中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

土壤中典型矿物对锑的吸附-沉积行为研究

郭贵宾, 袁晓雅, 黄理金, 帅琴, 胡圣虹, 欧阳磊. 土壤中典型矿物对锑的吸附-沉积行为研究[J]. 岩矿测试, 2025, 44(1): 127-139. doi: 10.15898/j.ykcs.202404210093
引用本文: 郭贵宾, 袁晓雅, 黄理金, 帅琴, 胡圣虹, 欧阳磊. 土壤中典型矿物对锑的吸附-沉积行为研究[J]. 岩矿测试, 2025, 44(1): 127-139. doi: 10.15898/j.ykcs.202404210093
GUO Guibin, YUAN Xiaoya, HUANG Lijin, SHUAI Qin, HU Shenghong, OUYANG Lei. Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil[J]. Rock and Mineral Analysis, 2025, 44(1): 127-139. doi: 10.15898/j.ykcs.202404210093
Citation: GUO Guibin, YUAN Xiaoya, HUANG Lijin, SHUAI Qin, HU Shenghong, OUYANG Lei. Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil[J]. Rock and Mineral Analysis, 2025, 44(1): 127-139. doi: 10.15898/j.ykcs.202404210093

土壤中典型矿物对锑的吸附-沉积行为研究

  • 基金项目: 国家自然科学基金项目(22106147);湖北省自然科学基金项目(2024AFD399)
详细信息
    作者简介: 郭贵宾,硕士研究生,主要从事锑环境化学行为研究。E-mail:3035887493@cug.edu.cn
    通讯作者: 欧阳磊,博士,副教授,主要从事分析地球化学研究。E-mail:ouyanglei@cug.edu.cn
  • 中图分类号: X131.3

Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil

More Information
  • 矿物开采、煤炭燃烧等人类活动使大量的锑进入土壤,造成严重的锑污染,危害人类健康。厘清环境中锑的吸附-沉积行为对锑的环境归趋预测及污染防治具有重要意义,但土壤中典型矿物对锑的吸附沉积行为缺乏系统比较,界面吸附形态也难以表征。为了系统地比较土壤中典型矿物对锑的吸附能力差异,本文选用土壤中常见的5种金属氧化物(赤铁矿、针铁矿、水铁矿、氧化铝、斜方锰矿)和1种黏土矿物(高岭石),探究Sb(Ⅲ)和Sb(Ⅴ)在其表面的吸附热、动力学行为,并基于原位拉曼光谱表征分析了锑的吸附形态,推测其吸附机理。结果表明:铁锰氧化物对锑的吸附容量较大,而氧化铝、高岭石对锑吸附容量较小,6种典型矿物对Sb(Ⅲ)和Sb(Ⅴ)吸附容量(mg/g)分别为水铁矿(101.4、55.9)>斜方锰矿(16.52、7.58)>针铁矿(13.30、5.67)>赤铁矿(5.13、3.70)>氧化铝(1.66、1.69)>高岭石(0.27、0.51);受锑存在形态及矿物表面电位的影响,酸性条件下有利于Sb(Ⅴ)的吸附,吸附量较之碱性环境有24%~78%增加,而Sb(Ⅲ)的吸附受pH值影响较小(变化范围0.3%~14%);土壤中典型矿物对不同浓度的Sb(Ⅴ)主要为吸附作用,而Sb(Ⅲ)在较高浓度时,可能在矿物表面发生沉积,形成Sb2O3。本文通过采用拉曼光谱,基于锑的特征谱峰,可方便地对矿物表面吸附态和沉积态的锑进行原位表征。

  • 加载中
  • 图 1  六种矿物材料的X射线衍射谱图

    Figure 1. 

    图 2  六种矿物材料的氮气吸附-脱附等温线

    Figure 2. 

    图 3  六种矿物材料吸附(a) Sb(Ⅲ)和(b) Sb(Ⅴ)的吸附动力学

    Figure 3. 

    图 4  六种矿物材料吸附(a) Sb(Ⅲ)和(b) Sb(Ⅴ)的吸附等温线

    Figure 4. 

    图 5  pH值对(a)Sb(Ⅲ)、(b)Sb(Ⅴ)吸附的影响和(c)六种矿物的Zeta电位

    Figure 5. 

    图 6  高浓度(a) Sb(Ⅲ)和(b) Sb(Ⅴ)在6种矿物上的吸附等温线

    Figure 6. 

    图 7  六种矿物材料吸附Sb(Ⅴ)前后的拉曼光谱谱图

    Figure 7. 

    图 8  六种矿物材料吸附Sb(Ⅲ)前后的拉曼光谱谱图

    Figure 8. 

    表 1  Sb(Ⅲ)和Sb(Ⅴ)的吸附动力学拟合参数

    Table 1.  Fitting parameters of adsorption kinetics for Sb(Ⅲ) and Sb(Ⅴ)

    矿物材料 Sb(Ⅲ)准一级动力学 Sb(Ⅲ)准二级动力学 Sb(Ⅴ)准一级动力学 Sb(Ⅴ)准二级动力学
    K1
    (h−1)
    qe
    (mg/g)
    R2 K2
    [g/(mg·h)]
    qe
    (mg/g)
    R2 K1
    (h−1)
    qe
    (mg/g)
    R2 K2
    [g/(mg·h)]
    qe
    (mg/g)
    R2
    赤铁矿 2.58 7.35 0.750 0.88 7.45 0.911 1.15 1.05 0.721 1.52 1.13 0.913
    针铁矿 0.53 7.83 0.896 0.12 8.22 0.986 1.75 2.74 0.721 1.05 2.86 0.924
    水铁矿 4.74 33.7 0.645 0.40 34.4 0.957 3.33 24.1 0.946 0.33 24.8 0.999
    斜方锰矿 82.1 7.03 0.716 41.9 7.22 0.940 0.75 4.90 0.832 0.20 5.30 0.921
    氧化铝 6.58 0.71 0.958 15.5 0.73 0.976 4.49 0.59 0.631 16.1 0.61 0.933
    高岭石 6.45 0.08 0.927 132.8 0.08 0.973 0.34 0.09 0.894 9.17 0.06 0.939
    下载: 导出CSV

    表 2  Sb(Ⅲ)和Sb(Ⅴ)的吸附等温线拟合参数

    Table 2.  Fitting parameters of adsorption isotherms of Sb(Ⅲ) and Sb(Ⅴ)

    材料 Sb(Ⅲ)-Langmuir Sb(Ⅲ)-Freundlich Sb(Ⅴ)-Langmuir Sb(Ⅴ)-Freundlich
    KL
    (L/mg)
    qm
    (mg/g)
    R2 n KF
    [(mg/g)(mg/L)−1/n]
    R2 KL
    (L/mg)
    qm
    (mg/g)
    R2 n KF
    [(mg/g)(mg/L)−1/n]
    R2
    赤铁矿 0.48 5.13 0.961 2.90 1.90 0.996 0.11 3.70 0.925 2.43 0.70 0.997
    针铁矿 0.21 13.30 0.834 2.22 3.05 0.997 0.14 5.67 0.987 2.79 1.30 0.994
    水铁矿 1.01 101.4 0.980 2.09 45.3 0.979 1.00 55.9 0.789 4.62 31.7 0.987
    斜方锰矿 0.15 16.52 0.964 2.19 3.19 0.993 0.76 7.58 0.950 4.62 3.56 0.995
    氧化铝 0.08 1.66 0.961 1.84 0.20 0.993 0.10 1.69 0.871 2.75 0.36 0.983
    高岭石 0.21 0.27 0.967 2.96 0.08 0.957 0.12 0.51 0.990 2.27 0.09 0.921
    下载: 导出CSV

    表 3  Sb(Ⅲ)或Sb(Ⅴ)氧化物和相关矿物的拉曼光谱特征峰位及归属

    Table 3.  The characteristic Raman peaks of Sb(Ⅲ) or Sb(Ⅴ) oxides and the minerals and their assignment

    材料 特征峰
    (cm−1)
    归属 材料 特征峰
    (cm−1)
    归属
    Sb2O338-39 190 F2g振动 针铁矿40-41 224 Fe—O拉伸振动
    374 F2g振动 405 Fe—OH 拉伸振动
    452 Ag振动 666 Fe—O拉伸振动
    Sb2O542-43 495 Sb-O伸缩振动 斜方锰矿44-45 575 Mn—O拉伸振动
    635 Sb-O伸缩振动 645 Mn—O对称伸缩振动
    赤铁矿46-47 227 A1g振动 高岭石48-49 189 A1g(ν1)AlO6振动
    293 Eg振动 409 ν2(e)SiO4振动
    413 Eg振动 460 ν2(e)SiO4振动
    499 Eg振动 640 Si-O-Al伸缩振动
    614 Eg振动 717 Si-O-Al伸缩振动
    氧化铝50-51 378 Eg振动 787 OH伸缩振动
    417 A1g振动
    下载: 导出CSV
  • [1]

    Babushok V I, Deglmann P, Krämer R, et al. Influence of antimony-halogen additives on flame propagation[J]. Combustion Science and Technology, 2017, 189(2): 290−311. doi: 10.1080/00102202.2016.1208187

    [2]

    Nishad P A, Bhaskarapillai A. Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies[J]. Chemosphere, 2021, 277: 130252. doi: 10.1016/j.chemosphere.2021.130252

    [3]

    Jia X, Ma L, Liu J, et al. Reduction of antimony mobility from Sb-rich smelting slag by Shewanella oneidensis: Integrated biosorption and precipitation[J]. Journal of Hazardous Materials, 2022, 426: 127385. doi: 10.1016/j.jhazmat.2021.127385

    [4]

    Li J, Zheng B H, He Y, et al. Antimony contamination, consequences and removal techniques: A review[J]. Ecotoxicology and Environmental Safety, 2018, 156: 125−134. doi: 10.1016/j.ecoenv.2018.03.024

    [5]

    Filella M, Belzile N, Chen Y W. Antimony in the environment: A review focused on natural waters: Ⅰ. Occurrence[J]. Earth-Science Reviews, 2002, 57(1−2): 125−176. doi: 10.1016/S0012-8252(01)00070-8

    [6]

    He M, Wang X, Wu F, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421: 41−50.

    [7]

    牛斯达, 赵立群, 牛向龙, 等. 应用电子探针技术研究桂西南下雷锰矿床锰钾矿的结构特征[J]. 岩矿测试, 2022, 41(2): 239−250. doi: 10.15898/j.cnki.11-2131/td.202109040115

    Niu S D, Zhao L Q, Niu X L, et al. The application of EPMA in the textural characterization of cryptomelane in the Xialei manganese deposit, Southwest Guangxi[J]. Rock and Mineral Analysis, 2022, 41(2): 239−250. doi: 10.15898/j.cnki.11-2131/td.202109040115

    [8]

    Dupont D, Arnout S, Jones P T, et al. Antimony recovery from end-of-life products and industrial process residues: A critical review[J]. Journal of Sustainable Metallurgy, 2016, 2(1): 79−103. doi: 10.1007/s40831-016-0043-y

    [9]

    Chen L, Ren B, Deng X, et al. Potential toxic heavy metals in village rainwater runoff of antimony mining area, China: Distribution, pollution sources, and risk assessment[J]. Science of the Total Environment, 2024(920): 170702. doi: https://doi.org/10.1016/j.scitotenv.2024.170702

    [10]

    孟郁苗, 胡瑞忠, 高剑峰, 等. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4): 339−348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

    Meng Y M, Hu R Z, Gao J F, et al. Research progress on Sb geochemistry and Sb isotopes[J]. Rock and Mineral Analysis, 2016, 35(4): 339−348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

    [11]

    Su X, Wang X, Zhou Z, et al. Can antimony contamination in soil undermine the ecological contributions of earthworms?[J]. Science of the Total Environment, 2023, 904: 166305. doi: 10.1016/j.scitotenv.2023.166305

    [12]

    Vidya C S N, Shetty R, Vaculíková M, et al. Antimony toxicity in soils and plants, and mechanisms of its alleviation[J]. Environmental and Experimental Botany, 2022, 202: 104996. doi: 10.1016/j.envexpbot.2022.104996

    [13]

    Herath I, Vithanage M, Bundschuh J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223: 545−559. doi: 10.1016/j.envpol.2017.01.057

    [14]

    Caplette J N, Wilson S C, Mestrot A. Antimony release and volatilization from organic-rich and iron-rich submerged soils[J]. Journal of Hazardous Materials, 2024, 470: 134230. doi: 10.1016/j.jhazmat.2024.134230

    [15]

    Chen L, Han Y, Li W, et al. Removal of Sb(Ⅴ) from wastewater via siliceous ferrihydrite: Interactions among ferrihydrite, coprecipitated Si, and adsorbed Sb(Ⅴ)[J]. Chemosphere, 2022, 291: 133043. doi: 10.1016/j.chemosphere.2021.133043

    [16]

    Kumar R, Jing C, Yan L. A critical review on arsenic and antimony adsorption and transformation on mineral facets[J/OL]. Journal of Environmental Sciences (2024-02-01). https://doi.org/10.1016/j.jes.2024.01.016

    [17]

    Zhou W, Zhou J, Feng X, et al. Antimony isotope fractionation revealed from EXAFS during adsorption on Fe(oxyhydr) oxides[J]. Environmental Science & Technology, 2023, 57(25): 9353−9361. doi: 10.1021/acs.est.3c01906

    [18]

    Hei E, He M, Zhang E, et al. Risk assessment of antimony-arsenic contaminated soil remediated using zero-valent iron at different pH values combined with freeze-thaw cycles[J]. Environmental Monitoring and Assessment, 2024, 196(5): 1−17. doi: 10.1007/s10661-024-12601-6

    [19]

    Peng L, Wang N, Xiao T, et al. A critical review on adsorptive removal of antimony from waters: Adsorbent species, interface behavior and interaction mechanism[J]. Chemosphere, 2023: 138529.

    [20]

    Sun Q, Liu C, Alves M E, et al. The oxidation and sorption mechanism of Sb on δ-MnO2[J]. Chemical Engineering Journal, 2018, 342: 429−437. doi: 10.1016/j.cej.2018.02.091

    [21]

    Nie J, Yao Z, Shao P, et al. Revisiting the adsorption of antimony on manganese dioxide: The overlooked dissolution of manganese[J]. Chemical Engineering Journal, 2022, 429: 132468. doi: 10.1016/j.cej.2021.132468

    [22]

    Wu Y, Sun G, Huang J H, et al. Antimony isotopic fractionation during intensive chemical weathering of basalt in the tropics[J]. Geochimica et Cosmochimica Acta, 2024, 367: 29−40. doi: 10.1016/j.gca.2023.12.029

    [23]

    Zhou W, Zhou A, Wen B, et al. Antimony isotope fractionation during adsorption on aluminum oxides[J]. Journal of Hazardous Materials, 2022, 429: 128317. doi: 10.1016/j.jhazmat.2022.128317

    [24]

    Xi J, He M, Lin C. Adsorption of antimony(Ⅲ) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition[J]. Microchemical Journal, 2011, 97(1): 85−91. doi: 10.1016/j.microc.2010.05.017

    [25]

    Dousova B, Lhotka M, Filip J, et al. Removal of arsenate and antimonate by acid-treated Fe-rich clays[J]. Journal of Hazardous Materials, 2018, 357: 440−448. doi: 10.1016/j.jhazmat.2018.06.028

    [26]

    Zhang Y, Ding C, Gong D, et al. A review of the environmental chemical behavior, detection and treatment of antimony[J]. Environmental Technology & Innovation, 2021, 24: 102026. doi: 10.1016/j.eti.2021.102026

    [27]

    Tang H, Hassan M U, Nawaz M, et al. A review on sources of soil antimony pollution and recent progress on remediation of antimony polluted soils[J]. Ecotoxicology and Environmental Safety, 2023, 266: 115583. doi: 10.1016/j.ecoenv.2023.115583

    [28]

    Schwertmann U, Cornell R M. Iron oxides in the laboratory: Preparation and characterization[M]. John Wiley & Sons, 2008.

    [29]

    Balboni E, Smith K F, Moreau L M, et al. Transformation of ferrihydrite to goethite and the fate of plutonium[J]. ACS Earth and Space Chemistry, 2020, 4(11): 1993−2006. doi: 10.1021/acsearthspacechem.0c00195

    [30]

    崔婷, 叶欣, 朱霞萍, 等. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187

    Cui T, Ye X, Zhu X P, et al. Determination of various forms of iron and manganese oxides and the main controlling factors of absorption of Sb(Ⅲ) in soil[J]. Rock and Mineral Analysis, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187

    [31]

    Wang X, He M, Lin C, et al. Antimony(Ⅲ) oxidation and antimony(V) adsorption reactions on synthetic manganite[J]. Geochemistry, 2012, 72: 41−47. doi: 10.1016/j.chemer.2012.02.002

    [32]

    Sukul P, Lamshöft M, Zühlke S, et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems[J]. Chemosphere, 2008, 73(8): 1344−1350. doi: 10.1016/j.chemosphere.2008.06.066

    [33]

    Wu T, Liu C, Cui P, et al. Kinetics of coupled sorption and abiotic oxidation of antimony(Ⅲ) in soils[J]. Geoderma, 2023, 434: 116486. doi: 10.1016/j.geoderma.2023.116486

    [34]

    Liu X, Wang Y, Xiang H, et al. Unveiling the crucial role of iron mineral phase transformation in antimony(V) elimination from natural water[J]. Eco-Environment & Health, 2023, 2(3): 176−83. doi: 10.1016/j.eehl.2023.07.006

    [35]

    Mukhopadhyay R, Sarkar B, Barman A, et al. Arsenic adsorption on modified clay minerals in contaminated soil and water: Impact of pH and competitive anions[J]. Clean-Soil, Air, Water, 2021, 49(4): 2000259. doi: 10.1002/clen.202000259

    [36]

    Li Y, Liu J, Wang Y, et al. Contribution of components in natural soil to Cd and Pb competitive adsorption: Semi-quantitative to quantitative analysis[J]. Journal of Hazardous Materials, 2023, 441: 129883. doi: 10.1016/j.jhazmat.2022.129883

    [37]

    Yan L, Chan T, Jing C. Mechanistic study for antimony adsorption and precipitation on hematite facets[J]. Environmental Science & Technology, 2022, 56(5): 3138−3146. doi: 10.1021/acs.est.1c07801

    [38]

    随志磊. 极端条件下几种稀土盐和氧化锑的相变和发光研究[D]. 合肥: 中国科学技术大学, 2017: 10−50.

    Sui Z L. Studies on phase transitions and photo-luminescence of several rare earth sands and antimony trioxide in extreme conditions[D]. Hefei: University of Science and Technology of China, 2017: 10−50.

    [39]

    Pereira A L J, Gracia L, Santamaría-Pérez D, et al. Structural and vibrational study of cubic Sb2O3 under high pressure[J]. Physical Review B, 2012, 85(17): 174108. doi: 10.1103/PhysRevB.85.174108

    [40]

    Abrashev M V, Ivanov V G, Stefanov B S, et al. Raman spectroscopy of alpha-FeOOH (goethite) near antiferromagnetic to paramagnetic phase transition[J]. Journal of Applied Physics, 2020, 127(20): 205108.

    [41]

    de Faria D L A, Lopes F N. Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them?[J]. Vibrational Spectroscopy, 2007, 45(2): 117−121. doi: 10.1016/j.vibspec.2007.07.003

    [42]

    Chistyakova N, Antonova A, Elizarov I, et al. Mössbauer, nuclear forward scattering, and Raman spectroscopic approaches in the investigation of bioinduced transformations of mixed-valence antimony oxide[J]. The Journal of Physical Chemistry A, 2021, 125(1): 139−145. doi: 10.1021/acs.jpca.0c08865

    [43]

    Frost R L, Bahfenne S. Raman spectroscopic study of the antimonate mineral brizziite NaSbO3[J]. Radiation Effects and Defects in Solids, 2010, 165(3): 206−210. doi: 10.1080/10420150903513046

    [44]

    Zahn D R T. Vibrational spectroscopy of bulk and supported manganese oxides[J]. Physical Chemistry Chemical Physics, 1999, 1(1): 185−190. doi: 10.1039/A807821A

    [45]

    Julien C, Massot M, Rangan S, et al. Study of structural defects in γ-MnO2 by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2002, 33(4): 223−228. doi: 10.1002/jrs.838

    [46]

    Shim S H, Duffy T S. Raman spectroscopy of Fe2O3 to 62GPa[J]. American Mineralogist, 2002, 87(2−3): 318−326. doi: 10.2138/am-2002-2-314

    [47]

    Marshall C P, Dufresne W J B. Resonance Raman and polarized Raman scattering of single-crystal hematite[J]. Journal of Raman Spectroscopy, 2022, 53(5): 947−955. doi: 10.1002/jrs.6309

    [48]

    Basu A, Mookherjee M, Clapp S, et al. High-pressure Raman scattering and X-ray diffraction study of kaolinite, Al2Si2O5(OH)4[J]. Applied Clay Science, 2023, 245: 107144.

    [49]

    Frost R L, Fredericks P M, Kloprogge J T, et al. Raman spectroscopy of kaolinites using different excitation wavelengths[J]. Journal of Raman Spectroscopy, 2001, 32(8): 657−663. doi: 10.1002/jrs.722

    [50]

    Delbé K, de Sousa C, Grizet F, et al. Determination of the pressure dependence of Raman mode for an alumina-glass pair in hertzian contact[J]. Materials, 2022, 15(23): 8645. doi: 10.3390/ma15238645

    [51]

    Misra A, Bist H D, Navati M S, et al. Thin film of aluminum oxide through pulsed laser deposition: A micro-Raman study[J]. Materials Science and Engineering B, 2001, 79(1): 49−54. doi: 10.1016/S0921-5107(00)00554-7

  • 加载中

(8)

(3)

计量
  • 文章访问数:  230
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2024-04-21
修回日期:  2024-07-04
录用日期:  2024-07-11
网络出版日期:  2024-08-07
刊出日期:  2025-01-31

目录