中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

辽阳—丹东地区土壤重金属分布特征与源解析

艾晓军, 陈占生, 侯红星, 袁国礼, 夏锐, 赵晓峰, 龚仓, 李子奇, 霍东, 刘玖芬. 辽阳—丹东地区土壤重金属分布特征与源解析[J]. 岩矿测试, 2024, 43(5): 755-768. doi: 10.15898/j.ykcs.202404070080
引用本文: 艾晓军, 陈占生, 侯红星, 袁国礼, 夏锐, 赵晓峰, 龚仓, 李子奇, 霍东, 刘玖芬. 辽阳—丹东地区土壤重金属分布特征与源解析[J]. 岩矿测试, 2024, 43(5): 755-768. doi: 10.15898/j.ykcs.202404070080
AI Xiaojun, CHEN Zhansheng, HOU Hongxing, YUAN Guoli, XIA Rui, ZHAO Xiaofeng, GONG Cang, LI Ziqi, HUO Dong, LIU Jiufen. Distribution Characteristics and Source Analysis of Soil Heavy Metals in the Liaoyang—Dandong Region[J]. Rock and Mineral Analysis, 2024, 43(5): 755-768. doi: 10.15898/j.ykcs.202404070080
Citation: AI Xiaojun, CHEN Zhansheng, HOU Hongxing, YUAN Guoli, XIA Rui, ZHAO Xiaofeng, GONG Cang, LI Ziqi, HUO Dong, LIU Jiufen. Distribution Characteristics and Source Analysis of Soil Heavy Metals in the Liaoyang—Dandong Region[J]. Rock and Mineral Analysis, 2024, 43(5): 755-768. doi: 10.15898/j.ykcs.202404070080

辽阳—丹东地区土壤重金属分布特征与源解析

  • 基金项目: 国家重点研发计划项目“黑土区土壤演变时空格局与分类分区保护利用技术的精准配置”(2023YFD1500100);自然资源综合调查指挥中心科技创新基金(KC20220001);中国地质调查局地质调查项目“辽河平原东缘辽阳—丹东地区黑土地地表基质调查”(ZD20220116);中国地质调查局地质调查项目“鲁中丘陵区1∶25万地表基质调查”(DD20243192)
详细信息
    作者简介: 艾晓军,硕士,高级工程师,主要从事水工环调查研究。E-mail:179263760@qq.com
    通讯作者: 刘玖芬,硕士,正高级工程师,主要从事地球化学和分析测试研究。E-mail:13863858360@163.com
  • 中图分类号: S151.93;O657.63

Distribution Characteristics and Source Analysis of Soil Heavy Metals in the Liaoyang—Dandong Region

More Information
  • 辽阳—丹东地区是辽宁省重要粮食与经济作物生产区,以往土壤重金属研究主要集中在200cm以浅,掌握土壤0~500cm重金属分布特征及来源,对监测黑土地质量及研究土壤重金属迁移转化意义重大。本文采集了1381件土壤表层(0~20cm)、160件土壤中层(150~250cm)和75件土壤深层(250~500cm)样品,对其中8种重金属元素和Sc等元素含量进行了测定,探讨研究区土壤重金属在不同层分布规律并解析来源。调查结果显示:土壤表层、中层和深层As、Cd、Cr、Hg、Co、Pb、Sc、Zn和Cu平均含量均未超过污染风险筛选值;通过多元统计,Cd和Hg表层富集明显,Pb和Zn表现一定富集趋势,Cd、Hg和Pb在表层分布不均匀;通过空间分析方法和地累积指数,研究区土壤表层中Cd、Hg、Pb和Zn整体表现为轻微污染,中度污染点零星分布在人员集中和采矿活跃区域;土壤中层Pb元素轻微污染,深层元素均未污染;利用Pearson相关性分析、主成分分析(PCA)和人为贡献率(ACR)揭示Pb、As、Co、Cu、Cr、Sc和Zn主要受自然背景的影响,Pb和Zn局部轻微受人为因素的影响,Cd和Hg则受人为活动的影响显著。研究区需要加强对Hg、Cd、Pb和Zn元素在不同地块富集趋势的监测,中层深度需要关注Pb的富集,同时开展区内不同流域土壤的Cd和Hg在不同层位的迁移转化研究。

  • 加载中
  • 图 1  研究区地质简图及采样点位图

    Figure 1. 

    图 2  土壤重金属元素含量特征

    Figure 2. 

    图 3  土壤重金属元素含量空间分布图

    Figure 3. 

    图 4  不同层位土壤重金属元素地累积指数(Igeo)分布图

    Figure 4. 

    图 5  表层土壤对称-稳健多元成分数据分析

    Figure 5. 

    表 1  分析方法质量监控

    Table 1.  Quality control of analysis methods

    元素 分析方法 检出限(mg/kg)

    准确度(△logC) RSD(%)

    报出率(%)

    As AFS 0.20 0.004~0.024 3.06~6.51 100
    Cd ICP-MS 0.02 0.004~0.039 3.34~8.88 100
    Cr XRF 1.80 0.002~0.011 0.56~3.71 100
    Cu XRF 0.90 0.002~0.036 0.59~6.00 100
    Hg AFS 0.0003 0.000~0.031 2.69~8.59 100
    Pb XRF 1.00 0.000~0.032 0.44~4.90 100
    Zn ICP-OES 0.30 0.000~0.016 0.30~8.58 100
    Sc ICP-OES 0.30 0.000~0.035 2.50~6.26 100
    Co ICP-OES 0.60 0.000~0.035 1.79~6.21 100
    下载: 导出CSV

    表 2  土壤重金属元素含量统计

    Table 2.  Statistics of heavy metal element contents in soil

    统计参数 样品数量 采样深度 As
    (mg/kg)
    Cd
    (mg/kg)
    Cr
    (mg/kg)
    Hg
    (mg/kg)
    Co
    (mg/kg)
    Pb
    (mg/kg)
    Sc
    (mg/kg)
    Zn
    (mg/kg)
    Cu
    (mg/kg)
    平均值 1381 表层 9.643 0.243 70.311 0.063 14.991 39.856 11.695 85.196 24.827
    160 中层 8.828 0.084 70.848 0.028 14.186 27.627 11.736 75.194 23.509
    75 深层 9.442 0.107 70.709 0.033 14.081 30.484 11.752 76.426 24.246
    中值 1381 表层 9.650 0.183 71.678 0.060 15.009 36.867 11.750 87.660 24.917
    160 中层 8.435 0.078 70.700 0.025 14.000 27.300 11.800 75.950 22.100
    75 深层 8.700 0.088 70.30 0.028 13.80 28.70 11.80 75.70 23.00
    最小值 1381 表层 7.294 0.001 43.868 0.020 7.570 18.804 8.483 41.681 15.422
    160 中层 1.410 0.021 19.700 0.006 3.250 2.260 4.350 21.700 6.640
    75 深层 1.150 0.021 10.70 0.0047 2.260 2.260 3.090 12.00 3.54
    最大值 1381 表层 11.79 1.093 142.353 0.181 20.673 99.575 15.357 140.552 32.513
    160 中层 32.70 0.300 277 0.061 37.800 58.500 21.0 0 270 50.0
    75 深层 49.50 1.480 516 0.250 51.90 231 31.40 402 115
    标准偏差 1381 表层 0.984 0.150 13.144 0.019 2.505 14.862 1.483 14.606 3.432
    160 中层 4.514 0.039 31.644 0.014 5.234 8.173 3.336 26.258 8.277
    75 深层 5.470 0.092 33.293 0.024 5.279 14.082 3.381 27.646 10.446
    变异系数 1381 表层 0.102 0.618 0.187 0.300 0.167 0.373 0.127 0.171 0.138
    160 中层 0.511 0.464 0.447 0.517 0.369 0.296 0.284 0.349 0.352
    75 深层 0.579 0.864 0.471 0.731 0.375 0.462 0.288 0.362 0.431
    富集因子 表层/中层 1.096 2.903 0.996 2.249 1.060 1.448 1.000 1.137 1.060
    表层/深层 1.026 2.282 0.999 1.903 1.070 1.314 1.000 1.120 1.029
    背景值 表层 6.720 0.130 60.000 0.030 11.00 24.000 9.300 54.00 18.700
    下载: 导出CSV

    表 3  土壤表层和中层重金属元素之间的相关系数

    Table 3.  Correlation coefficients between heavy metal elements in surface and deep soil

    元素 Pearson系数
    变质岩 沉积岩 第四系冰碛物 第四系冲积物 花岗岩
    As 0.491** 0.408* 0.285* 0.530** 0.491**
    Cd 0.658** 0.112 0.045 0.208 0.613**
    Cr 0.713** 0.641** 0.742 ** 0.571** 0.596**
    Hg 0.283 0.027 0.073 0.215 0.236
    Co 0.723** 0.774** 0.723** 0.654** 0.600**
    Pb 0.584** 0.477** 0.481** 0.539** 0.507**
    Sc 0.620** 0.891** 0.558** 0.521** 0.541**
    Zn 0.078 0.623** 0.658** 0.391** 0.326*
    Cu 0.393* 0.899** −0.049 0.506** 0.290*

    注:“**”表示在 0.01 级别(双尾)相关性显著;“*”表示在 0.05 级别(双尾)相关性显著。

    下载: 导出CSV

    表 4  表层土壤人为贡献率统计

    Table 4.  Statistics of anthropogenic contribution rate of surface soil

    人为贡献率
    数值范围
    样品数量(件)
    As Cd Cr Hg Co Pb Sc Zn Cu
    ACR>40% 2 398 5 686 0 262 18 0
    ACR>60% 0 207 0 56 0 43 0 0
    下载: 导出CSV
  • [1]

    黄勇, 段续川, 袁国礼. 北京市延庆区土壤重金属元素地球化学特征及其来源分析[J]. 现代地质, 2022, 36(2): 634−644. doi: 10.19657/j.geoscience.1000-8527.2022.02.24

    Huang Y, Duan X C, Yuan G L. Geochemical characteristics and sources of heavy metals in soils of Yanqing District, Beijing[J]. Geoscience, 2022, 36(2): 634−644. doi: 10.19657/j.geoscience.1000-8527.2022.02.24

    [2]

    孙凯, 孙彬彬, 周国华, 等. 福建龙海土壤重金属含量特征及影响因素研究[J]. 现代地质, 2018, 32(6): 197−205. doi: 10.19657/j.geoscience.1000-8527.2018.06.18

    Sun K, Sun B B, Zhou G H, et al. Characteristics and influencing factors of heavy metals in soils of Longhai, Fujian[J]. Geoscience, 2018, 32(6): 197−205. doi: 10.19657/j.geoscience.1000-8527.2018.06.18

    [3]

    汤金来, 赵宽, 胡睿鑫, 等. 滁州市表层土壤重金属含量特征、源解析及污染评价[J]. 环境科学, 2023, 44(6): 3562−3572.

    Tang J L, Zhao K, Hu R X, et al. Characteristics, source analysis and pollution assessment of heavy metals in surface soil of Chuzhou[J]. Environmental Science, 2023, 44(6): 3562−3572.

    [4]

    宋运红, 杨凤超, 刘凯, 等. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064−1075. doi: 10.11720/wtyht.2022.0048

    Song Y H, Yang F C, Liu K, et al. Multivariate statistical analysis of distribution characteristics and influencing factors of heavy metal elements in cultivated soil in Sanjiang Plain[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1064−1075. doi: 10.11720/wtyht.2022.0048

    [5]

    姚晓峰, 杨建锋, 左力艳, 等. 地表基质的内涵辨析与调查思路[J]. 地质通报, 2022, 41(12): 2097−2105. doi: 10.12097/j.issn.1671-2552.2022.12.002

    Yao X F, Yang J F, Zuo L Y, et al. Connotation analysis and investigation of surface matrix[J]. Geological Bulletin of China, 2022, 41(12): 2097−2105. doi: 10.12097/j.issn.1671-2552.2022.12.002

    [6]

    Yuan G L, Sun T H, Han P, et al. Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital iron & steel factory, Beijing, China[J]. Journal of Geochemical Exploration, 2013, 130(1): 15−21. doi: 10.1016/j.gexplo.2013.02.010

    [7]

    Wang A T, Wang Q, Li J, et al. Geo-statistical and multivariate analyses of potentially toxic elements’ distribution in the soil of Hainan Island (China): A comparison between the topsoil and subsoil at a regional scale[J]. Journal of Geochemical Exploration, 2019, 197: 48−59. doi: 10.1016/j.gexplo.2018.11.008

    [8]

    王诚煜, 李玉超, 于成广, 等. 葫芦岛东北部土壤重金属分布特征及来源解析[J]. 中国环境科学, 2021, 41(11): 5227−5236. doi: 10.19674/j.cnki.issn1000-6923.20210608.007

    Wang C Y, Li Y C, Yu C G, et al. Distribution characteristics and sources of heavy metals in soil of Northeast Huludao[J]. China Environmental Science, 2021, 41(11): 5227−5236. doi: 10.19674/j.cnki.issn1000-6923.20210608.007

    [9]

    王建明, 施泽明, 郑培佳, 等. 四川铅锌冶炼工业区周边土壤重金属地球化学特征及源解析[J]. 地球与环境, 2023, 51(3): 287−298. doi: 10.14050/j.cnki.1672-9250.2022.050.083

    Wang J M, Shi Z M, Zheng P J, et al. Geochemical characteristics and source apportionment of heavy metals in soil around Sichuan lead-zinc smelting industrial zone[J]. Earth and Environment, 2023, 51(3): 287−298. doi: 10.14050/j.cnki.1672-9250.2022.050.083

    [10]

    Zhu Y, An Y F, Li X Y, et al. Geochemical characteristics and health risks of heavy metals in agricultural soils and crops from a coal mining area in Anhui Province, China[J]. Environmental Research, 2023, 241(1): 117670−117680. doi: 10.1016/j.envres,2023.117670

    [11]

    Xia F, Zhao Z F, Niu X, et al. Integrated pollution analysis, pollution area identification and source apportionment of heavy metal contamination in agricultural soil[J]. Journal of Hazardous Materials, 2024, 465(3): 133215.1−133215.10. doi: 10.1016/j.jhazmat.2023.133215

    [12]

    匡荟芬, 胡春华, 吴根林, 等. 结合主成分分析法(PCA)和正定矩阵因子分解法(PMF)的鄱阳湖丰水期表层沉积物重金属源解析[J]. 湖泊科学, 2019, 32(4): 964−976. doi: 10.18307/2020.0406

    Kuang H F, Hu C H, Wu G L, et al. Analysis of heavy metal sources in surface sediments of Poyang Lake in wet period by combining principal component analysis (PCA) and positive definite matrix factorization (PMF)[J]. Lake Science, 2019, 32(4): 964−976. doi: 10.18307/2020.0406

    [13]

    汪春鹏, 尤建功, 孙浩, 等. 辽阳市土壤重金属含量特征及潜在风险评价[J]. 地质通报, 2021, 40(10): 1680−1687. doi: 10.12097/j.issn.1671-2552.2021.10.010

    Wang C P, You J G, Sun H, et al. Characteristics and potential risk assessment of soil heavy metal content in Liaoyang City[J]. Geological Bulletin, 2021, 40(10): 1680−1687. doi: 10.12097/j.issn.1671-2552.2021.10.010

    [14]

    丁宇雪, 初禹, 金晶泽, 等. 东北地区自然资源监测与黑土退化研究[M]. 武汉: 中国地质大学出版社, 2021: 199−205.

    Ding Y X, Chu Y, Jin J Z, et al. Study on natural resources monitoring and degradation of black soil in Northeast China[M]. Wuhan: China University of Geosciences Press, 2021: 199−205.

    [15]

    Wu B, Li L L, Guo S H, et al. Source apportionment of heavy metals in the soil at the regional scale based on soil-forming processes[J]. Journal of Hazardous Materials, 2023, 448(1): 130910−130915. doi: 10.2139/ssrn.4091461

    [16]

    赵秀芳, 张永帅, 冯爱平, 等. 山东安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446−1454.

    Zhao X F, Zhang Y S, Feng A P, et al. characteristics and environmental evaluation of heavy metal elements in agricultural soils in Anqiu, Shandong Province[J]. Geophysical and Chemical Exploration, 2020, 44(6): 1446−1454.

    [17]

    Hou S N, Na Z, Lin T. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L. ) rhizospheric soil of non-ferrous metals smelting area[J]. Environmental Monitoring and Assessment, 2019, 10(191): 1−10. doi: 10.1007/s10661-019-7793-5

    [18]

    Ali I, Khan I M, Khan M J, et al. Exploring geochemical assessment and spatial distribution of heavy metals in soils of Southern KP, Pakistan: Employing multivariate analysis[J]. International Journal of Environmental Analytical Chemistry, 2020, 17(102): 1−15. doi: 10.1080/03067319.2020.1804894

    [19]

    赵岩, 郭常来, 崔健, 等. 辽宁省锦州市北镇农业区土壤重金属分布特征、生态风险评价及源解析[J/OL]. 中国地质(2023-03-14 ).https://kns.cnki.net/kcms/detail/11.1167.P.20230313.1251.002.html.

    Zhao Y, Guo C L, Cui J, et al. Distribution characteristics, ecological risk assessment and source analysis of soil heavy metals in Beizhen agricultural area, Jinzhou City, Liaoning Province[J/OL]. Geology in China (2023-03-14).https://kns.cnki.net/kcms/detail/11.1167.P.20230313.1251.002.html.

    [20]

    刘玖芬, 赵晓峰, 侯红星, 等. 地表基质调查分层及分层测试指标体系设计与构建[J]. 岩矿测试, 2024, 43(1): 16−29. doi: 10.15898/j.ykcs.202310080157

    Liu J F, Zhao X F, Hou H X, et al. The surface of the substrate layered and layered testing index system design and construction[J]. Rock and Mineral Analysis, 2024, 43(1): 16−29. doi: 10.15898/j.ykcs.202310080157

    [21]

    赵君, 饶竹, 王鹏, 等. 黑龙江讷河市富锗土壤地球化学特征及影响因素浅析[J]. 岩矿测试, 2022, 9(4): 642−651. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204013

    Zhao J, Rao Z, Wang P, et al. Heilongjiang nehe rich germanium soil geochemical characteristics and influencing factors of analyses[J]. Rock and Mineral Analysis, 2022, 9(4): 642−651. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204013

    [22]

    赵恒谦, 常仁强, 金倩, 等. 河北西石门铁矿区土壤重金属污染空间分析及风险评价[J]. 岩矿测试, 2023, 42(2): 371−382. doi: 10.15898/j.carolcarrollnki.11-2131/td.,202203290066

    Zhao H Q, Chang R Q, Jin Q, et al. Hebei westone door iron mining area of soil heavy metal pollution of spatial analysis and risk evaluation[J]. Rock and Mineral Analysis, 2023, 42(2): 371−382. doi: 10.15898/j.carolcarrollnki.11-2131/td.,202203290066

    [23]

    Williams A J, Antoine J. Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index[J]. Marine Pollution Bulletin, 2020, 157: 111288.

    [24]

    陈泽华, 焦思, 余爱华, 等. 土壤重金属污染评价方法探析——以南京市为例[J]. 森林工程, 2019, 36(3): 28−36. doi: 10.16270/j.cnki.slgc.2020.03.005

    Chen Z H, Jiao S, Yu A H, et al. Evaluation methods of soil heavy metal pollution: A case study of Nanjing[J]. Forest Engineering, 2019, 36(3): 28−36. doi: 10.16270/j.cnki.slgc.2020.03.005

    [25]

    Bing H J, Wu Y H, Zhou J, et al. Historical trends of anthropogenic metals in Eastern Tibetan Plateauas reconstructed from alpine lake sediments over the last century[J]. Chemosphere, 2016, 148: 211−219. doi: 10.1016/j.chemosphere.2016.01.042

    [26]

    张宪依, 庞成宝, 王安婷, 等. 海南岛表层及深层土壤重金属分布特征及源解析[J]. 现代地质, 2020, 34(5): 970−978.

    Zhang X Y, Pang C B, Wang A T, et al. Distribution and source analysis of heavy metals in surface and deep soil of Hainan Island[J]. Geoscience, 2020, 34(5): 970−978.

    [27]

    Gao L, Wang Z W, Shan J J, et al. Aquatic environ mental changes and anthropogenic activities reflected by the sedi-mentary records of the Shima River, Southern China[J]. Environmental Pollution, 2017, 224(5): 70−81. doi: 10.1016/j.envpol.2016.12.056

    [28]

    刘兴旺, 苗万里. 基于多元统计和地统计分析法的县域土壤重金属源解析[C]//中国土壤学会土壤环境专业委员会第十九次会议暨农田土壤污染与修复研讨会, 2017.

    Liu X W, Miao W L. Analysis of heavy metal sources in county soil based on multivariate statistics and geostatistical analysis[C]//The 19th Meeting of the Soil Environment Professional Committee of the Chinese Soil Society and the Symposium on Agricultural Soil Pollution and Remediation, 2017.

    [29]

    Duan X C, Yu H R, Ye T R, et al. Geostatistical mapping and quantitative source apportionment of potentially toxic elements in top- and sub-soils: A case of suburban area in Beijing, China[J]. Ecological Indicators, 2020, 112(5): 106085.1−106085.11. doi: 10.1016/j.ecolind.2020.106085

    [30]

    Xia R, Zhang S Q, Li J, et al. Spatial distribution and quantitative identification of contributions for nutrient and beneficial elements in top- and sub-soil of Huairou District of Beijing, China[J]. Ecological Indicators, 2023, 154: 110853. doi: 10.1016/j.ecolind.2023.110853

    [31]

    臧传子, 温汉辉, 蔡立梅, 等. 广东省揭阳市土壤铅的空间分布特征及影响因素[J]. 现代地质, 2019, 35(5): 1425−1432. doi: 10.19657/j.geoscience.1000-8527.2021.24

    Zang C Z, Wen H H, Cai L M, et al. Spatial distribution characteristics and influencing factors of soil lead in Jieyang City, Guangdong Province[J]. Geoscience, 2019, 35(5): 1425−1432. doi: 10.19657/j.geoscience.1000-8527.2021.24

    [32]

    刘忆莹, 裴久渤, 汪景宽. 东北典型黑土区耕地有机质与pH的空间分布规律及其相互关系[J]. 农业资源与环境学报, 2019, 36(6): 738−743.

    Liu Y Y, Pei J B, Wang J K. Spatial distribution and relationship between organic matter and pH in the typical black soil region of Northeast China[J]. Journal of Agricultural Resources and Environment, 2019, 36(6): 738−743.

    [33]

    Liu N T, Cai X Y, Jia L Y, et al. Quantifying mercury distribution and source contribution in surface soil of Qinghai—Tibetan Plateau using mercury isotopes, environmental science & technology[J]. 2023, 57(14): 5903–5912.

    [34]

    Ma Z W, Chen K, Li Z Y, et al. Heavy metals in soils and road dusts in the mining areas of Western Suzhou, China: A preliminary identification of contaminated sites[J]. Journal of Soils and Sediments, 2016, 16: 204−214. doi: 10.1007/s11368-015-1208-1

    [35]

    裴小龙, 祝晓松, 冯欣, 等. 基于自然资源统一管理的地表基质模型、分类及调查研究[J/OL].地质通报(2024-06-06). https://link.cnki.net/urlid/11.4648.P.20240605.1410.004.

    Pei X L, Zhu X S, Feng X, et al. Based on unity of natural resources management of surface matrix model, classification and investigation[J/OL]. Geological Bulletin (2024-06-06). https://link.cnki.net/urlid/11.4648.P.20240605.1410.004.

  • 加载中

(5)

(4)

计量
  • 文章访问数:  365
  • PDF下载数:  99
  • 施引文献:  0
出版历程
收稿日期:  2024-04-07
修回日期:  2024-08-27
录用日期:  2024-08-31
刊出日期:  2024-09-30

目录