Determination of 35 Antibiotics in Surface Water by High Performance Liquid Chromatography-Tandem Mass Spectrometry with Online Solid-Phase Extraction and Large-Volume Injection
-
摘要:
抗生素在水环境中常有检出,是国际公约管控的新污染物之一。为了控制水质和保证饮用水来源的安全使用,需要建立快速和高效的抗生素分析方法。目前能够快速测试地表水中多种类抗生素的综合分析方法有待补充。本文建立了在线固相萃取(SPE)大体积进样-高效液相色谱-串联质谱法(HPLC-MS/MS)分析地表水中9种磺胺类、16种喹诺酮类、4种大环内酯类、4种四环素类和2种其他类共35种抗生素的分析方法。根据化合物在SPE柱的保留和pH条件实验,确定莫西沙星、达氟沙星2种抗生素为碱性上样(0.1%氨水溶液),其余33种抗生素为酸性上样(0.1%甲酸-水溶液)。采用多反应监测(MRM)扫描模式、内标法定量,35种抗生素在线性范围内的相关系数均大于0.995;方法检出限在0.1~5.2ng/L之间;在5ng/L、50ng/L和200ng/L三种加标浓度下,方法精密度分别为1.65%~12.3%、0.20%~10.4%和0.05%~9.92%;加标回收率分别为62.1%~93.1%、65.4%~127%和65.9%~124%。本方法所需样品体积小(10mL)、前处理简单,当酸性和碱性进样体积分别为3mL时,30min内能完成样品在线富集和分离分析过程。本方法应用于21件地表水样中35种抗生素的检测,林可霉素的检出率达到90.5%,氧氟沙星的检出含量最高达到98.2ng/L。本文建立的在线方法测定结果与离线方法一致,且操作简捷、灵敏度高、分析速度快,适合地表水中痕量抗生素的残留分析。
-
关键词:
- 抗生素 /
- 地表水 /
- 在线固相萃取 /
- 大体积进样 /
- 高效液相色谱-串联质谱法
Abstract:Antibiotics are one of the emerging pollutants of concern in the world. Fast and efficient analytical methods for potential analysis of these pollutants are required, in order to control water quality and assure the safety of its use as a source of drinking water. However, there are few comprehensive methods to test multiple types of antibiotics in surface water. An online solid-phase extraction (SPE) of large-volume injection coupled with the high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was used for the simultaneous determination of 35 antibiotics in surface water, including 9 sulfonamides, 16 quinolones, 4 macrolides, 4 tetracyclines and 2 other classes. According to compound retention in SPE column and pH condition experiments, moxifloxacin and danofloxacin were confirmed as alkaline injection (0.1% ammonia solution), while the remaining 33 antibiotics were acidic injection (0.1% formic acid solution). The analytes were detected by multiple reaction monitoring (MRM) mode and were quantified by an internal standard method. The correlation coefficients of 35 antibiotics were greater than 0.995 with the calibration concentration range from 1−500ng/L. The method limits of detection (MLD) were low, ranging between 0.1−5.2ng/L. At 3 spiked concentrations of 5ng/L, 50ng/L, and 200ng/L, the relative standard deviation (RSD) of matrix labeling (n=6) were 1.65%−12.3%, 0.2%−10.4% and 0.05%−9.92%, respectively. The recovery rate of target compounds spike in the water samples were 62.1%−93.1%, 65.4%−127% and 65.9%−124%, respectively. The developed method only required a small sample volume (10mL) and simple pretreatment. When the acidic and basic injection volume were both 3mL, the total sample run time was only 30min including sample uptake, injection, online preconcentration, and detection. The developed method was applied to the analysis of 35 antibiotics in 21 surface waters, of which the detection rate of lincomycin reached 90.5%, and the highest content of ofloxacin reached 98.2ng/L. Compared with the conventional offline detection method, the detection results of the two methods were consistent, but the online detection method was simple, sensitive, accurate and fast, and capable of the real-time detection of water samples, making it suitable for residual analysis of trace antibiotics in surface water.
-
Key words:
- antibiotics /
- surface water /
- online solid-phase extraction /
- large-volume injection /
- HPLC-MS/MS
-
-
表 1 抗生素分析中MRM优化参数、保留时间、线性相关系数和方法检出限
Table 1. MRM mass spectrum optimum parameters, retention time, linear correlation coefficient and method detection limits of antibiotic analysis
抗生素 母离子 子离子 Q1电压
(V)碰撞电压
(V)Q3电压
(V)保留时间
(min)相关系数 检出限▲
(ng/L)内标分组 林可霉素 (LIN) 407.3 126.1*/359.3 14 30 12 5.501 0.9998 0.8 2 吡哌酸 (PPA) 304.15 286.1*/215.05 14 20 13 5.540 0.9998 0.9 2 磺胺醋酰(SA) 215.05 156*/92.05 22 13 26 5.605 0.9997 0.9 2 依诺沙星 (ENO) 320.9 303*/204.05 11 22 14 6.021 0.9957 0.8 1 诺氟沙星 (NOR) 319.9 302.1*/230.95 11 24 14 6.163 0.995 2.8 1 氧氟沙星 (OFL) 362.2 318.15*/261.1 13 19 15 6.183 0.9971 1.8 3 磺胺吡唑 (SPD) 250 156*/92.05 11 16 15 6.191 0.9996 0.1 2 氟罗沙星 (FLE) 370 326*/269 10 20 15 6.210 0.9983 2.2 4 土霉素 (OTC) 461.1 426.05*/443.1 12 21 21 6.239 0.9987 2.1 4 环丙沙星 (CIP) 332.2 314.1*/231 12 22 22 6.272 0.9986 5.1 4 洛美沙星 (LOM) 352.2 265*/308.15 12 25 12 6.429 0.9966 4.9 5 四环素 (TC) 445.1 410*/427.1 12 20 19 6.527 0.9981 1.9 5 恩诺沙星 (ENR) 360.25 342.15*/316.15 13 23 16 6.538 0.9983 5.2 5 磺胺甲噻二唑 (SMTZ) 271 156*/108 18 15 30 6.858 0.9989 0.1 6 磺胺二甲嘧啶 (SM2) 279 186*/92.05 13 18 19 6.871 0.9989 0.1 6 螺旋霉素 (SPI) 843.5 174.15*/540.25 24 35 17 6.888 0.9987 0.1 6 司帕沙星 (SPR) 393 349*/292 10 20 16 6.957 0.9983 1.4 6 双氟沙星 (DIF) 400 356*/299 14 19 12 6.971 0.9983 0.2 6 磺胺对甲氧嘧啶 (SMT) 281.1 156.1*/108.1 13 17 16 7.004 0.9995 0.1 6 金霉素 (CTC) 478.8 443.95*/154.05 17 22 15 7.290 0.9991 1.2 7 强力霉素 (DOX) 444.9 428.05*/154.1 12 20 20 7.468 0.9985 2.8 7 磺胺氯哒嗪 (SCPD) 285 156*/92.05 19 15 16 7.548 0.9995 1.2 7 西诺沙星 (CIN) 263.1 245.05*/189 12 16 16 7.739 0.9992 0.3 7 磺胺邻二甲氧嘧啶 (SDO) 311 156*/108 14 18 16 7.775 0.9993 0.1 7 磺胺二甲异噁唑 (SIZ) 268 156*/92.05 12 14 27 8.011 0.9995 0.1 8 氯霉素(CAP) 321 152.1*/257 11 16 27 8.118 0.9996 0.1 8 噁喹酸 (OXA) 262.1 244.05*/216 12 19 11 8.125 0.9998 0.1 8 红霉素 (ERY) 734.3 158.15*/576.35 20 31 10 8.167 0.9987 1.1 8 磺胺间二甲氧嘧啶 (SDM) 311 156.05*/92.05 14 21 16 8.472 0.9987 0.1 8 罗红霉素 (ROX) 837.5 158.15*/679.4 222 33 16 8.952 0.9998 0.2 8 萘啶酸 (NDA) 233.1 215.05*/187 11 17 22 9.097 0.9987 0.1 8 氟甲喹 (FLU) 262.1 244.1*/202 12 20 24 9.228 0.9996 0.1 8 交沙霉素 (JOS) 828.4 174.15*/229.15 2 34 18 9.291 0.9976 0.1 8 莫西沙星 (MOX) 358.2 340.1*/225 12 23 16 7.107 0.9957 0.3 7 达氟沙星 (DAN) 402.1 245.05*/261 18 39 25 6.405 0.9979 1.0 4 噻苯达唑-D4 206 135.00*/179.1 13 33 13 5.793 — — 1 磺胺吡啶-13C6 256.05 190.05*/162.05 17 20 20 6.169 — — 2 氧氟沙星-D3 361.1 254.95*/343.1 17 40 25 6.194 — — 3 达氟沙星-D3 365.1 261.00*/321.1 17 30 17 6.395 — — 4 洛美沙星-D5 357.05 270.10*/339.05 12 24 12 6.434 — — 5 磺胺二甲嘧啶-13C6 285.05 204.05*/162.05 10 17 12 6.879 — — 6 磺胺氯哒嗪-13C6 291 162.05*/114.05 10 16 10 7.538 — — 7 氯霉素-D5 326.05 157.10*/262.15 11 17 10 8.088 — — 8 注:“*”表示定量离子;“▲”表示检出限结果是在不同的目标物浓度下得到的,检出限结果在0.1~0.3ng/L、0.8~2ng/L、2.1~2.8ng/L、4.9~5.2ng/L范围使用的目标物浓度分别为0.5ng/L、5ng/L、10ng/L和15ng/L。
表 2 方法加标回收率和精密度实验结果(n=6)
Table 2. Precision and accuracy of the method for the determination of 35 antibiotics (n=6)
抗生素 浓度
(ng/L)加标浓度(5ng/L) 加标浓度(50ng/L) 加标浓度(200ng/L) 回收率(%) RSD(%) 回收率(%) RSD(%) 回收率(%) RSD(%) 林可霉素 (LIN) ND 65.2 8.71 67.2 8.37 68.5 7.34 吡哌酸 (PPA) ND 75.4 9.12 79.9 8.88 81.0 0.05 磺胺醋酰(SA) ND 63.7 6.43 68.2 4.41 70.5 4.26 依诺沙星 (ENO) ND 85.2 8.32 114 1.73 88.0 3.80 诺氟沙星 (NOR) ND 79.4 12.3 112 10.23 94.0 6.01 氧氟沙星 (OFL) ND 70.5 5.34 71.5 2.39 75.6 1.04 磺胺吡唑(SPD) ND 76.2 3.97 75.4 0.20 77.9 1.85 氟罗沙星 (FLE) ND 70.3 12.2 68.8 8.92 71.5 9.92 土霉素 (OTC) ND 62.1 6.85 65.4 5.87 67.7 3.40 环丙沙星 (CIP) ND 71.2 4.39 70.7 0.89 82.5 1.42 洛美沙星 (LOM) ND 75.2 9.85 77.7 6.74 85.0 1.16 四环素 (TC) ND 69.1 7.69 79.9 0.62 70.2 4.47 恩诺沙星 (ENR) ND 72.1 3.82 101 1.90 73.9 1.92 磺胺甲噻二唑 (SMTZ) ND 73.2 6.96 77.4 4.83 77.3 0.35 磺胺二甲嘧啶 (SM2) ND 80.5 3.21 82.0 1.41 76.2 1.20 螺旋霉素 (SPI) ND 76.7 8.76 81.3 4.14 81.2 0.61 司帕沙星 (SPR) ND 72.1 10.2 76.6 8.46 73.7 4.36 双氟沙星 (DIF) ND 75.3 7.64 111 2.87 73.1 3.74 磺胺对甲氧嘧啶 (SMT) ND 78.6 5.36 81.1 0.26 77.7 2.37 金霉素 (CTC) ND 65.2 9.86 67.2 8.26 65.9 7.27 强力霉素 (DOX) ND 62.1 12.1 69.8 10.36 68.7 2.51 磺胺氯哒嗪 (SCPD) ND 72.3 6.78 79.6 0.58 80.0 1.19 西诺沙星 (CIN) ND 93.1 5.74 119 3.47 124 2.37 磺胺邻二甲氧嘧啶 (SDO) ND 80.3 3.58 80.5 0.65 85.1 1.35 磺胺二甲异噁唑 (SIZ) ND 71.2 2.46 75.3 1.53 78.2 0.74 氯霉素(CAP) ND 65.1 5.64 68.6 2.99 73.5 1.56 噁喹酸 (OXA) ND 83.1 7.26 103 2.16 88.5 1.78 红霉素 (ERY) ND 85.1 8.37 127 1.91 99.1 6.40 磺胺间二甲氧嘧啶 (SDM) ND 72.3 4.56 74.5 1.69 81.6 0.12 罗红霉素 (ROX) ND 92.1 6.21 114 5.22 124 0.17 萘啶酸(NDA) ND 85.6 6.89 120 0.53 108 4.36 氟甲喹 (FLU) ND 90.3 1.65 119 0.40 93.6 0.70 交沙霉素 (JOS) ND 87.6 5.82 116 4.51 123 1.86 莫西沙星 (MOX) ND 70.3 9.65 86.9 7.84 82.8 3.30 达氟沙星 (DAN) ND 76.1 8.78 75.2 8.84 78.6 2.36 注:ND表示检测值低于检出限。 表 3 实际样品中检出的抗生素及含量范围
Table 3. The detected antibiotics and their content ranges in samples
抗生素 在线检测 离线检测 检出样品数
(件)检出率
(%)含量范围
(ng/L)检出样品数
(件)检出率
(%)含量范围
(ng/L)林可霉素 (LIN) 19 90.5 ND~55.7 18 85.7 ND~62.1 吡哌酸 (PPA) 2 9.5 ND~48.0 2 9.5 ND~52.0 氧氟沙星 (OFL) 4 19.1 ND~98.2 4 19.1 ND~90.2 磺胺吡唑 (SPD) 8 38.1 ND~5.6 8 38.1 ND~6.1 氟罗沙星 (FLE) 4 19.1 ND~38.5 4 19.1 ND~40.2 恩诺沙星 (ENR) 2 9.5 ND~68.4 2 9.5 ND~60.4 磺胺二甲嘧啶 (SM2) 1 4.8 ND~14.3 1 4.8 ND~15.1 双氟沙星 (DIF) 5 23.8 ND~40.5 5 23.8 ND~40..5 强力霉素 (DOX) 1 4.8 ND~33.7 1 4.8 ND~36.2 磺胺氯哒嗪 (SCPD) 1 4.8 ND~5.9 1 4.8 ND~6.1 氟甲喹 (FLU) 1 4.8 ND~11.3 1 4.8 ND~12.1 莫西沙星 (MOX) 1 4.8 ND~25.8 1 4.8 ND~26.5 达氟沙星 (DAN) 1 4.8 ND~28.2 1 4.8 ND~30.1 -
[1] 黄业茹, 张烃, 翁燕波, 等. 水质环境热点污染物分析方法[M]. 北京: 化学工业出版社, 2014.
Huang Y R, Zhang T, Weng Y B, et al. Analysis method of water quality and environmental hot spot pollutants[M]. Beijing: Chemical Industry Press, 2014.
[2] Luo L, Wang G L, Wang Z M, et al. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology[J]. Science of the Total Environment, 2021, 788: 14788. doi: 10.1016/j.scitotenv.2021.147889
[3] 史晓, 卜庆伟, 吴东奎, 等. 地表水中10种抗生素SPE-HPLC-MS/MS检测方法的建立[J]. 环境化学, 2020, 39(4): 1075−1083. doi: 10.7524/j.issn.0254-6108.2019040102
Shi X, Bu Q W, Wu D K, et al. Simultaneous determination of 10 antibiotic residues in surface water by SPE-HPLC-MS/MS[J]. Environmental Chemistry, 2020, 39(4): 1075−1083. doi: 10.7524/j.issn.0254-6108.2019040102
[4] 牛颖, 安圣, 陈凯, 等. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展[J]. 岩矿测试, 2023, 42(1): 39−58. doi: 10.15898/j.cnki.11-2131/td.202210120192
Niu Y, An S, Chen K, et al. A review of current status and analysis methods of antibiotic contamination in groundwater in China (2012—2021)[J]. Rock and Mineral Analysis, 2023, 42(1): 39−58. doi: 10.15898/j.cnki.11-2131/td.202210120192
[5] Han Y R, Wang Q J, Mo C H, et al. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao[J]. Environmental Pollution, 2010, 158(7): 2350−2358. doi: 10.1016/j.envpol.2010.03.019
[6] Li B, Zhang T, Xu Z Y, et al. Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2009, 645(1−2): 64−72. doi: 10.1016/j.aca.2009.04.042
[7] Ye Z, Weinberg H S, Meyer M T. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry[J]. Analytical Chemistry, 2007, 79(3): 1135−1144. doi: 10.1021/ac060972a
[8] Ecke A, Schneider R J. Pitfalls in the immunochemical determination of β-Lactam antibiotics in water[J]. Multidisciplinary Digital Publishing Institute, 2021, 10(3): 298−310. doi: 10.3390/ANTIBIOTICS10030298
[9] Tian H J, Liu T, Mu G D, et al. Rapid and sensitive determination of trace fluoroquinolone antibiotics in milk by molecularly imprinted polymer-coated stainless steel sheet electrospray ionization mass spectrometry[J]. Talanta, 2020, 219: 121282. doi: 10.1016/j.talanta.2020.121282
[10] 王群. 电化学传感器检测水中氯霉素和氧氟沙星的研究[D]. 北京: 中国地质大学(北京), 2021.
Wang Q. Study on the detection of chloramphenicol and ofloxacin in water by electrochemical sensor[D]. Beijing: China University of Geosciences (Beijing), 2021.
[11] Lara F J, García-Campaa A M, Neusüss C, et al. Determination of sulfonamide residues in water samples by in-line solid-phase extraction-capillary electrophoresis[J]. Journal of Chromatography A, 2009, 1216(15): 3372−3379. doi: 10.1016/j.chroma.2009.01.097
[12] 周爱霞, 苏小四, 高松, 等. 高效液相色谱测定地下水、土壤及粪便中 4 种磺胺类抗生素[J]. 分析化学, 2014, 42(3): 397−402. doi: 10.3724/SP.J.1096.2014.30676
Zhou A X, Su X S, Gao S, et al. Determination of four sulfa antibiotics in groundwater, soil and excreta samples using high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2014, 42(3): 397−402. doi: 10.3724/SP.J.1096.2014.30676
[13] He K, Blaney L. Systematic optimization of an SPE with HPLC-FLD method for fluoroquinolone detection in wastewater[J]. Journal of Hazardous Materials, 2015, 282: 96−105. doi: 10.1016/j.jhazmat.2014.08.027
[14] Guan S P, Wu H, Yang L, et al. Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample[J]. Journal of Separation Science, 2020, 43(19): 3775−3784. doi: 10.1002/jssc.202000616
[15] 侯锦英, 孙志洪, 卢冠宇. 全自动固相萃取-超高效液相色谱-串联质谱法同时测定药企周边地表水中5种大环内酯类抗生素的残留量[J]. 理化检验(化学分册), 2023, 59(3): 332−336. doi: 10.11973/lhjy-hx202303012
Hou J Y, Sun Z H, Lu G Y. Simultaneous determination of residues of 5 macrolide antibiotics in surface water around pharmaceutical enterprises by ultra high performance liquid chromatography-tandem mass spectrometry with automatic solid phase extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(3): 332−336. doi: 10.11973/lhjy-hx202303012
[16] 范素素, 方烨渟, 蔡萌, 等. 水环境中磺胺类抗生素固相萃取-液质联用检测方法的建立及效果评估[J]. 环境工程学报, 2022, 16(8): 1−11. doi: 10.12030/j.cjee.202204010
Fan S S, Fang Y T, Cai M, et al. Establishment of solid phase extraction-liquid mass spectrometry method for detection of sulfa antibiotics in water environment and its effect evaluation[J]. Chinese Journal of Environmental Engineering, 2022, 16(8): 1−11. doi: 10.12030/j.cjee.202204010
[17] Tang P O, Ho C, Lai S L. High-throughput screening for multi-class veterinary drug residues in animal muscle using liquid chromatography/tandem mass spectrometry with on-line solid-phase extraction[J]. Rapid Communications in Mass Spectrometry, 2010, 20(17): 2565−2572. doi: 10.1002/rcm.2635
[18] 李明明. SPE-HPLC-MS/MS检测地表水中的萘啶酸, 吡哌酸, 培氟沙星, 氧氟沙星, 司帕沙星和加替沙星残留[J]. 中国测试, 2021, 47(4): 67−71. doi: 10.11857/j.issn.1674-5124.2020060020
Li M M. Determination of nalidixic acid, pipemidic acid, pefloxacin, ofloxacin, sparfloxacin and gatifloxacin residue in surface water by SPE-HPLC-MS/MS[J]. China Measurement & Test, 2021, 47(4): 67−71. doi: 10.11857/j.issn.1674-5124.2020060020
[19] 祁彦洁. 水中抗生素的检测方法与非生物衰减行为研究[D]. 北京: 中国地质大学(北京), 2014.
Qi Y J. Determination and abiotic attenuation of antibiotics in water [D]. Beijing: China University of Geosciences (Beijing), 2014.
[20] 营娇龙, 秦晓鹏, 郎杭, 等. 超高效液相色谱串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试, 2022, 41(3): 394−403. doi: 10.15898/j.cnki.11-2131/td.202111060168
Ying J L, Qin X P, Lang H, et al. Ultra-high performance for determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3): 394−403. doi: 10.15898/j.cnki.11-2131/td.202111060168
[21] 王蕴馨, 刘思洁, 李青, 等. 全自动固相萃取-超高效液相色谱串联质谱法测定生活饮用水及水源水中13种抗生素[J]. 中国卫生工程学, 2018, 17(3): 401−403. doi: 10.19937/j.issn.1671-4199.2018.03.034
Wang Y X, Liu S J, Li Q, et al. Determination of 13 antibiotics in drinking water and source water by automatic solid phase extraction-ultra-high performance liquid chromatography tandem mass spectrometry[J]. Chinese Journal of Public Health Engineering, 2018, 17(3): 401−403. doi: 10.19937/j.issn.1671-4199.2018.03.034
[22] Batt A L, Aga D S. Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination[J]. Analytical Chemistry, 2005, 77(9): 2940−2947. doi: 10.1021/ac048512
[23] Locatelli M A F, Fernando F S, Jardim W F. Determination of antibiotics in Brazilian surface waters using liquid chromatography-electrospray tandem mass spectrometry[J]. Archives of Environmental Contamination and Toxicology, 2011, 60(3): 385−393. doi: 10.1007/s00244-010-9550-1
[24] Garcia-Ac A, Segura P A, Viglino L. On-line solid-phase extraction of large-volume injections coupled to liquid chromatography-tandem mass spectrometry for the quantitation and confirmation of 14 selected trace organic contaminants in drinking and surface water[J]. Journal of Chromatography A, 2009, 1216(48): 8518−8527. doi: 10.1016/j.chroma.2009.10.015
[25] García-Galán M J, Diaz C M S, Barcelo D. Determination of 19 sulfonamides in environmental water samples by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS)[J]. Talanta, 2010, 81(1-2): 355−366. doi: 10.1016/j.talanta.2009.12.009
[26] Oscar J P, Carlos G, Juan V S, et al. Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid chromatography/tandem mass spectrometry[J]. Journal of Chromatography A, 2006, 1103(1): 83−93. doi: 10.1016/j.chroma.2005.10.073
[27] Singer H P, Stoob K, Goetz C W, et al. Fully automated online solid phase extraction coupled directly to liquid chromatography-tandem mass spectrometry. Quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters[J]. Journal of Chromatography A, 2005, 1097(1): 138−147. doi: 10.1016/j.chroma.2005.08.030
[28] Ding J, Ren N, Chen L. On-line coupling of solid-phase extraction to liquid chromatography-tandem mass spectrometry for the determination of macrolide antibiotics in environmental water[J]. Analytica Chimica Acta, 2009, 634(2): 215−221. doi: 10.1016/j.aca.2008.12.022
[29] Feitosa-Felizzola J, Temime B, Chiron S. Evaluating on-line solid-phase extraction coupled to liquid chromatography-ion trap mass spectrometry for reliable quantification and confirmation of several classes of antibiotics in urban wastewaters[J]. Journal of Chromatography A, 2007, 1164(1−2): 95−104. doi: 10.1016/j.chroma.2007.06.071
[30] 吴斌, 苏宇亮, 胡克武, 等. 在线固相萃取UHPLC-MS/MS法测定水中15 种抗生素[J]. 净水技术, 2022, 41(8): 163−168. doi: 10.15890/j.cnki.jsjs.2022.08.023
Wu B, Su Y L, Hu K W, et al. Determination of 15 antibiotics in water by UHPLC-MS/MS with online solid-phase extraction[J]. Water Purification Technology, 2022, 41(8): 163−168. doi: 10.15890/j.cnki.jsjs.2022.08.023
[31] Petrovic M, Hernado M D, Diaz C M S. Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: A review[J]. Journal of Chromatography A, 2005, 1067(1): 1−14. doi: 10.1016/j.chroma.2004.10.110
[32] 许燕娟, 沈斐, 魏焕平, 等. 在线固相萃取-超高效液相色谱-三重四极杆质谱快速测定地表水中磺胺类抗生素[J]. 环境监控与预警, 2022, 14(3): 49−54. doi: 10.3969/j.issn.16746732.2022.03.008
Xu Y J, Shen F, Wei H P, et al. Rapid and ultra-trace level analysis of sulfonamide antibiotics in surface water by on-line solid phase extraction with ultra-performance liquid chromatography-triple quadrupole mass spectrometry[J]. Environmental Monitoring and Forewarning, 2022, 14(3): 49−54. doi: 10.3969/j.issn.16746732.2022.03.008
[33] 宋焕杰, 谢卫民, 王俊, 等. SPE-UPLC-MS/MS同时测定水环境中4大类15种抗生素[J]. 分析试验室, 2022, 41(1): 50−54. doi: 10.13595/j.cnki.issn1000-0720.2021.022005
Song H J, Xie W M, Wang J, et al. Simultaneous determination of 15 antibiotics in 4 categories water environment by SPE-UPLC-MS/MS[J]. Chinese Journal of Analytical Laboratory, 2022, 41(1): 50−54. doi: 10.13595/j.cnki.issn1000-0720.2021.022005
[34] 孙慧婧, 李佩纹, 张蓓蓓, 等. 大体积直接进样-超高效液相色谱-三重四极杆质谱法测定水中7大类42种抗生素残留[J]. 色谱, 2022, 40(4): 333−342. doi: 10.3724/SP.J.1123.2021.08010
Sun H J, Li P W, Zhang B B, et al. Determination of 42 antibiotic residues in seven categories in water using large volume direct injection by ultra high performance liquid chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, 2022, 40(4): 333−342. doi: 10.3724/SP.J.1123.2021.08010
[35] 王娅南, 彭洁, 谢双, 等. 固相萃取-高效液相色谱-串联质谱法测定地表水中40种抗生素[J]. 环境化学, 2020, 39(1): 188−196. doi: 10.7524/j.issn.0254-6108.2019021304
Wang Y N, Peng J, Xie S, et al. Determination of 40 antibiotics in surface water by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2020, 39(1): 188−196. doi: 10.7524/j.issn.0254-6108.2019021304
[36] 高振刚, 梁延鹏, 曾鸿鹄, 等. 固相萃取-超高效液相色谱-三重四极杆质谱法测定水中15种抗生素残留[J]. 分析试验室, 2021, 40(8): 875−880. doi: 10.13595/j.cnki.issn1000-0720.2020.111302
Gao Z G, Liang Y P, Zeng H H, et al. Detection of 15 antibiotic in water by solid phase extraction-ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2021, 40(8): 875−880. doi: 10.13595/j.cnki.issn1000-0720.2020.111302
[37] Turiel E, Bordin G, Rodriguez A R. Determination of quinolones and fluoroquinolones in hospital sewage water by off-line and on-line, solid-phase extraction procedures coupled to HPLC-UV[J]. Journal of Separation Science, 2005, 28(3): 257−267. doi: 10.1002/jssc.200400018
[38] Claude R M. 使用沃特世的On-line SPE/LC/MS/MS技术分析饮用水源地水中的痕量优先污染物[J]. 环境化学, 2010, 29(5): 990−991. doi: 10.1631/jzus.A1000244
Claude R M. Analysis of trace pollutants in drinking water sources using the on-line SPE/LC/MS/MS technology of waters company[J]. Environmental Chemistry, 2010, 29(5): 990−991. doi: 10.1631/jzus.A1000244
-