Inductively Coupled Plasma-Mass Spectrometric Analysis of Mercury in Biological Samples and Interference Correction Methods
-
摘要:
电感耦合等离子体质谱法(ICP-MS)在测定生物样品中的Hg时,由于Hg元素的电离能高、电离效率低,且存在W的氧化物等多原子离子干扰,很难进行直接准确测定,加之生物样品中有机质含量高,基体复杂,也会导致分析结果产生偏差。本文通过比较标准模式(STD)和动能歧视模式(KED)下测定Hg的质谱干扰情况,表明在STD模式下200Hg、202Hg均受到W、Re、Os、Er、Dy等元素多原子离子的干扰,而KED模式有效地降低了干扰;在KED模式下选择202Hg作为分析同位素,Er、Dy、Re、Os等对Hg的干扰可以忽略不计,而W的氧化物干扰仍难以完全消除。进而详细研究了KED模式下W对Hg测定的质谱干扰,Hg所受干扰程度与W含量呈线性相关(R2=0.9997),可利用KED模式结合数学校正法消除W的质谱干扰;优选了样品稀释倍数和内标元素,选择稀释倍数为100倍,50μg/L的Rh作为内标补偿基体效应。在此基础上建立生物样品中Hg的ICP-MS分析与干扰校正方法,检出限为1.2ng/g。采用该方法对9个标准物质中Hg含量进行测定,测定值与标准值(或参考值)一致,尤其是国家标准物质GBW10028(黄芪)、GBW10025(螺旋藻)、GBW10015a(菠菜)的准确度显著提高,相对标准偏差(n=10)为0.7%~7.0%。该方法操作简便,适用于W含量范围在0~1000ng/g,Hg含量范围在3.2~670ng/g的生物样品的测试。
-
关键词:
- 生物样品 /
- 汞 /
- 电感耦合等离子体质谱法 /
- 干扰校正
Abstract:It is difficult to directly and accurately determine Hg in biological samples using inductively coupled plasma-mass spectrometry (ICP-MS) due to polyatomic interferences, such as tungsten oxide, and matrix effects. We established an ICP-MS method for the determination of Hg in biological samples based on the kinetic energy discrimination (KED) mode combined with mathematical correction and internal standard correction. In this experiment, spectral interferences of Hg in standard (STD) mode and KED mode were investigated. 202Hg was selected as the analyzed isotope in the KED mode, effectively reducing but not completely eliminating the interference. It was found that the interference amount of W with Hg was linearly related to the concentration of W (R2=0.9997). The matrix interference was eliminated with internal standard (Rh concentration of 50μg/L) and sample dilution (dilution of 100 times). The reliability of the method was tested with 9 reference materials, and the results were in agreement with certified values (or reference values). In particular, the accuracy of GBW10028 (Astragalus membranaceus), GBW10025 (spirulina) and GBW10015a (spinach) was significantly improved. The relative standard deviation (n=10) was 0.7% to 7.0%. The method is suitable for the analysis of Hg in biological samples.
-
-
表 1 汞同位素丰度和潜在的多原子离子干扰
Table 1. Hg isotope abundance and potential polyatomic interferences
汞同位素 丰度(%) 潜在的多原子离子干扰 200Hg 23.10 16O+184W,14N+186W,40Ar+160Gd,16O+1H+183W,
12C+188Os,40Ar+160Dy,14N+186Os,13C+187Re,16O+3H+181Ta202Hg 29.86 16O+1H+185Re,16O+186W,12C+190Os,40Ar+162Dy,14N+188Os, 16O+186Os,15N+187 Re,13C+189Os,
40Ar+162Er,36Ar+166Er表 2 不同内标测定数据对比
Table 2. Comparison of analytical results with different internal standards
标准物质编号 名称 Hg标准值
(ng/g)W测定值
(ng/g)Hg测定值(ng/g) Hg测定值与标准值的相对误差(%) 无内标 Rh校正 Bi校正 无内标 Rh校正 Bi校正 GBW10052 绿茶 8.1±1.5 33.8 6.4 8.2 8.2 −21.0 1.2 1.2 GBW10048 芹菜 14.6±2.4 20.5 8.6 15.4 17.0 −41.1 5.5 16.4 GBW10015 菠菜 20±3 23.9 14.2 22.9 24.1 −29.0 14.5 20.5 GBW10023 紫菜 16±4 37.6 9.9 17.2 17.6 −38.1 7.5 10.0 GBW10020 柑橘叶 150±20 60.8 97.8 140 141 −34.8 −6.9 −5.9 表 3 方法准确度和精密度
Table 3. Analytical accuracy and precision tests of the method
标准物质
编号名称 Hg标准值
(ng/g)W测定值
(ng/g)干扰扣除前Hg测定结果 干扰扣除后Hg测定结果 测定值
(ng/g)相对误差
(%)RSD
(%)测定值
(ng/g)相对误差
(%)RSD
(%)SRM 1573a 西红柿叶 34.1±1.5 3.9 33.2 −2.7 1.9 33 −3.2 1.9 GBW10047 胡萝卜 3.2±0.8 14.0 3.9 21.0 5.8 3.2 1.3 6.6 GBW10018 鸡肉 3.6±1.5 8.4 3.9 9.4 6.0 3.6 −1.1 6.7 GBW10028 黄芪 (12) 297 25.1 109.0 3.2 11.7 −2.3 5.9 GBW10049 大葱 12.0±2.3 19.9 14.2 18.3 3.5 13.3 10.9 2.6 GBW10025 螺旋藻 (15) 332 30.9 105.8 2.4 15.9 6.1 3.8 GBW10015a 菠菜 21±5 317 34.4 63.8 5.0 21.7 3.4 7.0 GBW10020 柑橘叶 150±20 96.8 154.3 2.9 0.7 149.9 0.0 0.7 GBW07601a 人发 670±100 32.2 700.1 4.5 2.1 698.7 4.3 2.1 注:括号内的数据为参考值,Hg标准值主要为原子荧光光谱法定值数据。 -
[1] Wang B, Chen M, Ding L, et al. Fish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas, China[J]. Environment International, 2021, 154: 106561. doi: 10.1016/j.envint.2021.106561
[2] Bulska E, Krata A, Kałabun M, et al. On the use of certified reference materials for assuring the quality of results for the determination of mercury in environ-mental samples[J]. Environmental Science and Pollution Research, 2017, 24(9): 7889−7897. doi: 10.1007/s11356-016-7262-4
[3] 于宏洋, 王萌, 汪冰, 等. 碰撞/反应池电感耦合等离子体质谱(ICP-MS)法测定血液中16种元素[J]. 中国无机分析化学, 2024, 14(1): 131−138. doi: 10.3969/j.issn.2095-1035.2024.01.016
Yu H Y, Wang M, Wang B, et al. Determination of 16 elements in blood samples by inductively coupled plasma mass spectrometry (ICP-MS) with collision/reaction cell[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(1): 131−138. doi: 10.3969/j.issn.2095-1035.2024.01.016
[4] Kwaansa-Ansah E E, Adimado A A, Nriagu J O, et al. Comparison of three analytical methods for the quantitation of mercury in environmental samples from the Volta Lake, Ghana[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 97(5): 677−683. doi: 10.1007/s00128-016-1920-6
[5] Zhang S Y, Zhou M X. Comparison of DMA-80 and ICP-MS combined with closed-vessel microwave digestion for the determination of mercury in coal[J]. Journal of Analytical Methods in Chemistry, 2020(1): 8867653. doi: 10.1155/2020/8867653
[6] 颜巧丽, 聂小力, 杨远, 等. 交互模式-电感耦合等离子体质谱(ICP-MS)法测定生态地球化学植物样品中7种金属元素[J]. 中国无机分析化学, 2023, 13(5): 455−462. doi: 10.3969/j.issn.2095-1035.2023.05.008
Yan Q L, Nie X L, Yang Y, et al. Determination of 7 metal elements in biogeochemical plant samples by ICP-MS with interactive mode[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(5): 455−462. doi: 10.3969/j.issn.2095-1035.2023.05.008
[7] 生书晶, 曾庆彤, 谢婕, 等. 电感耦合等离子体质谱(ICP-MS)法测定市售鱿鱼中5种重金属[J]. 中国无机分析化学, 2023, 13(12): 1299−1303. doi: 10.3969/j.issn.2095-1035.2023.12.005
Sheng S J, Zeng Q T, Xie J, et al. Determination of five heavy metals in commercially available squid by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(12): 1299−1303. doi: 10.3969/j.issn.2095-1035.2023.12.005
[8] 张浩然, 徐汀, 田恺, 等. 快速消解-电感耦合等离子体质谱法测定水产配合饲料中的铬、铜、锌、砷、镉、汞和铅[J]. 食品安全质量检测学报, 2021, 12(11): 4365−4372. doi: 10.13557/j.cnki.issn1002-2813.2021.19.023
Zhang H R, Xu T, Tian K, et al. Determination of chromium, copper, zinc, arsenic, cadmium, mercury and lead in aquatic formula feeds by rapid digestion-inductively coupled plasma mass spectrometry[J]. Journal of Food Safety and Quality, 2021, 12(11): 4365−4372. doi: 10.13557/j.cnki.issn1002-2813.2021.19.023
[9] 黄子敬, 陈孟君, 邓华阳, 等. 微波消解-ICP-MS混合模式测定动植物源食品中11种金属元素[J]. 分析试验室, 2017, 36(1): 24−28. doi: 10.13595/j.cnki.issn1000-0720.2017.0006
Huang Z J, Chen M J, Deng H Y, et al. Determination of 11 trace elements in animal and plant origin food by microwave digestion with ICP-MS in mixed mode[J]. Chinese Journal of Analysis Laboratory, 2017, 36(1): 24−28. doi: 10.13595/j.cnki.issn1000-0720.2017.0006
[10] 李霞雪, 刘爱平, 陈亚, 等. 微波消解-电感耦合等离子体质谱法测定蔬菜中铬、镉、砷、铅、汞的含量[J]. 理化检验(化学分册), 2019, 55(1): 39−45. doi: 10.11973/lhjy-hx201901007
Li X X, Liu A P, Chen Y, et al. ICP-MS determination of chromium, cadmium, arsenic, lead and mercury in vegetables with microwave digestion of samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(1): 39−45. doi: 10.11973/lhjy-hx201901007
[11] Planchon F A M, Gabrielli P, Gauchard P A, et al. Direct determination of mercury at the sub-picogram per gram level in polar snow and ice by ICP-SFMS[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(7): 823−830. doi: 10.1039/b402711f
[12] Guo W, Hu S H, Wang X J, et al. Application of ion molecule reaction to eliminate WO interference on mercury determination in soil and sediment samples by ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(6): 1198−1203. doi: 10.1039/C1JA00005E
[13] Kulomki S, Permki S, Visnen A. Addition of thiourea and hydrochloric acid: Accurate nanogram level analysis of mercury in humic-rich natural waters by inductively coupled plasma mass spectrometry[J]. Talanta, 2020, 218: 121125. doi: 10.1016/j.talanta.2020.121125
[14] Jones D R, Jarrett J M, Tevis D S, et al. Analysis of whole human blood for Pb, Cd, Hg, Se, and Mn by ICP-DRC-MS for biomonitoring and acute exposures[J]. Talanta, 2017, 162: 114−122. doi: 10.1016/j.talanta.2016.09.060
[15] 王海鹰, 白建军, 师熙撼, 等. 动态反应池电感耦合等离子体质谱法消除钨的氧化物对汞的质谱干扰[J]. 理化检验(化学分册), 2015, 51(5): 659−663. doi: CNKI:SUN:LHJH.0.2015-05-028
Wang H Y, Bai J J, Shi X H, et al. Elimination of mass interferences for WO to mercury by DRC-ICP-MS[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(5): 659−663. doi: CNKI:SUN:LHJH.0.2015-05-028
[16] 刘跃, 王记鲁, 李静, 等. 氧气动态反应-电感耦合等离子体串联质谱法测定土壤和沉积物中汞及其他6种元素的含量[J]. 理化检验(化学分册), 2022, 58(11): 1241−1248. doi: 10.11973/lhjy-hx202211001
Liu Y, Wang J L, Li J, et al. Determination of mercury and other 6 elements in soil and sediment by inductively coupled plasma tandem mass spectrometry with oxygen dynamic reaction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(11): 1241−1248. doi: 10.11973/lhjy-hx202211001
[17] 刘雷, 杨帆, 刘足根, 等. 微波消解ICP-AES法测定土壤及植物中的重金属[J]. 环境化学, 2008, 27(4): 511−514. doi: 10.3321/j.issn:0254-6108.2008.04.022
Liu L, Yang F, Liu Z G, et al. Determination of heavy metals in soils and plants with microwave digestion and ICP-AES[J]. Environmental Chemistry, 2008, 27(4): 511−514. doi: 10.3321/j.issn:0254-6108.2008.04.022
[18] 张浩宇, 付彪, 王娇, 等. 电感耦合等离子体串联质谱法测定煤灰中痕量稀土元素[J]. 光谱学与光谱分析, 2023, 43(7): 2074−2081. doi: 10.3964/j.issn.1000-0593(2023)07-2074-08
Zhang H Y, Fu B, Wang J, et al. Determination of trace rare earth elements in coal ash by inductively coupled plasma tandem mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2023, 43(7): 2074−2081. doi: 10.3964/j.issn.1000-0593(2023)07-2074-08
[19] 徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394−402. doi: 10.15898/j.cnki.11-2131/td.201812070131
Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394−402. doi: 10.15898/j.cnki.11-2131/td.201812070131
[20] 刘静波, 张更宇. 全自动消解电感耦合等离子体质谱仪测定环境土壤中铍钡铊银[J]. 分析试验室, 2018, 37(2): 207−211. doi: 10.13595/j.cnki.issn1000-0720.2018.0040
Liu J B, Zhang G Y. Determination of Be, Ba, TI and Ag in environmental soil by inductively coupled plasma mass spectrometry with automatic digestion instrument[J]. Chinese Journal of Analysis Laboratory, 2018, 37(2): 207−211. doi: 10.13595/j.cnki.issn1000-0720.2018.0040
[21] 刘柳, 刘喆, 杨一兵, 等. KED-ICP-MS法测定尿样中21种无机元素[J]. 光谱学与光谱分析, 2019, 39(4): 1262−1266. doi: 10.3964/j.issn.1000-0593(2019)04-1262-05
Liu L, Liu Z, Yang Y B, et al. Determination of 21 inorganic elements in urine samples by ICP-MS using KED system[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1262−1266. doi: 10.3964/j.issn.1000-0593(2019)04-1262-05
[22] 刘向磊, 孙文军, 任彧仲, 等. 微波消解-混合模式电感耦合等离子体质谱法测定土壤或沉积物中银、锡、硼[J]. 质谱学报, 2022, 43(4): 522−531. doi: 10.7538/zpxb.2021.0205
Liu X L, Sun W J, Ren Y Z, et al. Determination of sliver, tin and boron in soil or sediment samples with microwave digestion by mixed mode inductively coupled plasma-mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(4): 522−531. doi: 10.7538/zpxb.2021.0205
[23] 曹俊飞, 王婷, 李剑, 等. 微波消解-电感耦合等离子体质谱法测定钨钼矿中多种微量稀土元素[J]. 岩矿测试, 2023, 42(4): 863−875. doi: 10.15898/j.ykcs.202210190200
Cao J F, Wang T, Li J, et al. Determination of trace rare earth elements in tungsten-molybdenum ore by inductively coupled plasma-mass spectrometry with microwave digestion system[J]. Rock and Mineral Analysis, 2023, 42(4): 863−875. doi: 10.15898/j.ykcs.202210190200
[24] 禹莲玲, 王干珍, 徐小华, 等. 电感耦合等离子体质谱(ICP-MS)法测定地质样品中Cu和Zn的干扰研究[J]. 中国无机分析化学, 2023, 13(11): 1197−1203. doi: 10.3969/j.issn.2095-1035.2023.11.006
Yu L L, Wang G Z, Xu X H, et al. Interference study on determination of Cu and Zn in geological samples by inductively coupled plasma mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(11): 1197−1203. doi: 10.3969/j.issn.2095-1035.2023.11.006
[25] 李建亭, 张翼明, 杜梅, 等. ICP-MS法测钪的干扰研究及选冶尾矿中钪的直接测定[J]. 光谱学与光谱分析, 2017, 37(4): 1259−1263. doi: 10.3964/j.issn.1000-0593(2017)04-1259-05
Li J T, Zhang Y M, Du M, et al. Study on the interferences and direct determination of Sc in metallurgical tails with inductively coupled plasma mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1259−1263. doi: 10.3964/j.issn.1000-0593(2017)04-1259-05
[26] 于亚辉, 王琳, 王明军, 等. 电感耦合等离子体质谱法测定地球化学样品中痕量铑的干扰消除方法探讨[J]. 冶金分析, 2017, 37(9): 25−32. doi: 10.13228/j.boyuan.issnl000-7571.010151
Yu Y H, Wang L, Wang M J, et al. Discussion on elimination of interference in determination of trace rhodium in geochemical sample by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2017, 37(9): 25−32. doi: 10.13228/j.boyuan.issnl000-7571.010151
[27] 杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58−64. doi: 10.13228/j.boyuan.issn1000-7571.010632
Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58−64. doi: 10.13228/j.boyuan.issn1000-7571.010632
[28] 徐进力, 邢夏, 刘彬, 等. 电感耦合等离子体质谱法测定铁矿石中的痕量钼元素[J]. 质谱学报, 2018, 39(2): 240−249. doi: 10.7538/zpxb.2017.0051
Xu J L, Xing X, Liu B, et al. Determination of trace element molybdenum in iron ore by inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 240−249. doi: 10.7538/zpxb.2017.0051
[29] 刘彤彤, 钱银弟, 黄登丽. 磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 岩矿测试, 2021, 40(5): 650−658. doi: 10.15898/j.cnki.11-2131/td.202105060058
Liu T T, Qian Y D, Huang D L. Determination of trace silver in geochemical samples by inductively coupled plasma-mass spectrometry with phosphoric acid precipitation separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650−658. doi: 10.15898/j.cnki.11-2131/td.202105060058
[30] 邱丽, 唐碧玉, 施意华, 等. 联合消解-电感耦合等离子体质谱法测定大米中的铜、铅、锌、镉、铬[J]. 理化检验(化学分册), 2018, 54(9): 1078−1082. doi: 10.11973/lhjy-hx201809020
Qiu L, Tang B Y, Shi Y H, et al. Determination of copper, lead, zinc, cadmium and chromium in rice by inductively coupled plasma mass spectrometry after joint digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(9): 1078−1082. doi: 10.11973/lhjy-hx201809020
[31] 陈秋玲, 祝芷琦, 李咏华, 等. 电感耦合等离子体质谱法测定蛋黄卵磷脂中15种金属元素[J]. 中国油脂, 2022, 47(2): 129−135. doi: 10.19902/j.cnki.zgyz.1003-7969.210060
Chen Q L, Zhu Z Q, Li Y H, et al. Determination of 15 kinds of metal elements in egg yolk lecithin by inductively coupled plasma mass spectrometry[J]. China Oils and Fats, 2022, 47(2): 129−135. doi: 10.19902/j.cnki.zgyz.1003-7969.210060
[32] 李琼, 林毅韵, 李樑, 等. 超级微波消解-电感耦合等离子体质谱法与测汞仪法测定茶叶中总汞含量的比较[J]. 食品安全质量检测学报, 2019, 10(13): 4261−4265. doi: 10.3969/j.issn.2095-0381.2019.13.039
Li Q, Lin Y Y, Li L, et al. Comparison of determination of total mercury content in tea by ultra microwave digestion-inductively coupled plasma mass spectrometry and mercury vapourmeter method[J]. Journal of Food Safety and Quality, 2019, 10(13): 4261−4265. doi: 10.3969/j.issn.2095-0381.2019.13.039
[33] 罗琼, 胡建民, 李芳, 等. 全自动石墨消解-电感耦合等离子体质谱法同时测定灌溉水中20种元素[J]. 分析科学学报, 2021, 37(2): 259−263. doi: 10.13526/j.issn.1006-6144.2021.02.021
Luo Q, Hu J M, Li F, et al. Determination of 20 elements in irrigation water by automatic graphite digestion-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Science, 2021, 37(2): 259−263. doi: 10.13526/j.issn.1006-6144.2021.02.021
[34] 陈小红. 电感耦合等离子体质谱法测定皂角刺中26种元素[J]. 化学分析计量, 2022, 31(5): 1−7. doi: 10.3969/j.issn.1008–6145.2022.05.001
Chen X H. Determination of 26 elements in Gleditsiae Spina by inductively coupled plasma-mass spectrometry[J]. Chemical Analysis and Meterage, 2022, 31(5): 1−7. doi: 10.3969/j.issn.1008–6145.2022.05.001
-