [13]

    Tao H, Wang Y, Liang H, et al. Pollution characteristics of phthalate acid esters in agricultural soil of Yinchuan, Northwest China, and health risk assessment[J]. Environmental Geochemistry and Health, 2020, 42: 4313−4326. doi: 10.1007/s10653-019-00502-4

    [14]

    Cui J, Bai R, Ding W, et al. Potential agricultural contamination and environmental risk phthalate acid esters arrived from plastic film mulching[J]. Journal of Environmental Chemical Engineering, 2024, 12: 111785. doi: 10.1016/j.jece.2023.111785

    [15]

    Gu Y Y, Wei Q, Wang L Y, et al. A comprehensive study of the effects of phthalates on marine mussels: Bioconcentration, enzymatic activities and meta-bolomics[J]. Marine Pollution Bulletin, 2021, 168: 112393. doi: 10.1016/j.marpolbul.2021.112393

    [16]

    He M J, Lu J F, Wang J, et al. Phthalate esters in biota, air and water in an agricultural area of Western China, with emphasis on bioaccumulation and human exposure[J]. Science of the Total Environment, 2020, 698: 134264. doi: 10.1016/j.scitotenv.2019.134264

    [17]

    Zhang Y, Yang Y, Tao Y, et al. Phthalates (PAEs) and reproductive toxicity: Hypothalamic-pituitary-gonadal (HPG) axis aspects[J]. Journal of Hazardous Materials, 2023, 459: 132182. doi: 10.1016/j.jhazmat.2023.132182

    [18]

    Wei L Y, Li Z H, Sun J T, et al. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China[J]. Science of the Total Environment, 2020, 726: 137978.066. doi: 10.1016/j.scitotenv.2020.137978

    [19]

    Xing H, Yu X, Sun J, et al. Interaction between phthalate ester and rice plants: Novel transformation pathways and metabolic-network perturbations[J]. Environmental Science & Technology, 2023, 57: 8870−8882. doi: org/10.1021/acs.est.2c09737

    [20]

    Wang Z, Ma J, Wang T, et al. Environmental health risks induced by interaction between phthalic acid esters (PAEs) and biological macromolecules: A review[J]. Chemosphere, 2023, 328: 138578. doi: 10.1016/j.chemosphere.2023.138578

    [21]

    Yang P, Deng L J, Xie J Y, et al. Phthalate exposure with sperm quality among healthy Chinese male adults: The role of sperm cellular function[J]. Environmental Pollution, 2023, 331: 121755. doi: org/10.1016/j.envpol.2023.121755

    [22]

    王亚,肖霞霞,杨云,等. 溶剂萃取-气相色谱-三重四极杆串联质谱法测定水体和土壤中6种邻苯二甲酸酯[J]. 分析科学学报, 2023, 39(3): 287−293.

    Wang Y, Xiao X X, Yang Y, et al. Determination of six phthalic acid esters in water and soil samples by gas chromatography-tandem mass spectrometry with solvent extraction method[J]. Journal of Analytical Science, 2023, 39(3): 287−293.

    [23]

    Carlon C. Derivation methods of soil screening values in Europe[R]//A review and evaluation of national procedures towards harmonization. Joint Research Centre, European Commission, 2007: 306.

    [24]

    Li X, Wang Q, Jiang N, et al. Occurrence, source, ecological risk, and mitigation of phthalates (PAEs) in agricultural soils and the environment: A review[J]. Environmental Research, 2023, 220: 115196. doi: 10.1016/j.envres.2022.115196

    [25]

    Tao Y, Cui Y, Zhu G, et al. Fate, ecotoxicity, and remediation of phthalic acid ester in soils[J]. Environmental Pollution, 2023, 32: 100440.

    [26]

    Niu L, Xu Y, Xu C, et al. Status of phthalate esters contamination in agricultural soils across China and associated health risks[J]. Environmental Pollution, 2014, 195: 16−23. doi: 10.1016/j.envpol.2014.08.014

    [27]

    Li C, Chen J, Wang J, et al. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment[J]. Science of the Total Environment, 2016, 568: 1037−1043. doi: 10.1016/j.scitotenv.2016.06.077

    [28]

    Li X, Liu W, Zhang C, et al. Fate of phthalic acid esters (PAEs) in typical greenhouse soils of different cultivation ages[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104: 301−306. doi: 10.1007/s00128-019-02756-1

    [29]

    Li X, Li N, Wang C, et al. Occurrence of phthalate acid esters (PAEs) in protected agriculture soils and implications for human health exposure[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109: 548−555. doi: 10.1007/s00128-022-03553-z

    [30]

    Zeng F, Cui K, Xie Z, et al. Phthalate esters (PAEs): Emerging organic contaminants in agricultural soils in Periurban areas around Guangzhou, China[J]. Environmental Pollution, 2008, 156: 425−434. doi: 10.1016/j.envpol.2008.01.045

    [31]

    Brodskiy E S, Shelepchikov A A, Agapkina G I, et al. Phthalate esters’ content in soils of Moscow[J]. Environment and Security, 2019, 74: 88−92. doi: DOI:org/10.3103/S0147687419020029.

    [32]

    Berenstein G, Hughes E A, Zalts A, et al. Environmental fate of dibutylphthalate in agricultural plastics: Photodegradation, migration and ecotoxicological impact on soil[J]. Chemosphere, 2022: 133221.

    [33]

    Yesildagli B, Goktas R K, Ayaz T, et al. Phthalate ester levels in agricultural soils of greenhouses, their potential sources, the role of plastic cover material, and dietary exposure calculated from modeled concentrations in tomato[J]. Journal of Hazardous Materials, 2024, 468: 133710. doi: 10.1016/j.jhazmat.2024.133710

    [34]

    Wang D, Xi Y, Shi X Y, et al. Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment[J]. Environmental Pollution, 2021, 286: 117546. doi: 10.1016/j.envpol.2021.117546

    [35]

    Tan W, Zhang Y, He X, et al. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems[J]. Scientific Reports, 2016, 6: 31987. doi: 10.1038/srep31987

    [36]

    Gao H, Liu Q, Yan C, et al. Macro-and/or micorplastics as an emerging threat effect crop growth and soil health[J]. Resources Conservation Recycling, 2022, 186: 106549. doi: 10.1016/j.resconrec.2022.106549

    [37]

    Zhang J, Ren S, Xu W, et al. Effects of plastic residues and microplastics on soil ecosystems: A global meta-analysis[J]. Journal of Hazardous Materials, 2022, 435: 129065. doi: 10.1016/j.jhazmat.2022.129065

    [38]

    Cao J, Gao X, Cheng Z, et al. The harm of residual plastic film and its accumulation driving factors in Northwest China[J]. Environmental Pollution, 2023, 318: 120910. doi: 10.1016/j.envpol.2022.120910

    [39]

    田芹, 佟玲, 安子怡, 等. 沉积物中多环芳烃、有机氯农药和多氯联苯成分分析标准物质研制[J]. 岩矿测试, 2022, 41(3): 511−520. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203016

    Tian Q, Tong L, An Z Y, et al. Development of certified reference materials of polycyclic aromatic hydeocarbons, organochlorine pesticides and polychlorinated biphenyls in sediments[J]. Rock and Mineral Analysis, 2022, 41(3): 511−520. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203016

    [40]

    田芹, 吴淑琪, 佟玲, 等. 中国典型类型土壤中有机氯农药和多氯联苯成分分析标准物质研制[J]. 岩矿测试, 2015, 34(2): 238−244. doi: 10.15898/j.cnki.11-2131/td.2015.02.015

    Tian Q, Wu S Q, Tong L, et al. Preparation of certified reference materials of organochlorine pesticides and polychlorinatedbipenyl in Chinese typical soils[J]. Rock and Mineral Analysis, 2015, 34(2): 238−244. doi: 10.15898/j.cnki.11-2131/td.2015.02.015

    [41]

    SRM (1941b) Certificate of Analysis. Organics in marine sediment[R]. Gaithersburg: National Institute of Standards and Technology (NIST), 2022.

    [42]

    Tolosa I, Cassi R, Huertas D. A new marine sediment certified reference material (CRM) for the determination of persistent organic contaminants: IAEA-459[J]. Environmental Science and Pollution Research, 2019, 26: 7347−7355. doi: 10.1007/s11356-018-1895-4

    [43]

    Zhao X, Jin H, Li D, et al. Simple and rapid analysis of phthalate esters in marine sediment using ultrasound-assisted extraction combined with gas purge microsyringe extraction followed by GC–MS[J]. Marine Pollution Bulletin, 2020, 160: 111667. doi: 10.1016/j.marpolbul.2020.111667

    [44]

    Brander S M, Renick V C, Foley M M, et al. Sampling and quality assurance and quality control: A guide for scientists investigating the occurrence of microplastics across matrices[J]. Applied Spectroscopy, 2020, 74: 1099−1125. doi: 10.1177/0003702820945713

  • 加载中

(8)

计量
  • 文章访问数:  238
  • PDF下载数:  92
  • 施引文献:  0
出版历程
收稿日期:  2024-03-05
修回日期:  2024-06-18
录用日期:  2024-06-24
刊出日期:  2024-07-31

目录