中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

湿氧化法测定岩溶区水体中溶解有机碳同位素的影响因素研究

杨会, 吴夏, 俞建国, 唐伟, 蓝高勇. 湿氧化法测定岩溶区水体中溶解有机碳同位素的影响因素研究[J]. 岩矿测试, 2024, 43(6): 914-927. doi: 10.15898/j.ykcs.202405130108
引用本文: 杨会, 吴夏, 俞建国, 唐伟, 蓝高勇. 湿氧化法测定岩溶区水体中溶解有机碳同位素的影响因素研究[J]. 岩矿测试, 2024, 43(6): 914-927. doi: 10.15898/j.ykcs.202405130108
YANG Hui, WU Xia, YU Jianguo, TANG Wei, LAN Gaoyong. Influencing Factors of Dissolved Organic Carbon Isotope Determination in Water Samples of a Karst Area by Wet Oxidation Method[J]. Rock and Mineral Analysis, 2024, 43(6): 914-927. doi: 10.15898/j.ykcs.202405130108
Citation: YANG Hui, WU Xia, YU Jianguo, TANG Wei, LAN Gaoyong. Influencing Factors of Dissolved Organic Carbon Isotope Determination in Water Samples of a Karst Area by Wet Oxidation Method[J]. Rock and Mineral Analysis, 2024, 43(6): 914-927. doi: 10.15898/j.ykcs.202405130108

湿氧化法测定岩溶区水体中溶解有机碳同位素的影响因素研究

  • 基金项目: 国家自然科学基金项目(41501222);广西自然科学基金项目(2018GXNSFBA138042,2018GXNSFAA281320);中国地质科学院岩溶地质研究所基本科研业务费项目(2023015,2023018);浙江省地质碳汇调查、监测与应用试点项目(浙地质函[2024]35号)
详细信息
    作者简介: 杨会,硕士,高级工程师,主要从事同位素地球化学研究。E-mail:hy5302230@163.com
    通讯作者: 吴夏,博士,副研究员,主要从事同位素地球化学研究。E-mail:cugwuxia@126.com
  • 中图分类号: O657.63

Influencing Factors of Dissolved Organic Carbon Isotope Determination in Water Samples of a Karst Area by Wet Oxidation Method

More Information
  • 溶解有机碳(DOC)是研究岩溶作用强度、岩溶碳源、汇特征与岩溶碳循环过程的重要指标。利用岩溶区DOC碳同位素值(δ13CDOC),可以精确计算岩溶流域的碳源和汇通量,这一参数对于全球气候变化研究至关重要。鉴于岩溶区水体中HCO3 含量较高,DOC含量较低且组分复杂,目前湿氧化法应用于测定岩溶区域水体中δ13CDOC值的检测方法尚未完善。本文采用GasBench Ⅱ与同位素比质谱分析(IRMS)联用技术,探讨了湿氧化法测试岩溶水体中δ13CDOC值的影响因素。针对不同市售纯水、顶空瓶与大气的平衡方式、DOC含量、水中碳酸氢根(HCO3 )去除,研究了这些因素对44CO2峰面积和δ13CDOC测量的影响。实验结果表明:不同空白纯水产生的44CO2峰面积存在显著差异,最大44CO2峰面积是最小44CO2峰面积的3.8倍。采用气密针与大气平衡的方式能增强样品信号强度,同时确保样品测试结果的内精度最优。水样用磷酸酸化至pH<3时,可以消除岩溶水体中HCO3 的影响。使用氮吹仪在250mL/min流速下吹扫5~10min,可以去除酸化后可能存在的游离CO2。在使用无菌双蒸水作为空白,气密针与大气平衡,磷酸酸化至pH<3,250mL/min流速吹扫5min的实验条件下,对于DOC含量大于2mg/L的岩溶区水样,经过空白校正,可以确保测试结果与标定参考值的偏差优于0.40‰。湿氧化法测定岩溶区水样中δ13CDOC的结果与总有机碳分析仪-稳定同位素质谱仪联机方法进行对比,测定结果差值小于0.30‰。利用湿氧化法测试岩溶区高HCO3 含量的δ13CDOC样品能够满足测试要求。

  • 加载中
  • Figure E.1. 

    图 1  实验流程总体示意图

    Figure 1. 

    图 2  不平衡、双针头平衡、手动扎针平衡和气密针平衡方式对样品44CO2峰面积和δ13CDOC值的影响(图中每种方法4个点代表4份测试样品)

    Figure 2. 

    图 3  邻苯二甲酸氢钾溶液含碳量与44CO2峰面积的关系

    Figure 3. 

    图 4  不同含碳量的邻苯二甲酸氢钾的δ13C值

    Figure 4. 

    图 5  磷酸体积对δ13CDOC值的影响

    Figure 5. 

    图 6  不同的吹扫时间对δ13CDOC值的影响

    Figure 6. 

    表 1  不同纯水的44CO2峰面积

    Table 1.  The 44CO2 peak areas of different pure water

    44CO2峰面积 色谱级水 三次蒸馏水 一级超纯水 无菌双蒸水 一次蒸馏水 实验室超纯水
    第1次测定值(Vs) 2.8 2.8 6.8 1.5 6.6 2.1
    第2次测定值(Vs) 3.0 3.5 5.3 1.6 5.0 2.3
    第3次测定值(Vs) 3.9 2.4 6.2 1.6 5.8 2.4
    标准偏差(Vs) 0.6 0.6 0.8 0.1 0.8 0.1
    平均值(Vs) 3.2 2.9 6.1 1.6 5.8 2.3
    电导率(µm/cm) 0.01 0.01 0.01 0.01 0.1 0.05
    下载: 导出CSV

    表 2  岩溶区样品DOC的δ13CDOC

    Table 2.  The δ13CDOC values in karst area samples

    样品编号 本实验δ13CDOC测试结果(‰) 标准偏差(‰) TOC-IRMS法δ13CDOC测定值(‰) 两种方法
    差值(‰)
    测定值 平均值
    W1−25.24−25.190.09−25.380.14
    −25.240.14
    −25.090.29
    W2−25.40−25.320.09−25.12−0.28
    −25.35−0.23
    −25.22−0.10
    下载: 导出CSV
  • [1]

    宋昂, 彭文杰, 何若雪, 等. 好氧不产氧光合细菌反馈作用下的五里峡水库坝前水体化学特征研究[J]. 岩矿测试, 2017, 36(2): 171−179. doi: 10.15898/j.cnki.11-2131/td.2017.02.011.

    Song A, Peng W J, He R X, et al. Hydrochemistry characteristics in front of the Wulixia Reservoir Dam associated with feedback from aerobic anoxygenic phototrophic bacteria[J]. Rock and Mineral Analysis, 2017, 36(2): 171−179. doi: 10.15898/j.cnki.11-2131/td.2017.02.011.

    [2]

    朱帅, 曹建华, 杨慧, 等. 岩溶区植被与岩石地球化学背景间相互作用机制研究进展[J]. 岩矿测试, 2023, 42(1): 59−71. doi: 10.15898/j.cnki.11-2131/td.202108090095

    Zhu S, Cao J H, Yang H, et al. A review of the interaction mechanism and law between vegetation and rock geochemical background in karst areas[J]. Rock and Mineral Analysis, 2023, 42(1): 59−71. doi: 10.15898/j.cnki.11-2131/td.202108090095

    [3]

    粟蓉, 申凯文, 尹希杰, 等. TOC-IRMS联用在线高温氧化测定溶解有机碳稳定同位素组成的方法研究[J]. 应用海洋学学报, 2023, 42(2): 339−345. doi: 10.3969/J.ISSN.2095-4972.2023.02.016

    Su R, Shen K W, Yin X J, et al. On-line high temperature oxidation determination of stable carbon isotope composition of dissolved organic carbon by TOC-IRMS analysis[J]. Journal of Applied Oceanography, 2023, 42(2): 339−345. doi: 10.3969/J.ISSN.2095-4972.2023.02.016

    [4]

    章程, 肖琼, 孙平安, 等. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 2022, 41(5): 190−198. doi: 10.19509/j.cnki.dzkq.2022.0193

    Zhang C, Xiao Q, Sun P A, et al. Progress on karst carbon cycle and carbon sink effect study and perspective[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 190−198. doi: 10.19509/j.cnki.dzkq.2022.0193

    [5]

    蒋忠诚, 章程, 罗为群, 等. 我国岩溶地区碳汇研究进展与展望[J]. 中国岩溶, 2022, 41(3): 345−355. doi: 10.11932/karst20220302

    Jiang Z C, Zhang C, Luo W Q, et al. Research progress and prospect of carbon sink in karst region of China[J]. Carsologica Sinica, 2022, 41(3): 345−355. doi: 10.11932/karst20220302

    [6]

    章程. 岩溶动力学理论与现代岩溶学发展[J]. 中国岩溶, 2022, 41(3): 378−383. doi: 10.11932/karst20220305

    Zhang C. Theory of karst dynamics and development of modern karst science[J]. Carsologica Sinica, 2022, 41(3): 378−383. doi: 10.11932/karst20220305

    [7]

    章程, 肖琼, 苗迎, 等. 广西桂林漓江典型河段水化学昼夜动态变化及其对岩溶碳循环的影响[J]. 地球学报, 2018, 39(5): 613−621. doi: 10.3975/cagsb.2018.042001

    Zhang C, Xiao Q, Miao Y, et al. Day and night aqueous chemical changes and their impact on karst carbon cycle at typical monitoring sites of the Lijiang River, Guilin, Guangxi[J]. Acta Geoscientica Sinica, 2018, 39(5): 613−621. doi: 10.3975/cagsb.2018.042001

    [8]

    黄芬, 吴夏, 杨慧, 等. 桂林毛村地下河流域岩溶关键带碳循环研究[J]. 广西科学, 2018, 25(5): 515−523. doi: 10.13656/j.cnki.gxkx.20181008.001

    Huang F, Wu X, Yang H, et al. Study on carbon cycle of karst critical zone in Maocun subterranean river basin of Guilin[J]. Guangxi Science, 2018, 25(5): 515−523. doi: 10.13656/j.cnki.gxkx.20181008.001

    [9]

    黄奇波, 覃小群, 刘朋雨, 等. 山西柳林泉域岩溶地下水溶解无机碳特征及控制因素[J]. 地质论评, 2019, 65(4): 961−972. doi: 10.16509/j.georeview.2019.04.012

    Huang Q B, Qin X Q, Liu P Y, et al. Characteristics and control factors of dissolved inorganic carbon in karst groundwater in Liuling Spring catchment, Lüliang, Shanxi[J]. Geological Review, 2019, 65(4): 961−972. doi: 10.16509/j.georeview.2019.04.012

    [10]

    李强, 黄雅丹, 何若雪, 等. 岩溶水体惰性有机碳含量及其存在机理[J]. 岩矿测试, 2018, 37(5): 475−478. doi: 10.15898/j.cnki.11-2131/td.201807250088

    Li Q, Huang Y D, He R X. et al. The concentration of recalcitrant dissolved organic carbon in the karst hydrosphere and its existing mechanism[J]. Rock and Mineral Analysis, 2018, 37(5): 475−478. doi: 10.15898/j.cnki.11-2131/td.201807250088

    [11]

    何若雪, 李强, 于奭, 等. 异养细菌作用下岩溶水体惰性有机碳变化及其环境影响因素分析[J]. 地球学报, 2022, 43(4): 438−448. doi: 10.3975/cagsb.2022.022202

    He R X, Li Q, Yu S. Variation of recalcitrant dissolved organic carbon in karst water under the influence of heterotrophic bacteria and its environmental controlling factors[J]. Acta Geoscientica Sinica, 2022, 43(4): 438−448. doi: 10.3975/cagsb.2022.022202

    [12]

    de Montety V, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011, 283: 31−43. doi: 10.1016/j.chemgeo.2010.12.025

    [13]

    章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4): 368−371. doi: 10.3969/j.issn.1001-4810.2011.04.003

    Zhang C. Time-scale of karst processes and the carbon sink stability[J]. Carsologica Sinica, 2011, 30(4): 368−371. doi: 10.3969/j.issn.1001-4810.2011.04.003

    [14]

    刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(2/3): 95−102. doi: 10.1360/972011-1640

    Liu Z H. New progress and prospects in the study of rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(2/3): 95−102. doi: 10.1360/972011-1640

    [15]

    王华, 张春来, 杨会, 等. 利用稳定同位素技术研究广西桂江流域水体中碳的来源[J]. 地球学报, 2011, 32(6): 691−698. doi: 10.3975/cagsb.2011.06.06

    Wang H, Zhang C L, Yang H, et al. The application of stable carbon isotope to the study of carbon sources in Guijiang Watershed, Guangxi[J]. Acta Geoscientica Sinica, 2011, 32(6): 691−698. doi: 10.3975/cagsb.2011.06.06

    [16]

    黄奇波, 覃小群, 唐萍萍, 等. 桂江流域河流有机碳特征[J]. 地质科技情报, 2014, 33(2): 148−153.

    Huang Q B, Qin X Q, Tang P P. Characteristics of riverine organic carbon in Guijiang Watershed, Guangxi[J]. Geological Science and Technology Information, 2014, 33(2): 148−153.

    [17]

    Lang S Q, Bernasconi S M, Gretchen L F. Stable isotope analysis of organic carbon in small (µg C) samples and dissolved organic matter using a GasBench preparation device[J]. Rapid Communications Mass Spectrometry, 2011, 26(1): 9−16. doi: 10.1002/rcm.5287

    [18]

    王骏博. 溶解有机碳同位素测定方法研究及其在九龙江的应用[D]. 厦门: 国家海洋局第三海洋研究所, 2015.

    Wang J B. Method of determining carbon isotope of dissolved organic carbon and application in Jiulong River[D]. Xiamen: The Third Institute of Oceanography Ministry of Natural Resources, 2015.

    [19]

    Werner R A, Bruch B A, Brand W A. ConFlo Ⅲ—An interface for high precision δ13C and δ15N analysis with an extended dynamic range[J]. Rapid Communications Mass Spectrometry, 1999, 13: 1237−1241. doi: 10.1002/(SICI)1097-0231(19990715)13:13<1237::AID-RCM633>3.0.CO;2-C

    [20]

    Groot P A. Handbook for stable isotope analytical techniques (Vol. 2)[M]. Amsterdam: Elsevier, 2009.

    [21]

    Werner R A, Bruch B A, Brand W A, et al. Measurement of δ13C and δ15N isotopic composition on nanomolar quantities of C and N[J]. Analytical Chemistry, 2009, 81(2): 755−763. doi: 10.1021/ac801370c

    [22]

    Moran J J, Newburn M K, Alexander M L, et al. Laser ablation isotope ratio mass spectrometry for enhanced sensitivity and spatial resolution in stable isotope analysis[J]. Rapid Communications Mass Spectrometry, 2011, 25(9): 1282−1290. doi: 10.1002/rcm.4985

    [23]

    申凯文. 高温氧化法和湿氧化法测试水样溶解有机碳及同位素对比研究[D]. 厦门: 厦门大学, 2020.

    Shen K W. Comparative study on dissolved organic carbon and isotopes in water samples by high temperature oxidation and wet oxidation[D]. Xiamen: Xiamen University, 2020.

    [24]

    Panetta R J, Ibrahim M, Gelinas Y. Coupling a high temperature analytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural abundance δ13C−dissolved organic carbon in marine and freshwater samples[J]. Analytical Chemistry, 2008, 80(13): 5232−5239. doi: 10.1021/ac702641z

    [25]

    Troyer I D, Bouillon S, Barker S, et al. Stable isotope analysis of dissolved organic carbon in soil solutions using a catalytic combustion total organic carbon analyzer−isotope ratio mass spectrometer with a cryofocusing interface[J]. Rapid Commination in Mass Spectrometry, 2010, 24(3): 365−374. doi: 10.1002/rcm.4403

    [26]

    姜光辉, 于奭, 常勇. 利用水化学方法识别岩溶水文系统中的径流[J]. 吉林大学学报(地球科学版), 2011, 41(5): 1535−1541.

    Jiang G H, Yu S, Chang Y. Identification of runoff in karst drainage system using hydrochemical method[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5): 1535−1541.

    [27]

    黄奇波, 覃小群, 刘朋雨, 等. 硫酸对乌江中上游段岩溶水化学及δ13CDIC的影响[J]. 环境科学, 2015, 36(9): 3220−3229. doi: 10.13227/j.hjkx.2015.09.013

    Huang Q B, Qin X Q, Liu P Y, et al. Influence of sulfuric acid to karst hydrochemical and δ13CDIC in the upper and middle reaches of the Wujiang River[J]. Environmental Science, 2015, 36(9): 3220−3229. doi: 10.13227/j.hjkx.2015.09.013

    [28]

    叶慧君, 张瑞雪, 吴攀, 等. 基于主成分分析的岩溶水水化学组成及影响因素研究——以贵州水城盆地为例[J]. 中国岩溶, 2017, 36(2): 215−225. doi: 10.11932/karst20170209

    Ye H K, Zhang R X, Wu P. et al. Hydrogeochemical characterization of groundwater and surface water and their influencing factors based on principal component analysis: An example in the Shuicheng Basin of Guizhou[J]. Carsologica Sinica, 2017, 36(2): 215−225. doi: 10.11932/karst20170209

    [29]

    熊佰炼, 张进忠, 彭韬, 等. 典型岩溶地区岩溶泉溶解性碳浓度变化及其通量估算[J]. 环境科学, 2018, 39(11): 4991−4998. doi: 10.13227/j.hjkx.201803118

    Xiong B L, Zhang J Z, Peng T, et al. Concentration variations and flux estimation of dissolved carbon in karst spring of a typical karst area[J]. Environmental Science, 2018, 39(11): 4991−4998. doi: 10.13227/j.hjkx.201803118

    [30]

    杨会, 王华, 吴夏, 等. 样品采集和保存方法对水中溶解无机碳同位素分馏的影响[J]. 中国岩溶, 2015, 34(6): 642−647. doi: 10.11932/karst201506014

    Yang H, Wang H, Wu X, et al. The influence of different pretreatment methods on the δ13C value of dissolved inorganic carbon in water[J]. Carsologica Sinica, 2015, 34(6): 642−647. doi: 10.11932/karst201506014

    [31]

    罗振宇, 杨琰, 李计, 等. 石漠化治理区表层岩溶泉流量衰减分析及无机碳通量估算: 以重庆酉阳龙潭槽谷老泉为例[J]. 中国岩溶, 2023, 42(2): 337−350. doi: 10.11932/karst2023y011

    Luo Z Y, Yang Y, Li J, et al. Flow attenuation analysis and inorganic carbon flux estimation of surface karst spring in rocky desertification control area: A case study at Laoquan Spring in the Longtan Trough Valley, Youyang County, Chongqing City, China[J]. Carsologica Sinica, 2023, 42(2): 337−350. doi: 10.11932/karst2023y011

    [32]

    杨丽阳. 河流-河口系统溶解有机物的动态及其影响因素[D]. 厦门: 厦门大学, 2012: 22.

    Yang L Y. Dynamics and influencing factors of dissolved organic matter in river-estuarine system[D]. Xiamen: Xiamen University, 2012: 22.

    [33]

    王骏博. 溶解有机碳同位素测定方法研究及其在九龙江的应用[D]. 厦门: 国家海洋局第三海洋研究所, 2015.

    Wang J B. A method of determine in g carbon isotope of dissolved organic carbon and application in Jiulong River[D]. Xiamen: The Third Institute of Oceanography, Ministry of Natural Resources, 2015.

    [34]

    Chen L, Tan L, Zhao M. Karst carbon sink processes and effects: A review[J]. Quaternary International, 2023, 652: 63−73. doi: 10.1016/j.quaint.2023.02.009

    [35]

    Kragh T, Sondergaard M, Borch N H. The effect of zooplankton on the dynamics and molecular composition of carbohydrates during an experimental algal bloom[J]. Journal of Limnology, 2006, 65(1): 52−58. doi: 10.4081/jlimnol.2006.52

    [36]

    周殷竹, 郭华明, 逯海. 高砷地下水中溶解性有机碳和无机碳稳定同位素特征[J]. 现代地质, 2015, 29(2): 252−259. doi: 10.3969/j.issn.1000-8527.2015.02.005

    Zhou Y Z, Guo H M, Lu H. Stable isotope characteristics of dissolved organic carbon and inorganic carbon in high arsenic groundwater[J]. Geoscience, 2015, 29(2): 252−259. doi: 10.3969/j.issn.1000-8527.2015.02.005

    [37]

    赵海娟, 肖琼, 吴夏, 等. 漓江地表水体有机碳来源[J]. 环境科学, 2017, 38(8): 3200−3208. doi: 10.13227/i.hikx.201701176

    Zhao H J, Xiao Q, Wu X, et al. Source of organic carbon in the surface water of Lijiang River[J]. Environmental Science, 2017, 38(8): 3200−3208. doi: 10.13227/i.hikx.201701176

    [38]

    肖琼, 赵海娟, 章程, 等. 岩溶区地表水体惰性有机碳研究[J]. 第四纪研究, 2020, 40(4): 1058−1069. doi: 10.11928/i.issn.1001-7410.2020.04.19

    Xiao Q, Zhao H J, Zhang C, et al. Study of the recalcitrant dissolved organic carbon in karst surface water[J]. Quaternary Sciences, 2020, 40(4): 1058−1069. doi: 10.11928/i.issn.1001-7410.2020.04.19

    [39]

    Jonsson A, Meili M, Bergström A K, et al. Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden)[J]. Limnology and Oceanography, 2001, 46(7): 1691−1700. doi: 10.4319/lo.2001.46.7.1691

    [40]

    Newton R J, Jones S E, Eiler A, et al. A guide to the natural history of freshwater lake bacteria[J]. Microbiology and Molecular Biology Reviews, 2011, 75(1): 14−49. doi: 10.1128/MMBR.00028-10

  • 加载中

(7)

(2)

计量
  • 文章访问数:  107
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2024-05-13
修回日期:  2024-09-28
录用日期:  2024-10-11
网络出版日期:  2024-10-29
刊出日期:  2024-12-31

目录