中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

MC-ICP-MS测定岩石标准物质的钒同位素组成

徐丽怡, 于慧敏, 丁昕, 黄方. MC-ICP-MS测定岩石标准物质的钒同位素组成[J]. 岩矿测试, 2025, 44(1): 63-74. doi: 10.15898/j.ykcs.202405280123
引用本文: 徐丽怡, 于慧敏, 丁昕, 黄方. MC-ICP-MS测定岩石标准物质的钒同位素组成[J]. 岩矿测试, 2025, 44(1): 63-74. doi: 10.15898/j.ykcs.202405280123
XU Liyi, YU Huimin, DING Xin, HUANG Fang. Vanadium Isotope Composition of Rock Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2025, 44(1): 63-74. doi: 10.15898/j.ykcs.202405280123
Citation: XU Liyi, YU Huimin, DING Xin, HUANG Fang. Vanadium Isotope Composition of Rock Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2025, 44(1): 63-74. doi: 10.15898/j.ykcs.202405280123

MC-ICP-MS测定岩石标准物质的钒同位素组成

  • 基金项目: 国家重点研发计划项目“变革性技术关键科学问题”重点专项“深部碳、氧循环的金属稳定同位素示踪技术”(2019YFA0708400)
详细信息
    作者简介: 徐丽怡,硕士研究生,地球化学专业。E-mail:xuliyi520@mail.ustc.edu.cn
    通讯作者: 黄方,博士,教授,从事非传统稳定同位素研究。E-mail:fhuang@ustc.edu.cn
  • 中图分类号: O657.63

Vanadium Isotope Composition of Rock Reference Materials by MC-ICP-MS

More Information
  • 随着分析方法的发展和分析精度的提升,钒同位素已经越来越多地被用于各种地质过程研究。为了确保钒同位素分析测试过程中,可以有效地监控数据的准确度和精度,方便国际各实验室之间的数据对比,同时考虑到早期国际上常用美国地质调查局(USGS)的标准物质面临着库存不足等问题,本文采用多接收电感耦合等离子体质谱仪(MC-ICP-MS)测定了一系列国际地质标准物质和国家地质标准物质的钒同位素组成,δ51V值的测试精度优于0.08‰。本文选取的标准物质主要来自日本地质调查局(GSJ)和中国地质科学院地球物理地球化学勘查研究所(IGGE),包括一个安山岩(JA-1),三个玄武岩(JB-3、JB-1b和GBW07105),一个辉长岩(JGb-1),一个辉绿岩(GBW07123)以及一个土壤(GBW07454),钒含量范围为77~635µg/g,涵盖了目前大部分火成岩和部分土壤等天然样品含量的范围。这些标准物质除了土壤GBW07454,其他标准物质的钒同位素组成未曾被报道。经测量表明,辉长岩标准物质JGb-1具有最高δ51V值,为−1.05‰±0.08‰,安山岩标准物质JA-1具有最低δ51V值,为−0.34‰±0.06‰,其余标准物质的δ51V值变化范围为−0.72‰~−0.81‰,均落在MORB范围内。本文对这些标准物质钒同位素组成的报道,丰富了钒同位素研究的标准物质数据库,有助于未来在更多领域开展钒同位素研究。

  • 加载中
  • 图 1  钒同位素的化学纯化流程15

    Figure 1. 

    图 2  金属稳定同位素实验内标(NIST-3165、BDH)长期分析测量精密度

    Figure 2. 

    图 3  地质标准物质的钒同位素组成(灰色圆圈代表前人研究数据,彩色符号代表本文数据)

    Figure 3. 

    图 4  火成岩标准物质的钒同位素组成与V、TiO2、SiO2、MgO含量关系图,其中钒同位素组成与SiO2含量呈正相关,与其他元素没有明显相关性

    Figure 4. 

    表 1  地质标准物质和钒同位素标准溶液详细信息

    Table 1.  Detail information of reference materials and vanadium isotope reference solutions.

    标准物质编号 样品类型 研制单位 δ51V推荐值
    (‰)
    AA 纯钒溶液 Alfa Aesar公司 0.00
    USTC-V 纯钒溶液 中国有色金属及电子材料分析测试中心 −0.07±0.08
    BDH 纯钒溶液 BDH公司 −1.24±0.08
    NIST-3165 纯钒溶液 美国国家标准与技术研究院(NIST) 0.7±0.08
    GSP-2 花岗闪长岩 美国国家地质调查局(USGS) −0.62
    BIR-1 玄武岩 美国国家地质调查局(USGS) −0.92
    GBW07454 土壤 中国地质科学院地球物理地球化学勘查研究所(IGGE) −0.74
    JA-1 安山岩 日本地质调查局(GSJ) /
    JB-3 玄武岩 日本地质调查局(GSJ) /
    JB-1b 玄武岩 日本地质调查局(GSJ) /
    GBW07105 玄武岩 中国地质科学院地球物理地球化学勘查研究所(IGGE) /
    JGb-1 辉长岩 日本地质调查局(GSJ) /
    GBW07123 辉绿岩 中国地质科学院地球物理地球化学勘查研究所(IGGE) /

    注:USTC-V是由两瓶GSB(国家实物标准样品)单元素纯钒溶液混合均匀制备而成,表格中δ51V推荐值来源于Prytulak等(2011)12、Wu等(2016)15和Zeng等(2024)44

    Note: USTC-V is made by mixing two bottles of GSB (National Physical Standard Sample) single element pure vanadium solution evenly,and the recommended values for δ51V in the table are sourced from Prytual et al (2011)12,Wu et al (2016)15 and Zeng et al (2024)44.

    下载: 导出CSV

    表 2  MC-ICP-MS仪器测量钒同位素的主要工作条件

    Table 2.  Operating conditions for vanadium isotopic determination of MC-ICP-MS instrument

    工作参数实验条件
    射频功率1160~1200W
    冷却气流速~16L/min
    辅助器气体流速~0.8L/min
    样品气流速0.85L/min
    灵敏度51V为200V/(μg/g)
    X截取锥和镍Jet样品锥
    膜去溶系统Aridus 3
    进样速率50μL/min
    分辨率中分辨率(>5500)
    法拉第杯L4 L2 L1 C H2 H3
    48Ti 49Ti 50V 51V 52Cr 53Cr
    电阻1011Ω 1011Ω 1011Ω 1010Ω 1011Ω 1011Ω
    下载: 导出CSV

    表 3  地质标准物质的钒同位素组成测量结果

    Table 3.  Vanadium isotopic composition of geological reference materials from different laboratories and our date

    标准物质编号 样品类型 V含量
    (μg/g)
    δ51V
    (‰)
    2SD n 文献来源
    BIR-1 玄武岩 310 −0.91 0.03 3 本文研究
    −0.94 0.15 52 Prytulak等(2011)12
    −0.92 0.09 52 Wu等(2016)15
    −1.05 0.22 7 Sossi等(2018)20
    −0.96 0.03 3 Wu等(2018)27
    −0.89 0.23 3 Hopkins等(2019)22
    −1.01 0.08 3 Qi等(2022)34
    GSP-2 花岗闪长岩 52 −0.60 0.02 3 本文研究
    −0.63 0.1 6 Prytulak等(2011)12
    −0.62 0.07 26 Wu等(2016)15
    GBW07454 黄土 77 −0.78 0.06 12 本文研究
    −0.74 0.08 12 Zeng等(2024)44
    下载: 导出CSV

    表 4  7个地质标准物质的钒同位素组成测量结果

    Table 4.  Determined values of vanadium isotopic composition of seven geological reference materials

    标准物质编号 样品类型 V含量
    (μg/g)
    δ51V测定值
    (‰)
    2SD
    (‰,n=3)
    δ51V总平均值
    (‰)
    总测试数据的2SD
    (‰)
    GBW07454 黄土
    (loess)
    77 −0.81a 0.06 −0.78
    (−0.74*
    0.06 (n=12)
    (0.08*
    −0.74a 0.04
    −0.78a 0.01
    −0.80a 0.04
    GBW07123 辉绿岩
    (diabase)
    268 −0.75a 0.07 −0.72 0.06 (n=15)
    −0.71a 0.02
    −0.70b 0.01
    −0.69a 0.07
    −0.74b 0.02
    JGb-1 辉长岩
    (gabrro)
    635 −1.11a 0.03 −1.05 0.08 (n=9)
    −1.03a 0.04
    −1.03a 0.03
    GBW07105 玄武岩
    (basalt)
    167 −0.83a 0.05 −0.80 0.06 (n=12)
    −0.82a 0.04
    −0.78a 0.05
    −0.77a 0.04
    JB-1b 玄武岩
    (basalt)
    214 −0.79a 0.10 −0.79 0.08 (n=9)
    −0.74a 0.04
    −0.83a 0.08
    JB-3 玄武岩
    (basalt)
    372 −0.83a 0.06 −0.81 0.09 (n=9)
    −0.84a 0.04
    −0.76a 0.07
    JA-1 安山岩
    (andesite)
    105 −0.35a 0.03 −0.34 0.06 (n=12)
    −0.37a 0.02
    −0.33a 0.03
    −0.30b 0.05

    注:a代表相同样品粉末单独进行化学纯化得到的数据;b代表相同的溶液重复测试得到的数据;n代表单次测量次数;*代表Zeng等(2024)[44]报道的δ51V数据值。

    Note: a. Data obtained from chemical purification of the same sample powder separately; b. Data obtained from repeated testing of the same solution;n. Single measurement frequency; *. The data values of δ51V reported by Zeng et al. (2024)[44].

    下载: 导出CSV
  • [1]

    Karner J M. Application of a new vanadium valence oxybarometer to basaltic glasses from the Earth, Moon, and Mars[J]. American Mineralogist, 2006, 91(2-3): 270−277. doi: 10.2138/am.2006.1830

    [2]

    Siebert J, Badro J, Antonangeli D, et al. Terrestrial accretion under oxidizing conditions[J]. Science, 2013, 339(6124): 1194−1197. doi: 10.1126/science.1227923

    [3]

    Wood B J, Wade J, Kilburn M R. Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(5): 1415−1426. doi: 10.1016/j.gca.2007.11.036

    [4]

    Canil D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present[J]. Earth and Planetary Science Letters, 2002, 195(1): 75−90. doi: 10.1016/S0012-821X(01)00582-9

    [5]

    Aeolus Lee C T, Leeman W P, Canil D, et al. Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions[J]. Journal of Petrology, 2005, 46(11): 2313−2336. doi: 10.1093/petrology/egi056

    [6]

    Mallmann G, O’Neill H S C. The crystal/melt partition-ing of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb)[J]. Journal of Petrology, 2009, 50(9): 1765−1794. doi: 10.1093/petrology/egp053

    [7]

    Bennett W W, Canfield D E. Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments[J]. Earth-Science Reviews, 2020, 204: 103175. doi: 10.1016/j.earscirev.2020.103175

    [8]

    Algeo T J, Maynard J B. Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments[J]. Geosphere, 2008, 4(5): 872−887. doi: 10.1130/ges00174.1

    [9]

    Shore A, Fritsch A, Heim M, et al. Discovery of the vanadium isotopes[J]. Atomic Data and Nuclear Data Tables, 2010, 96(4): 351−357. doi: 10.1016/j.adt.2010.02.002

    [10]

    黄方, 吴非. 钒同位素地球化学综述[J]. 地学前缘, 2015, 22(5): 94−101. doi: 10.13745/j.esf.2015.05.007

    Huang F, Wu F. A review of vanadium isotope geochemistry[J]. Earth Science Frontiers, 2015, 22(5): 94−101. doi: 10.13745/j.esf.2015.05.007

    [11]

    Nielsen S G, Prytulak J, Halliday A N. Determination of precise and accurate 51V/50V isotope ratios by MC-ICP-MS, Part 1: Chemical separation of vanadium and mass spectrometric protocols[J]. Geostandards and Geoanalytical Research, 2011, 35(3): 293−306. doi: 10.1111/j.1751-908X.2011.00106.x

    [12]

    Prytulak J, Nielsen S G, Halliday A N. Determination of precise and accurate 51V/50V isotope ratios by multi-collector ICP-MS, Part 2: Isotopic composition of six reference materials plus the allende chondrite and verification tests[J]. Geostandards and Geoanalytical Research, 2011, 35(3): 307−318. doi: 10.1111/j.1751-908X.2011.00105.x

    [13]

    Ventura G T, Gall L, Siebert C, et al. The stable isotope composition of vanadium, nickel, and molybdenum in crude oils[J]. Applied Geochemistry, 2015, 59: 104−117. doi: 10.1016/j.apgeochem.2015.04.009

    [14]

    Nielsen S G, Owens J D, Horner T J. Analysis of high-precision vanadium isotope ratios by medium resolution MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 531−536. doi: 10.1039/c5ja00397k

    [15]

    Wu F, Qi Y H, Yu H M, et al. Vanadium isotope measurement by MC-ICP-MS[J]. Chemical Geology, 2016, 421: 17−25. doi: 10.1016/j.jpgl.2015.06.048

    [16]

    Schuth S, Horn I, Brüske A, et al. First vanadium isotope analyses of V-rich minerals by femtosecond laser ablation and solution-nebulization MC-ICP-MS[J]. Ore Geology Reviews, 2017, 81: 1271−1286. doi: 10.1016/j.oregeorev.2016.09.028

    [17]

    Schuth S, Brüske A, Hohl S V, et al. Vanadium and its isotope composition of river water and seawater: Analytical improvement and implications for vanadium isotope fractionation[J]. Chemical Geology, 2019, 528: 119261. doi: 10.1016/j.chemgeo.2019.07.036

    [18]

    Dong L H, Wei W, Yu C L, et al. Determination of vanadium isotope compositions in carbonates using an Fe coprecipitation method and MC-ICP-MS[J]. Analytical Chemistry, 2021, 93(19): 7172−7179. doi: 10.1021/acs.analchem.0c04800

    [19]

    Nielsen S G, Prytulak J, Wood B J, et al. Vanadium isotopic difference between the silicate earth and meteorites[J]. Earth and Planetary Science Letters, 2014, 389: 167−175. doi: 10.1016/j.jpgl.2013.12.030

    [20]

    Sossi P A, Moynier F, Chaussidon M, et al. Early Solar system irradiation quantified by linked vanadium and beryllium isotope variations in meteorites[J]. Nature Astronomy, 2017, 1(4): 103175. doi: 10.1038/s41550-017-0055

    [21]

    Nielsen S G, Auro M, Righter K, et al. Nucleosynthetic vanadium isotope heterogeneity of the Early Solar system recorded in chondritic meteorites[J]. Earth and Planetary Science Letters, 2019, 505: 131−140. doi: 10.1016/j.jpgl.2018.10.029

    [22]

    Hopkins S S, Prytulak J, Barling J, et al. The vanadium isotopic composition of Lunar basalts[J]. Earth and Planetary Science Letters, 2019, 511: 12−24. doi: 10.1016/j.jpgl.2019.01.008

    [23]

    Nielsen S G, Bekaert D V, Magna T, et al. The vanadium isotope composition of Mars: Implications for planetary differentiation in the Early Solar system[J]. Geochemical Perspectives Letters, 2020: 35−39.

    [24]

    Nielsen S G, Bekaert D V, Auro M. Isotopic evidence for the formation of the Moon in a canonical giant impact[J]. Nature Communications, 2021, 12(1): 1−7. doi: 10.1038/s41467-021-22155-7

    [25]

    戚玉菡, 吴非, 李春辉, 等. 地幔和大洋玄武岩的钒同位素研究[J]. 矿物岩石地球化学通报, 2019, 38(3): 643−650. doi: 10.19658/j.issn.1007-2802.2019.38.052

    Qi Y H, Wu F, Li C H, et al. Vanadium isotope compositions of the mantle and oceanic basalts[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(3): 643−650. doi: 10.19658/j.issn.1007-2802.2019.38.052

    [26]

    Prytulak J, Nielsen S G, Ionov D A, et al. The stable vanadium isotope composition of the mantle and mafic lavas[J]. Earth and Planetary Science Letters, 2013, 365: 177−189. doi: 10.1016/j.jpgl.2013.01.010

    [27]

    Wu F, Qi Y H, Perfit M R, et al. Vanadium isotope compositions of mid-ocean ridge lavas and altered oceanic crust[J]. Earth and Planetary Science Letters, 2018, 493: 128−139. doi: 10.1016/j.jpgl.2018.04.009

    [28]

    Qi Y H, Wu F, Ionov D A, et al. Vanadium isotope composition of the bulk silicate earth: Constraints from peridotites and komatiites[J]. Geochimica et Cosmochimica Acta, 2019, 259: 288−301. doi: 10.1016/j.gca.2019.06.008

    [29]

    Novella D, Maclennan J, Shorttle O, et al. A multi-proxy investigation of mantle oxygen fugacity along the Reykjanes Ridge[J]. Earth and Planetary Science Letters, 2020, 531: 115973. doi: 10.1016/j.jpgl.2019.115973

    [30]

    Chen Z W, Ding X, Kiseeva E S, et al. Vanadium isotope fractionation of alkali basalts during mantle melting[J]. Lithos, 2023, 442−443: 107082.

    [31]

    Prytulak J, Sossi P A, Halliday A N, et al. Stable vanadium isotopes as a redox proxy in magmatic systems?[J]. Geochemical Perspectives Letters, 2017, 3(1): 75−84.

    [32]

    Ding X, Helz R T, Qi Y H, et al. Vanadium isotope fractionation during differentiation of Kilauea Iki Lava Lake, Hawaii[J]. Geochimica et Cosmochimica Acta, 2020, 289: 114−129. doi: 10.1016/j.gca.2020.08.023

    [33]

    Tian S Y, Ding X, Qi Y H, et al. Dominance of felsic continental crust on Earth after 3 billion years ago is recorded by vanadium isotopes[J]. Proceedings of the National Academy of Sciences, 2023, 120(11): e2220563120. doi: 10.1073/pnas.2220563120

    [34]

    Qi Y H, Gong Y Z, Wu F, et al. Coupled variations in V-Fe abundances and isotope compositions in latosols: Implications for V mobilization during chemical weathering[J]. Geochimica et Cosmochimica Acta, 2022, 320: 26−40. doi: 10.1016/j.gca.2021.12.028

    [35]

    Heard A W, Wang Y, Ostrander C M, et al. Coupled vanadium and thallium isotope constraints on Mesoproterozoic ocean oxygenation around 1.38-1.39Ga[J]. Earth and Planetary Science Letters, 2023, 610: 118127. doi: 10.1016/j.jpgl.2023.118127

    [36]

    Fan H F, Ostrander C M, Auro M, et al. Vanadium isotope evidence for expansive ocean euxinia during the appearance of early Ediacara Biota[J]. Earth and Planetary Science Letters, 2021, 567: 117007. doi: 10.1016/j.jpgl.2021.117007

    [37]

    Li S Q, Friedrich O, Nielsen S G, et al. Reconciling biogeochemical redox proxies: Tracking variable bottom water oxygenation during OAE-2 using vanadium isotopes[J]. Earth and Planetary Science Letters, 2023, 617: 118237. doi: 10.1016/j.jpgl.2023.118237

    [38]

    Wei W, Chen X, Ling H F, et al. Vanadium isotope evidence for widespread marine oxygenation from the late Ediacaran to early Cambrian[J]. Earth and Planetary Science Letters, 2023, 602: 117942. doi: 10.1016/j.jpgl.2022.117942

    [39]

    Chételat J, Nielsen S G, Auro M, et al. Vanadium stable isotopes in Biota of Terrestrial and aquatic food chains[J]. Environmental Science and Technology, 2021, 55(8): 4813−4821. doi: 10.1021/acs.est.0c07509

    [40]

    Huang Y, Long Z, Zhou D, et al. Fingerprinting vanadium in soils based on speciation characteristics and isotope compositions[J]. Science of the Total Environment, 2021, 791: 148240. doi: 10.1016/j.scitotenv.2021.148240

    [41]

    An Y J, Li X, Zhang Z F. Barium isotopic compositions in thirty-four geological reference materials analysed by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 44(1): 183−199. doi: 10.1111/ggr.12299

    [42]

    Wu F, Owens J D, Scholz F, et al. Sedimentary vanadium isotope signatures in low oxygen marine conditions[J]. Geochimica et Cosmochimica Acta, 2020, 284: 134−155. doi: 10.1016/j.gca.2020.06.013

    [43]

    杨林, 石震, 于慧敏, 等. 多接收电感耦合等离子体质谱法测定岩石和土壤等国家标准物质的硅同位素组成[J]. 岩矿测试, 2023, 42(1): 136−145. doi: 10.15898/j.cnki.11-2131/td.202112060195

    Yang L, Shi Z, Yu H M, et al. Determination of silicon isotopic compositions of rock and soil reference materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(1): 136−145. doi: 10.15898/j.cnki.11-2131/td.202112060195

    [44]

    Zeng Z, Wu F. Rapid determination of V isotopes with MC-ICP-MS: New developments in sample purification[J]. Journal of Analytical Atomic Spectrometry, 2024, 39(1): 121−130. doi: 10.1039/d3ja00285

  • 加载中

(4)

(4)

计量
  • 文章访问数:  283
  • PDF下载数:  58
  • 施引文献:  0
出版历程
收稿日期:  2024-05-28
修回日期:  2024-06-26
录用日期:  2024-07-05
网络出版日期:  2024-08-08
刊出日期:  2025-01-31

目录