中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

普通铅对LA-ICP-MS磷灰石U-Pb定年结果的影响及校正方法

罗涛, 王瀚林, 朱松柏, 卿丽媛, 胡兆初. 普通铅对LA-ICP-MS磷灰石U-Pb定年结果的影响及校正方法[J]. 岩矿测试, 2025, 44(1): 51-62. doi: 10.15898/j.ykcs.202404070079
引用本文: 罗涛, 王瀚林, 朱松柏, 卿丽媛, 胡兆初. 普通铅对LA-ICP-MS磷灰石U-Pb定年结果的影响及校正方法[J]. 岩矿测试, 2025, 44(1): 51-62. doi: 10.15898/j.ykcs.202404070079
LUO Tao, WANG Hanlin, ZHU Songbai, QING Liyuan, HU Zhaochu. Impacts of Common Lead on Apatite U-Pb Geochronology by LA-ICP-MS: Assessment and Correction Strategies[J]. Rock and Mineral Analysis, 2025, 44(1): 51-62. doi: 10.15898/j.ykcs.202404070079
Citation: LUO Tao, WANG Hanlin, ZHU Songbai, QING Liyuan, HU Zhaochu. Impacts of Common Lead on Apatite U-Pb Geochronology by LA-ICP-MS: Assessment and Correction Strategies[J]. Rock and Mineral Analysis, 2025, 44(1): 51-62. doi: 10.15898/j.ykcs.202404070079

普通铅对LA-ICP-MS磷灰石U-Pb定年结果的影响及校正方法

  • 基金项目: 国家自然科学基金项目(42373032);湖北省自然科学基金项目(2024AFD372)
详细信息
    作者简介: 罗涛,博士,副研究员,主要从事副矿物U-Th-Pb年代学和激光剥蚀电感耦合等离子体质谱机理研究。E-mail:luotao11@cug.edu.cn
  • 中图分类号: O657.63;P597.3

Impacts of Common Lead on Apatite U-Pb Geochronology by LA-ICP-MS: Assessment and Correction Strategies

  • 磷灰石是火成岩、变质岩和沉积岩中广泛分布的含铀矿物,开展磷灰石U-Pb年代学研究对揭示岩浆演化过程、示踪溯源等方面具有重要意义。激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)是开展磷灰石U-Pb年龄微区分析的重要手段之一。当前,基体匹配磷灰石U-Pb定年矿物标样缺乏和标样中不可避免的普通铅是制约LA-ICP-MS高精度磷灰石U-Pb年龄分析的主要瓶颈。本文对比研究了标样中普通铅对LA-ICP-MS磷灰石U-Pb定年结果的影响,采用含普通铅的磷灰石MAD作外标直接开展U-Pb年龄校正,获得的被测样品年龄会产生显著的系统偏差(最大约6%);采用207Pb法或Tera-Wasserburg图解法先校正标样中普通铅,再利用校正后的数据进行元素分馏和仪器漂移校正则可获得准确的磷灰石U-Pb年龄,与推荐值偏差在2%以内。另一方面,为消除标样中普通铅对分析结果的影响,本文还采用水蒸气辅助激光剥蚀方法,实现以NIST612玻璃作为外标准确分析磷灰石U-Pb年龄,解决了磷灰石U-Pb定年微区分析高质量标样缺乏的难题。本研究通过对标样中普通铅进行预校正或采用非基体匹配分析,建立了高精度LA-ICP-MS磷灰石U-Pb定年新方法,将促进磷灰石U-Pb年代学在地球科学研究中的应用。

  • 加载中
  • 图 1  206Pb/238U和207Pb/206Pb年龄精度随Pb信号强度的变化

    Figure 1. 

    图 2  使用磷灰石MAD作为外标直接校正获得的磷灰石样品U-Pb年龄

    Figure 2. 

    图 3  使用207Pb法校正MAD普通铅后获得的磷灰石样品的U-Pb年龄

    Figure 3. 

    图 4  Tera-Wasserburg图解法校正获得磷灰石U-Pb年龄

    Figure 4. 

    图 5  以NIST612玻璃作为外标分析获得的磷灰石U-Pb年龄

    Figure 5. 

    表 1  LA-ICP-MS磷灰石U-Pb定年实验仪器参数

    Table 1.  Instrumental parameters for LA-ICP-MS U-Pb dating of apatite.

    LA参数 GeoLas HD 193nm准分子激光
    波长193nm
    激光能量密度10J/cm2
    剥蚀频率5Hz
    剥蚀时间50s
    背景时间20s
    He流速650mL/min
    束斑直径60~90μm
    ICP-MS参数Agilent 7900型
    等离子体功率1400W
    样品气0.86L/min
    检测元素29Si, 42Ca,49Ti,51V,89Y, 93Nb, 139La,140Ce,
    141Pr,146Nd,147Sm,151Eu,157Gd,159Tb,163Dy,
    165Ho,166Er,169Tm,173Yb,175Lu,179Hf,181Ta,
    201Hg,204Pb,206Pb,207Pb,208Pb,232Th,238U
    下载: 导出CSV

    表 2  不同测量条件下获得的磷灰石Tera-Wasserburg谐和图下交点年龄与推荐值的偏差

    Table 2.  Deviations of Tera-Wasserburg values and recommended values for apatite U-Pb age obtained under different measurement conditions.

    激光条件外标普通铅校正方法分析样品Tera-Wasserburg谐和图下交点年龄与
    推荐值的偏差(%)
    60μm,5HzMAD无普通铅校正Otter Lake2.5
    Durango6.0
    60μm,5HzMAD207PbOtter Lake0.03
    Durango1.7
    60μm,5HzMADTera-Wasserburg图解法Otter Lake1.7
    Durango6.6
    60μm,5HzNIST612无普通铅校正MAD0.1
    Otter Lake2.3
    Durango0.8
    下载: 导出CSV
  • [1]

    Abdullin F, Solé J, Solari L, et al. Single-grain apatite geochemistry of Permian–Triassic granitoids and Mesozoic and Eocene sandstones from Chiapas, Southeast Mexico: Implications for sediment provenance[J]. International Geology Review, 2016, 58(9): 1132−1157. doi: 10.1080/00206814.2016.1150212

    [2]

    Krestianinov E, Amelin Y, Neymark L A, et al. U-Pb systematics of uranium-rich apatite from adirondacks: Inferences about regional geological and geochemical evolution, and evaluation of apatite reference materials for in situ dating[J]. Chemical Geology, 2021, 581: 120417. doi: 10.1016/j.chemgeo.2021.120417

    [3]

    Li Q L, Li X H, Wu F Y, et al. In-situ SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb[J]. Gondwana Research, 2012, 21(4): 745−756. doi: 10.1016/j.gr.2011.07.008

    [4]

    罗涛, 胡兆初. 激光剥蚀电感耦合等离子体质谱副矿物 U-Th-Pb 定年新进展[J]. 地球科学, 2022, 47(11): 4122−4144.

    Luo T, Hu Z C. Recent advances in U-Th-Pb dating of accessory minerals by laser ablation inductively coupled plasma mass spectrometry[J]. Earth Science, 2022, 47(11): 4122−4144.

    [5]

    Pochon A, Poujol M, Gloaguen E, et al. U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian—Carboniferous boundary in the Armorican Massif (France)[J]. American Mineralogist, 2016, 101(11): 2430−2442. doi: 10.2138/am-2016-5736

    [6]

    Morrison J L, Kirkland C L, Fiorentini M, et al. An apatite to unravel petrogenic processes of the Nova-Bollinger Ni-Cu magmatic sulfide deposit, Western Australia[J]. Precambrian Research, 2022, 369: 106524. doi: 10.1016/j.precamres.2021.106524

    [7]

    Rochín-Bañaga H, Davis D W, Schwennicke T. First U-Pb dating of fossilized soft tissue using a new approach to paleontological chronometry[J]. Geology, 2021, 49(9): 1027−1031. doi: 10.1130/G48386.1

    [8]

    Rochín-Bañaga H, Davis D W. Insights into U-Th-Pb mobility during diagenesis from laser ablation U-Pb dating of apatite fossils[J]. Chemical Geology, 2023, 618: 121290. doi: 10.1016/j.chemgeo.2022.121290

    [9]

    罗涛, 卿丽媛, 刘金雨, 等. 激光剥蚀电感耦合等离子体质谱法测定碳酸盐矿物中元素组成[J]. 岩矿测试, 2023, 42(5): 996−1006.

    Luo T, Qing L Y, Liu J Y, et al. Accurate determination of elemental contents in carbonate minerals with laser ablation inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2023, 42(5): 996−1006.

    [10]

    Lv N, Bao Z A, Chen K Y, et al. Accurate determination of Cu isotopes in bronze by fsLA-MC-ICP-MS[J]. Atomic Spectroscopy, 2023, 44(6): 418−426. doi: 10.46770/AS.2023.282

    [11]

    Liu H, Feng Y, Li M, et al. Further characterization of four natural ilmenite reference materials for in situ Fe isotopic analysis[J]. Atomic Spectroscopy, 2023, 44(6): 409−417. doi: 10.46770/AS.2023.281

    [12]

    Chew D M, Sylvester P J, Tubrett M N. U-Pb and Th-Pb dating of apatite by LA-ICPMS[J]. Chemical Geology, 2011, 280(1−2): 200−216. doi: 10.1016/j.chemgeo.2010.11.010

    [13]

    Luo T, Hu Z, Zhang W, et al. Water vapor-assisted “universal” nonmatrix-matched analytical method for the in situ U-Pb dating of zircon, monazite, titanite, and xenotime by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2018, 90(15): 9016−9024. doi: 10.1021/acs.analchem.8b01231

    [14]

    Zhang W, Zhao S, Sun J, et al. Late Mesozoic tectono-thermal history in the south margin of Great Xing’an Range, NE China: Insights from zircon and apatite (U-Th)/He ages[J]. Journal of Earth Science, 2022, 33(1): 36−44. doi: 10.1007/s12583-021-1537-5

    [15]

    Chew D M, Spikings R A. Apatite U-Pb thermochronology: A review[J]. Minerals, 2021, 11(10): 1095. doi: 10.3390/min11101095

    [16]

    Apen F E, Wall C J, Cottle J M, et al. Apatites for destruction: Reference apatites from Morocco and Brazil for U-Pb petrochronology and Nd and Sr isotope geochemistry[J]. Chemical Geology, 2022, 590: 120689. doi: 10.1016/j.chemgeo.2021.120689

    [17]

    Duan L J, Zhang L L, Zhu D C, et al. Apatite MAP-3: A new homogeneous and low common lead natural reference for laser in situ U-Pb dating and Nd isotope analysis[J]. Journal of Analytical Atomic Spectrometry, 2023, 38(7): 1478−1493. doi: 10.1039/D2JA00405D

    [18]

    Abdullin F, Solari L, Solé J, et al. On LA-ICP-MS U-Pb dating of unetched and etched apatites[J]. Geochronology, 2020, 2020: 1−23.

    [19]

    Lana C, Gonçalves G O, Mazoz A, et al. Assessing the U-Pb, Sm‐Nd and Sr‐Sr isotopic compositions of the Sumé apatite as a reference material for LA‐ICP‐MS analysis[J]. Geostandards Geoanalytical Research, 2022, 46(1): 71−95. doi: 10.1111/ggr.12413

    [20]

    Thomson S N, Gehrels G E, Ruiz J, et al. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): 1−23.

    [21]

    Chew D, Petrus J, Kamber B. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb[J]. Chemical Geology, 2014, 363: 185−199. doi: 10.1016/j.chemgeo.2013.11.006

    [22]

    Storey C, Smith M, Jeffries T. In situ LA-ICP-MS U-Pb dating of Metavolcanics of Norrbotten, Sweden: Records of extended geological histories in complex titanite grains[J]. Chemical Geology, 2007, 240(1−2): 163−181. doi: 10.1016/j.chemgeo.2007.02.004

    [23]

    Hou Z, Xiao Y, Shen J, et al. In situ rutile U-Pb dating based on zircon calibration using LA-ICP-MS, geological applications in the Dabie Orogen, China[J]. Journal of Asian Earth Sciences, 2020, 192: 104261. doi: 10.1016/j.jseaes.2020.104261

    [24]

    Luo T, Zhao H, Zhang W, et al. Non-matrix-matched analysis of U-Th-Pb geochronology of Bastnäsite by laser ablation inductively coupled plasma mass spectrometry[J]. Science China: Earth Sciences, 2021, 64(4): 667−676. doi: 10.1007/s11430-020-9715-1

    [25]

    Luo T, Deng X, Li J, et al. U-Pb geochronology of wolframite by laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1439−1446. doi: 10.1039/C9JA00139E

    [26]

    Paul A N, Spikings R A, Chew D, et al. The effect of intra-crystal uranium zonation on apatite U-Pb thermo-chronology: A combined ID-TIMS and LA-MC-ICP-MS study[J]. Geochimica et Cosmochimica Acta, 2019, 251: 15−35. doi: 10.1016/j.gca.2019.02.013

    [27]

    McDowell F W, McIntosh W C, Farley K A. A precise 40Ar-39Ar reference age for the durango apatite (U-Th)/He and fission-track dating standard[J]. Chemical Geology, 2005, 214(3−4): 249−263. doi: 10.1016/j.chemgeo.2004.10.002

    [28]

    Thompson J, Meffre S, Maas R, et al. Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(6): 1206−1215. doi: 10.1039/C6JA00048G

    [29]

    Jochum K P, Weis U, Stoll B, et al. Determination of reference values for NIST SRM610−617 glasses following ISO guidelines[J]. Geostandards and Geoanalytical Research, 2011, 35(4): 397−429. doi: 10.1111/j.1751-908X.2011.00120.x

    [30]

    Mcfarlane C R M. Allanite U-Pb geochronology by 193nm LA-ICP-MS using NIST610 glass for external calibration[J]. Chemical Geology, 2016, 438: 91−102. doi: 10.1016/j.chemgeo.2016.05.026

    [31]

    Miyajima Y, Saito A, Kagi H, et al. Incorporation of U, Pb and rare earth elements in calcite through crystallisation from amorphous calcium carbonate: Simple preparation of reference materials for microanalysis[J]. Geostandards Geoanalytical Research, 2021, 45(1): 189−205. doi: 10.1111/ggr.12367

    [32]

    Roberts N M, Rasbury E T, Parrish R R, et al. A calcite reference material for LA‐ICP‐MS U‐Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807−2814. doi: 10.1002/2016GC006784

    [33]

    Paton C, Woodhead J D, Hellstrom J C, et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q0AA06.

    [34]

    Vermeesch P. Isoplot R: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1479−1493. doi: 10.1016/j.gsf.2018.04.001

    [35]

    Stacey J, Kramers J. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2): 207−221. doi: 10.1016/0012-821X(75)90088-6

    [36]

    Schaltegger U, Schmitt A, Horstwood M. U‐Th‐Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities[J]. Chemical Geology, 2015, 402: 89−110. doi: 10.1016/j.chemgeo.2015.02.028

    [37]

    赵令浩, 詹秀春, 曾令森, 等. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753.

    Zhao L H, Zhan X C, Zeng L S, et al. Direct calibration method for LA-HR-ICP-MS apatite U-Pb dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744−753.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  483
  • PDF下载数:  78
  • 施引文献:  0
出版历程
收稿日期:  2024-04-07
修回日期:  2024-07-06
录用日期:  2024-07-11
网络出版日期:  2024-08-07
刊出日期:  2025-01-31

目录