Determination of Silicon in Soil and Sediment by ICP-OES with Rapid Ultrasonic Digestion
-
摘要:
利用电感耦合等离子体发射光谱法(ICP-OES)分析土壤和沉积物中硅元素的含量,样品分解方法多采用酸溶法和熔融法。硅在浓酸溶液中与氢氟酸反应形成易挥发的四氟化硅,加热造成硅的损失。熔融法可以处理土壤和沉积物样品,但会引入大量的盐,基体效应较大、检出限高。本文建立了超声密闭酸溶,ICP-OES测定土壤和沉积物中硅含量的方法。样品经稀王水、氢氟酸和双氧水在超声仪中密闭消解、定容稀释后,用配备耐氢氟酸进样系统的ICP-OES进行测定。测试时,选取251.611nm为硅的分析谱线,标准曲线在5~50mg/L范围的相关系数大于0.99997,方法检出限为0.0395mg/g。采用本方法测定不同类型土壤和沉积物标准物质,测定结果的相对标准偏差(RSD)在 0.26%~0.54%,相对误差在−0.28%~0.25%;实际样品的RSD在0.52%~0.77%。经国家标准物质GBW07401a、GBW07405a、GBW07377、GBW07379验证,硅元素的测定值与标准值一致;同时用X射线荧光光谱法测定这四种国家标准物质中的硅含量,两种方法的分析结果基本相符。
-
关键词:
- 硅 /
- 土壤;沉积物 /
- 超声封闭消解 /
- 电感耦合等离子体发射光谱法
Abstract:The literature provides references for the accurate determination of silicon content in soil and sediment by inductively coupled plasma-optical emission spectrometry (ICP-OES). Sample decomposition methods often use acid dissolution or melting methods. Silicon reacts with hydrofluoric acid in concentrated acid solution to form volatile silicon tetrafluoride, which is lost due to heating. The melting method can process soil and sediment samples, but it introduces a large amount of salt, a significant matrix effect and high detection limit. This article describes a method for determining silicon content in soil and sediment using ultrasonic sealed acid dissolution and ICP-OES. After the sample was dissolved in dilute aqua regia, hydrofluoric acid, and hydrogen peroxide in an ultrasonic apparatus and diluted to a constant volume, the sample was measured using ICP-OES equipped with a hydrofluoric acid resistant injection system. During ICP-OES testing, 251.611nm was selected as the analytical spectral line for silicon. The correlation coefficient of the standard curve in the range of 5mg/L to 50mg/L was greater than 0.99997, and the detection limit of the method was 0.0395mg/g. This method was used to test different types of soil and sediment standard substances, with relative standard deviations (RSD) ranging from 0.26% to 0.54% and relative errors ranging from −0.28%−0.25%. The actual sample testing RSD range from 0.52% to 0.77%. Verified by national standard substances GBW07401a, GBW07405a, GBW07377, and GBW07379, the measured values of silicon element were consistent with the standard values. At the same time, X-ray fluorescence spectrometry was used to determine the silicon content in these four national standard substances, and the results were consistent.
-
-
表 1 不同消解条件下样品测试结果的比较
Table 1. Comparison of results with different digestion conditions
序号 实验条件 SiO2含量测定值
(%)RSD
(%)以SiO2计平均值
(%)SiO2含量认定值及
不确定度(%)以SiO2计相对误差
(%)1 静置 39.86 39.90 40.26 0.6 40.01 56.60±0.46 −29.31 2 75℃加热 51.13 51.34 50.92 0.4 51.13 56.60±0.46 −9.67 3 75℃超声 57.29 56.41 55.71 1.4 56.47 56.60±0.46 −0.23 表 2 密闭条件对样品消解效果的影响
Table 2. Influence of different sealing conditions on sample digestion
序号 密闭方式 SiO2含量测定值
(%)RSD
(%)以SiO2计平均值
(%)SiO2含量认定值和
不确定度(%)以SiO2计相对误差
(%)1 敞口 49.14 49.14 48.84 0.3 49.04 56.60±0.46 −13.36 2 半密封 51.07 50.92 50.02 1.1 50.67 56.60±0.46 −10.48 3 密闭 57.29 56.41 55.71 1.4 56.47 56.60±0.46 −0.23 表 3 超声温度对样品消解效果的比较
Table 3. Comparison of results with different ultrasound temperature
序号 超声温度
(℃)SiO2含量测定值
(%)RSD
(%)Si含量平均值
(%)以SiO2计平均值
(%)SiO2含量认定值和
不确定度(%)以SiO2计相对误差
(%)1 25 40.48 40.82 40.82 0.5 19.03 40.71 56.60±0.46 −28.07 2 45 45.59 45.46 44.88 0.8 21.18 45.31 56.60±0.46 −19.95 3 75 57.29 56.41 55.71 1.4 26.40 56.47 56.60±0.46 −0.23 4 85 55.45 56.71 56.18 1.1 26.23 56.11 56.60±0.46 −0.87 表 4 超声时间对样品前处理效果的比较
Table 4. Comparison of results with different ultrasound time
序号 超声时间
(h)SiO2含量测定值
(%)RSD
(%)Si含量平均值
(%)以SiO2计平均值
(%)SiO2含量认定值和
不确定度(%)以SiO2计相对误差
(%)1 0.5 50.34 49.68 50.38 0.8 23.43 50.13 56.60±0.46 −11.43 2 1 57.29 56.41 55.71 1.4 26.40 56.47 56.60±0.46 −0.23 3 2 57.08 57.10 56.22 0.9 26.55 56.80 56.60±0.46 0.35 4 3 56.26 56.50 56.29 0.2 26.34 56.35 56.60±0.46 −0.44 表 5 超声功率对样品前处理效果的测试结果比较
Table 5. Comparison of results with different ultrasound powder
序号 超声条件 Si含量测定值
(%)RSD
(%)Si含量测定平均值
(%)以SiO2计平均值
(%)SiO2含量认定值
及不确定度(%)以SiO2计相对误差
(%)1 75℃超声功率120W 56.44 55.64 55.39 1.0 26.09 55.82 56.60±0.46 −1.38 2 75℃超声功率240W 55.90 55.97 55.75 0.3 26.10 55.87 56.60±0.46 −1.29 3 75℃超声功率300W 57.29 56.41 55.71 1.4 26.40 56.47 56.60±0.46 −0.23 4 75℃超声功率360W 56.50 56.95 56.97 0.5 26.55 56.80 56.60±0.46 0.35 表 6 不同添加量的双氧水对样品进行消解测试结果比较
Table 6. Comparison of results with different amounts of hydrogen peroxide added
序号 双氧水用量
(mL)Si含量测定值
(%)RSD
(%)Si含量测定平均值
(%)以SiO2计平均值
(%)SiO2含量认定值
及不确定度(%)以SiO2计相对误差
(%)1 0 42.89 42.25 42.44 0.8 19.88 42.53 56.60±0.46 −24.86 2 3 50.30 48.97 48.50 1.9 23.02 49.26 56.60±0.46 −12.97 3 6 57.29 56.41 55.71 1.4 26.40 56.47 56.60±0.46 −0.23 4 9 55.92 55.73 56.78 1.0 26.24 56.14 56.60±0.46 −0.81 表 7 方法精密度和准确度实验
Table 7. Precision and accuracy tests of the method
标准物质编号 Si含量测定值
(%)RSD
(%)Si含量测定
平均值(%)以SiO2计
平均值(%)SiO2含量认定值
及不确定度(%)以SiO2计
相对误差(%)GBW07401a 56.91 56.80 56.84 0.40 26.52 56.74 56.60±0.46 0.25 56.22 56.93 56.65 56.99 56.71 56.91 56.69 56.50 GBW07405a 61.48 61.18 61.81 0.31 28.68 61.35 61.52±0.39 −0.28 61.16 61.33 61.25 61.21 61.21 61.44 61.36 61.38 GBW07377 63.50 63.17 63.75 0.26 29.65 63.43 63.48±0.43 −0.08 63.52 63.47 63.43 63.35 63.28 63.56 63.24 63.50 GBW07379 69.38 69.98 69.21 0.54 32.62 69.75 69.66±0.6 0.13 70.15 69.79 70.08 69.87 70.17 69.76 69.12 69.70 表 8 实际样品测试结果比对
Table 8. Comparison of analytical results of SiO2 content in actual samples
实际样品编号 本文方法Si含量测定值
(%)RSD
(%)Si含量测定平均值
(%)XRF法Si含量测定值
(%)相对误差
(%)样品8 29.98 29.72 30.18 29.68 29.90 0.68 29.89 26.12 −12.60 样品18 12.13 12.03 12.22 12.04 12.06 0.66 12.10 15.38 27.10 样品23 14.91 15.11 14.95 14.93 15.17 0.77 15.01 17.07 13.70 样品28 29.93 29.75 29.80 29.86 30.15 0.52 29.90 27.67 −7.46 样品31 31.81 31.65 31.96 31.66 31.54 0.52 31.72 29.28 −7.69 表 9 标准物质测试结果比对
Table 9. Comparison of analytical results of SiO2 content in national standard substances
标准物质编号 本文方法Si含量
测定平均值(%)RSD
(%)XRF法Si含量
测定值(%)以SiO2计XRF法
测定值(%)SiO2含量认定值
及不确定度(%)以SiO2计本文方法与
XRF法相对误差(%)GBW07401a 26.52 0.40 27.69 59.24 56.60±0.46 4.66 GBW07405a 28.68 0.31 28.57 61.12 61.52±0.39 −0.65 GBW07377 29.65 0.26 31.10 66.53 63.48±0.43 4.80 GBW07379 32.62 0.54 33.17 70.96 69.66±0.6 1.87 -
[1] 发展硅肥前景广阔[J]. 化工文摘, 2001(11): 53.
The development of silicon fertilizer has broad prospects[J]. Chemical Abstract, 2001(11): 53.
[2] 田福平, 陈子萱, 张自和, 等. 硅对植物抗逆性作用的研究[J]. 中国土壤与肥料, 2007(3): 10−14. doi: 10.11838/sfsc.20070303
Tian F P, Chen Z X, Zhang Z H, et al. Study on the effect of silicon on plant stress resistance[J]. Chinese Soil and Fertilizer, 2007(3): 10−14. doi: 10.11838/sfsc.20070303
[3] 余浪, 杨晓燕, 肖皓天, 等. 一种测定土壤中全硅含量的方法[P]. 中国: CN 116068144 A, 2023.05. 05.
[4] 梁琼英, 欧阳钢锋. 硅含量测定方法的新进展[J]. 广州化工, 2000, 28(1): 48−49. doi: 10.3969/j.issn.1001-9677.2000.01.013
Liang Q Y, Ouyang G F. New progress in silicon content determination methods[J]. Guangzhou Chemical Industry, 2000, 28(1): 48−49. doi: 10.3969/j.issn.1001-9677.2000.01.013
[5] 洪秀杰, 张俊, 杨秀红. 不同浸提方法对稻田土壤硅含量测试结果的影响[J]. 农业科技通讯, 2011(12): 31−33. doi: 10.3969/j.issn.1000-6400.2011.12.014
Hong X J, Zhang J, Yang X H. The influence of different extraction methods on the determination of silicon content in paddy soil[J]. Agricultural Science and Technology Communication, 2011(12): 31−33. doi: 10.3969/j.issn.1000-6400.2011.12.014
[6] 王俊, 李义辉, 卢娇婷, 等. 一种土壤中有效硅的测定方法[P]. 中国: CN202111650964.7, 2022.4. 12.
[7] 双龙, 白杰, 唐琪, 等. 超声浸提-电感耦合等离子体发射光谱法测定土壤有效硅的含量[J]. 理化检验(化学分册), 2023, 59(11): 1297−1302. doi: 10.11973/lhjy-hx202311009
Shuang L, Bai J, Tang Q, et al. Determination of available silicon in soil by inductively coupled plasma atomic emission spectrometry with ultrasonic extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(11): 1297−1302. doi: 10.11973/lhjy-hx202311009
[8] 董学林, 何海洋, 储溱, 等. 封闭酸溶-硅钼蓝比色分光光度法测定地质样品中的硅[J]. 岩矿测试, 2019, 38(5): 575−582. doi: CNKI:SUN:YKCS.0.2019-05-015
Dong X L, He H Y, Chu Q, et al. Determination of silica in geological sample by silicon-molybdenum blue spectrophometry using high-pressure acid digestion[J]. Rock and Mineral Analysis, 2019, 38(5): 575−582. doi: CNKI:SUN:YKCS.0.2019-05-015
[9] 金燕, 武中波, 李广柱, 等. 碱熔-电感耦合等离子体原子发射光谱法对土壤和沉积物中硅的测定[J]. 环境化学, 2012, 31(4): 558−559. doi: CNKI:SUN:HJHX.0.2012-04-028
Jin Y, Wu Z B, Li G Z, et al. Determination of silicon in soil and sediments by alkali melting inductively coupled plasma atomic emission spectroscopy[J]. Environmental Chemistry, 2012, 31(4): 558−559. doi: CNKI:SUN:HJHX.0.2012-04-028
[10] 周鹏, 李冬梅, 李海涛, 等. 大亚湾西部海域沉积物中生物硅的含量及其分布特征[J]. 应用海洋学报, 2019, 38(1): 109−117. doi: 10.3969/J.ISSN.2095-4972.2019.01.012
Zhou B, Li D M, Li H T, et al. Biogenic silica contents and its distribution in the sediments of the west Daya Bay[J]. Journal of Applied Oceanography, 2019, 38(1): 109−117. doi: 10.3969/J.ISSN.2095-4972.2019.01.012
[11] 诸晓锋, 徐克, 胡祖国. 一种土壤和沉积物中硅的测定方法[P]. 中国: CN 107505275 A, 2017.12. 22.
[12] 杨晓燕. 熔融制样-X射线荧光光谱法测定土壤矿质全量元素[J]. 中国无机分析化学, 2023, 13(12): 1396−1401. doi: 10.3969/j.issn.2095-1035.2023.12.018
Yang X Y. Determination of total mineral elements in soil by X-ray fluorescence spectroscopy with melting sample preparation[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(12): 1396−1401. doi: 10.3969/j.issn.2095-1035.2023.12.018
[13] 胡梦颖, 张鹏鹏, 刘彬, 等. 高压制样-激光诱导击穿光谱技术测定土壤中的硅铝铁钾[J]. 光谱学与光谱分析, 2023, 43(7): 2174−2180. doi: 10.3964/j.issn.1000-0593(2023)07-2174-07
Hu M Y, Zhang P P, Liu B, et al. Determination of silicon, aluminum, iron, and potassium in soil using high-pressure sample preparation laser induced breakdown spectroscopy technology[J]. Spectroscopy and Spectral Analysis, 2023, 43(7): 2174−2180. doi: 10.3964/j.issn.1000-0593(2023)07-2174-07
[14] 王龙山, 郝辉, 王光照, 等. 偏硼酸锂熔矿-超声提取-电感耦合等离子体原子发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素[J]. 岩矿测试, 2008, 27(4): 287−290. doi: 10.3969/j.issn.0254-5357.2008.04.011
Wang L S, Hao H, Wang G Z, et al. Determination of 10 elements including silicon, iron and aluminum in rock, stream sediment and soil samples by ICP-AES with lithium metaborate fusion and ultrasonic extraction[J]. Rock and Mineral Analysis, 2008, 27(4): 287−290. doi: 10.3969/j.issn.0254-5357.2008.04.011
[15] 杨娜. 微波消解-电感耦合等离子体发射光谱法快速测定盐渍土中二氧化硅[J]. 化学分析计量, 2024, 33(1): 53−57. doi: 10.3969/j.issn.1008-6145.2024.01.010
Yang N. Rapid determination of silicon dioxide in saline soil by microwave digestion inductively coupled plasma optical emission spectrometry[J]. Chemical Analysis and Meterage, 2024, 33(1): 53−57. doi: 10.3969/j.issn.1008-6145.2024.01.010
[16] 范学忠, 张春涛, 吴若昕, 等. 超声/消解-电感耦合等离子体质谱法测定烟丝, 卷烟纸及香精中钾钠钙镁元素含量[J]. 分析科学学报, 2018, 34(4): 573−576. doi: 10.13526/j.issn.1006-6144.2018.04.024
Fan X Z, Zhang C T, Wu R X, et al. Determination of potassium, sodium, calcium and magnesium in cut tobacco, cigarette paper and essence by ultrasonic/digestion inductively coupled plasma mass spectrometry[J]. Journal of Analytical Science, 2018, 34(4): 573−576. doi: 10.13526/j.issn.1006-6144.2018.04.024
[17] 葛少林, 雷丽丹, 明佳佳. 对比超声-辅助逆王水提取法和王水-微波消解法对PM2.5中24种金属元素的提取效果[J]. 中国卫生检验杂志, 2022, 32(7): 769−774.
Ge S L, Lei L D, Ming J J. Comparing extraction effects of aqua regia-microwave digestion method and ultrasonic-assisted-inverse aqua regia extraction method for 24 kinds of metallic elements in PM2.5[J]. Chinese Journal of Health Laboratory Technology, 2022, 32(7): 769−774.
[18] 张晨芳, 刘献锋, 楼锦花, 等. 超声水浴提取-电感耦合等离子体质谱法测定土壤中的7种元素[J]. 分析科学学报, 2022, 38(1): 43−48. doi: 10.13526/j.issn.1006-6144.2022.01.008
Zhang C F, Liu X F, Lou J H, et al. Quantification of 7 elements in soil by inductively coupled plasma-mass spectrometry after ultrasonic-assisted extraction[J]. Journal of Analytical Science, 2022, 38(1): 43−48. doi: 10.13526/j.issn.1006-6144.2022.01.008
-