中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

黏土矿物类型对杭锦旗下石盒子组致密砂岩储层束缚水饱和度的影响

王立新, 高青松, 周家林, 刘岩, 曹茜, 陈婷, 王力. 黏土矿物类型对杭锦旗下石盒子组致密砂岩储层束缚水饱和度的影响[J]. 岩矿测试, 2024, 43(6): 821-835. doi: 10.15898/j.ykcs.202407150157
引用本文: 王立新, 高青松, 周家林, 刘岩, 曹茜, 陈婷, 王力. 黏土矿物类型对杭锦旗下石盒子组致密砂岩储层束缚水饱和度的影响[J]. 岩矿测试, 2024, 43(6): 821-835. doi: 10.15898/j.ykcs.202407150157
WANG Lixin, GAO Qingsong, ZHOU Jialin, LIU Yan, CAO Qian, CHEN Ting, WANG Li. The Impact of Different Clay Mineral Types on the Irreducible Water Saturation in Tight Sandstone Reservoirs: A Case Study of the Lower Shihezi Formation in Hangjinqi Area, Ordos Basin[J]. Rock and Mineral Analysis, 2024, 43(6): 821-835. doi: 10.15898/j.ykcs.202407150157
Citation: WANG Lixin, GAO Qingsong, ZHOU Jialin, LIU Yan, CAO Qian, CHEN Ting, WANG Li. The Impact of Different Clay Mineral Types on the Irreducible Water Saturation in Tight Sandstone Reservoirs: A Case Study of the Lower Shihezi Formation in Hangjinqi Area, Ordos Basin[J]. Rock and Mineral Analysis, 2024, 43(6): 821-835. doi: 10.15898/j.ykcs.202407150157

黏土矿物类型对杭锦旗下石盒子组致密砂岩储层束缚水饱和度的影响

  • 基金项目: 中石化科技部项目“东胜致密高含水气藏有效开发关键技术” (P23030)
详细信息
    作者简介: 王立新,高级工程师,主要从事油气田开发工作。E-mail:wanglx.hbsj@sinopec.com
    通讯作者: 高青松,高级工程师,主要从事天然气地质及气藏开发技术研究。E-mail:gaoqs.hbsj@sinopec.com。;  曹茜,博士,高级工程师,主要从事非常规油气储层评价及实验研究。E-mail:caoqian2022@cdut.edu.cn
  • 中图分类号: P618.13

The Impact of Different Clay Mineral Types on the Irreducible Water Saturation in Tight Sandstone Reservoirs: A Case Study of the Lower Shihezi Formation in Hangjinqi Area, Ordos Basin

More Information
  • 现有研究对黏土矿物、孔喉结构和束缚水饱和度关系认识不足,对束缚水饱和度的微观影响因素尚不明确。本文聚焦鄂尔多斯盆地北缘杭锦旗地区锦30井区盒1段致密砂岩储层,探讨黏土矿物类型与含量对束缚水饱和度的影响。在岩心观察基础上,通过X射线衍射分析、高分辨率扫描电镜、铸体薄片分析、一维核磁共振实验和高压压汞实验等多种测试方法,对目的层岩石学特征、黏土矿物类型及产出形态、孔隙结构、束缚水分布展开研究。研究结果显示:①盒1段储层黏土矿物平均含量为18.36%,主要发育高岭石、伊利石、绿泥石和伊/蒙混层等黏土矿物;②不同岩相中黏土矿物的类型存在差异:岩屑石英砂岩中黏土矿物以长石蚀变高岭石为主,发育长石粒内溶孔、高岭石晶间孔;岩屑砂岩以岩屑及杂基蚀变伊利石为主,发育伊利石充填的岩屑粒内溶孔;③束缚水饱和度随黏土矿物总量增加呈增大趋势,伊利石呈丝状发育堵塞孔喉是影响束缚水饱和度分布的主导因素;不同成因高岭石对束缚水分布影响有差异:长石高岭石化形成的高岭石单体排列杂乱且疏松,对应黏土矿物晶间孔隙不发育但长石溶蚀孔较发育,孔隙连通性较好;自生高岭石呈蠕虫状或书页状集合体状分布,相互支撑形成大量微纳米级孔隙,引起束缚水饱和度增加;不同类型黏土矿物分布对束缚水饱和度影响的研究,对致密砂岩储层评与产能预测至关重要。

  • 加载中
  • 图 1  区域地质图

    Figure 1. 

    图 2  锦30井区盒1段储层岩石类型

    Figure 2. 

    图 3  不同类型岩石样品及黏土矿物特征

    Figure 3. 

    图 4  杭锦旗锦30井区盒1段典型样品孔隙类型

    Figure 4. 

    图 5  杭锦旗锦30井区不同岩性样品孔喉结构分布特征

    Figure 5. 

    图 6  不同岩相中黏土矿物显微图像特征

    Figure 6. 

    图 7  杭锦旗锦30井区岩石样品孔径分布频率

    Figure 7. 

    图 8  T2截止值和束缚水饱和度的确定方法

    Figure 8. 

    图 9  黏土矿物含量与束缚水饱和度的相关性(部分数据引自中石化华北局)

    Figure 9. 

    图 10  不同样品束缚水饱和度与黏土矿物含量的关系(部分数据引自中石化华北局)

    Figure 10. 

    表 1  盒1段致密砂岩样品全岩黏土矿物组成及含量

    Table 1.  Section of compact sandstone: full rock clay mineral composition and content

    井号 岩性 黏土矿物含量
    (%)
    石英含量
    (%)
    钾长石含量
    (%)
    斜长石含量
    (%)
    方解石含量
    (%)
    黏土矿物相对含量(%)
    高岭石 绿泥石 伊利石 伊/蒙混层
    J30-26 含砾粗粒岩屑石英砂岩 7.4 92.6 27.0 11.0 48.0 14.0
    H2 砾质粗粒岩屑石英砂岩 4.1 95.7 26.0 30.0 34.0 10.0
    J30-26 粗-中粒岩屑石英砂岩 15.3 80.9 15.3 11.0 25.0 38.0 26.0
    X701 中-粗粒岩屑砂岩 19.1 74.9 6.0 29.0 26.0 24.0 21.0
    X7 含砾粗粒岩屑石英砂岩 12.0 88.0 18.0 43.0 21.0 18.0
    H2 中-粗粒岩屑砂岩 21.4 76.0 2.1 10.0 62.0 20.0 8.0
    X101 含砾粗粒岩屑砂岩 30.2 69.8 49.0 27.0 13.0 11.0
    X701 含砾粗粒岩屑砂岩 24.8 72.4 2.8 30.0 32.0 26.0 12.0
     注:“−”为未检出。
    下载: 导出CSV
  • [1]

    曾溅辉, 张亚雄, 张在振, 等. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067−1083. doi: 10.11743/ogg20230501

    Zeng J H, Zhang Y X, Zhang Z Z, et al. Complex gas-water contacts in tight sandstone gas reservoirs: Distribution pattern and dominant factors controlling their formation and distribution[J]. Oil & Gas Geology, 2023, 44(5): 1067−1083. doi: 10.11743/ogg20230501

    [2]

    崔耀科. 分流河道砂体精细刻画与储层非均质性研究[D]. 西安: 西安石油大学, 2023.

    Cui Y K. Study on fine characterization of distributary channel sand body and reservoir heterogeneity: A case study from Chang 2 reservoir of Qiaozhen area in Xiasiwan oil field [D]. Xi’an: Xi’an Shiyou University, 2023.

    [3]

    王静怡. 鄂尔多斯盆地本溪组致密砂岩储层成岩演化与成藏耦合机理研究[D]. 北京: 中国石油大学(北京), 2023.

    Wang J Y. Study on coupling mechanism of diagenesis and accumulation of tight sandstone in the Benxi Formation, Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2023.

    [4]

    邱隆伟, 穆相骥, 李浩, 等. 杭锦旗地区下石盒子组致密砂岩储层成岩作用对孔隙发育的影响[J]. 油气地质与采收率, 2019, 26(2): 42−50. doi: 10.13673/j.cnki.cn37-1359/te.2019.02.006

    Qiu L W, Mu X J, Li H, et al. Influence of diagenesis of tight sandstone reservoir on the porosity development of lower Shihezi Formation in Hangjinqi area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2): 42−50. doi: 10.13673/j.cnki.cn37-1359/te.2019.02.006

    [5]

    聂海宽, 张金川, 薛会, 等. 杭锦旗探区储层致密化与天然气成藏的关系[J]. 西安石油大学学报(自然科学版), 2009, 24(1): 1−7, 108.

    Nie H K, Zhang J C, Xue H, et al. Relationship between the densification of reservoir and the accumulation of natural gas in Hangjinqi area of Ordos Baisn[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2009, 24(1): 1−7, 108.

    [6]

    刘飞, 周文, 李秀华, 等. 鄂尔多斯盆地杭锦旗地区上古生界砂岩中储层粘土矿物特征分析[J]. 矿物岩石, 2006(1): 92−97. doi: 10.19719/j.cnki.1001-6872.2006.01.017

    Liu F, Zhou W, Li X H, et al. Analysis of characteritics of the clay minerals in the upper palaeozoic sandstone reservoir of Hangjinqi area in North Ordos Basin[J]. Mineralogy and Petrology, 2006(1): 92−97. doi: 10.19719/j.cnki.1001-6872.2006.01.017

    [7]

    郭笑锴, 滕飞启, 吴明松, 等. 鄂尔多斯盆地陇东地区铝土岩储层含气性测井评价方法及其应用[J]. 天然气地球科学, 2024, 35(8): 1454−1466. doi: 10.11764/j.issn.1672-1926.2024.04.022

    Guo X K, Teng F Q, Wu S M, et al. Logging evaluation method for gas bearing properties of bauxite reservoirs in the Longdong area of Ordos Basin and its application[J]. Natural Gas Geoscience, 2024, 35(8): 1454−1466. doi: 10.11764/j.issn.1672-1926.2024.04.022

    [8]

    郭明强, 周龙刚, 张兵, 等. 致密砂岩气水分布特征——以鄂尔多斯盆地东部临兴地区为例[J]. 天然气地球科学, 2020, 31(6): 855−864.

    Guo M Q, Zhou L G, Zhang B, et al. The regularity of gas and water distribution for tight sandstone: Case study of Linxing area, Eastern Ordos Basin[J]. Natural Gas Geoscience, 2020, 31(6): 855−864.

    [9]

    李港, 张占松, 郭建宏, 等. 基于核磁共振测井的束缚水饱和度评价方法: 以中东地区M层组的孔隙型碳酸盐岩储层为例[J]. 科学技术与工程, 2023, 23(30): 12900−12910. doi: 10.12404/j.issn.1671-1815.2023.23.30.12900

    Li G, Zhang Z S, Guo J H, et al. Evaluation method of irreducible water saturation based on nuclear magnetic resonance logging: Taking the porous carbonate reservoir of M Formation in the middle east as an example[J]. Science Technology and Engineering, 2023, 23(30): 12900−12910. doi: 10.12404/j.issn.1671-1815.2023.23.30.12900

    [10]

    白玉湖, 王苏冉, 徐兵祥, 等. 致密砂岩束缚水饱和度和微观孔喉结构关系实验研究[J]. 中国海上油气, 2022, 34(4): 65−71. doi: 10.11935/j.issn.1673-1506.2022.04.006

    Bai Y H, Wang S R, Xu B X, et al. Experimental study on the relationship between irreducible water saturation and micro pore throat in tight sandtone[J]. China Offshore Oil and Gas, 2022, 34(4): 65−71. doi: 10.11935/j.issn.1673-1506.2022.04.006

    [11]

    苏玉亮, 李东升, 李蕾, 等. 致密砂岩气藏地层水可动性及其影响因素研究[J]. 特种油气藏, 2020, 27(4): 118−122. doi: 10.3969/j.issn.1006-6535.2020.04.018

    Su Y L, Li D S, Li L, et al. Formation water mobility and influencing factors in tight sandstone gas reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 118−122. doi: 10.3969/j.issn.1006-6535.2020.04.018

    [12]

    陈鑫, 马立涛, 史长林, 等. 临兴区块致密砂岩储层水赋存状态及气层含水程度识别方法[J]. 地质与勘探, 2022, 58(6): 1331−1340.

    Chen X, Ma L T, Shi C L, et al. Water occurrence and identification method of the water-bearing degree of tight sandstone reservoirs in the Linxing block[J]. Geology and Exploration, 2022, 58(6): 1331−1340.

    [13]

    胡向阳, 张广权, 魏修平, 等. 杭锦旗地区南部气水识别及复杂气水关系成因[J]. 东北石油大学学报, 2019, 43(2): 41−48, 7−8. doi: 10.3969/j.issn.2095-4107.2019.02.005

    Hu X Y, Zhang G Q, Wei X P, et al. Identification of gas-water reservoir and geneses of complicated gas-water relationships in southern region of Hangjinqi area[J]. Journal of Northeast Petroleum University, 2019, 43(2): 41−48, 7−8. doi: 10.3969/j.issn.2095-4107.2019.02.005

    [14]

    薛会, 王毅, 徐波. 鄂尔多斯盆地杭锦旗探区上古生界天然气成藏机理[J]. 石油实验地质, 2009, 31(6): 551−556, 562. doi: 10.3969/j.issn.1001-6112.2009.06.002

    Xue H, Wang Y, Xu B, et al. Accumulation mechanism of natural gas in Upper Paleozoic, Hangjinqi block, North Ordos Basin[J]. Petroleum Geology & Experiment, 2009, 31(6): 551−556, 562. doi: 10.3969/j.issn.1001-6112.2009.06.002

    [15]

    杨晋东, 于振锋, 郭旭, 等. 鄂尔多斯盆地东缘晚古生代泥岩地球化学特征及有机质富集机理[J]. 岩矿测试, 2023, 42(6): 1104−1119. doi: 10.15898/j.ykcs.202306060075

    Yang J D, Yu Z F, Guo X, et al. Geochemical characteristics and organic matter enrichment mechanism in Late Paleozoic mudstone, eastern margin of Ordos Basin[J]. Rock and Mineral Analysis, 2023, 42(6): 1104−1119. doi: 10.15898/j.ykcs.202306060075

    [16]

    覃硕, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒一段致密砂岩储层特征及其主控因素[J]. 地球科学, 2022, 47(5): 1604−1618. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205006

    Qin S, Shi W Z, Wang R, et al. Characteristics of tight sandstone reservoirs and their controlling factors of He-1 Member in Hangjinqi block, Ordos Basin[J]. Earth Science, 2022, 47(5): 1604−1618. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205006

    [17]

    王涛, 侯明才, 陈洪德, 等. 海西构造旋回阴山幕式造山与鄂尔多斯盆地北部旋回充填的耦合关系[J]. 成都理工大学学报(自然科学版), 2014, 41(3): 310−317.

    Wang T, Hou M C, Chen H D, et al. Coupling relationship between Yinshan episodic orogenic movement of Hercynian tectonic cycle and filling cycle of the North Ordos Basin in China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(3): 310−317.

    [18]

    赵红坤, 刘亚轩, 马生明, 等. 粉末压片-X射线荧光光谱法测定小样品量土壤和沉积物中主量元素[J/OL]. 岩矿测试(2024-09-25)[2024-11-01]. https://doi.org/10.15898/j.ykcs.202403040030.

    Zhao H K, Liu Y X, Ma S M, et al. Determination of major elements in small-weight soil and sediment samples by X-ray fluorescence spectroscopy with pressed-powder pellets[J/OL]. Rock and Mineral Analysisl(2024-09-25)[2024-11-01]. https://doi.org/10.15898/j.ykcs.202403040030.

    [19]

    侯明才, 邓敏, 冯琳, 等. 珠江口盆地流花油田新近系碳酸盐岩白垩状结构化成因机理探讨[J]. 岩石学报, 2014, 30(3): 768−778.

    Hou M C, Deng M, Feng L, et al. Genesis of calcification in Neogene carbonate rocks of Liuhua oilfield, Pearl River Mouth Basin[J]. Acta Petrologica Sinica, 2014, 30(3): 768−778.

    [20]

    司马立强, 马骏, 刘俊丰, 等. 柴达木盆地涩北地区第四系泥岩型生物气储层孔隙有效性评价[J]. 岩性油气藏, 2023, 35(2): 1−10. doi: 10.12108/yxyqc.20230201

    Sima L Q, Ma J, Liu J F, et al. Evaluation of pore effectiveness of Quaternary mudstone biogas reservoirs in Sebei area, Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(2): 1−10. doi: 10.12108/yxyqc.20230201

    [21]

    张文凯, 施泽进, 田亚铭, 等. 联合高压压汞和恒速压汞实验表征致密砂岩孔喉特征[J]. 断块油气田, 2021, 28(1): 14−20, 32.

    Zhang W K, Shi Z J, Tian Y M, et al. The combination of high-pressure mercury injection and rate-controlled mercury injection to characterize the pore-throat structure in tight sandstone reservoirs[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 14−20, 32.

    [22]

    刘士靖. 松辽盆地页岩油成藏条件研究及甜点评价[D]. 西安: 西安石油大学, 2022.

    Liu S J. The study on shale oil accumulation conditions and dessert evaluation in the Songliao Basin [D]. Xi’an: Xi’an Shiyou University, 2022.

    [23]

    于振锋. 海—塔盆地火山碎屑岩复杂岩性的岩石学机理及其测井响应[D]. 长春: 吉林大学, 2013.

    Yu Z F. Petrologic mechanism and logging response of complex lithology of volcaniclastic rock in Hailaer—Tamtsag Basin[D]. Changchun: Jilin University, 2013.

    [24]

    周志恒, 钟大康, 凡睿, 等. 致密砂岩中岩屑溶蚀及其伴生胶结对孔隙发育的影响——以川东北元坝西部须二下亚段为例[J]. 中国矿业大学学报, 2019, 48(3): 592−603, 615. doi: 10.13247/j.cnki.jcumt.000957

    Zhou Z H, Zhong D K, Fan R, et al. Effect of dissolution of rock fragments and its associated cementation on pore evolution: A case study of the lower sub-member of the second member of Xujiahe Formation in the west of Yuanba area, Northeastern Sichuan Basin[J]. Journal of China University of Mining & Technology, 2019, 48(3): 592−603, 615. doi: 10.13247/j.cnki.jcumt.000957

    [25]

    朱晴, 乔向阳, 张磊. 高压压汞在致密气藏孔喉分布表征和早期产能评价中的应用[J]. 岩矿测试, 2020, 39(3): 373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138

    Zhu Q, Qiao X Y, Zhang L, et al. Application of high-pressure mercury injection in pore-throat distribution characterization and early productivity evaluation of tight gas reservoirs[J]. Rock and Mineral Analysis, 2020, 39(3): 373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138

    [26]

    赵全胜. 核磁共振成像测井技术及应用[J]. 新疆石油地质, 2008(5): 650−653.

    Zhao Q S. Magnetic resonance imaging logging technology and application[J]. Xinjiang Petroleum Geology, 2008(5): 650−653.

    [27]

    侯伟, 赵天天, 张雷, 等. 基于低场核磁共振的煤储层束缚水饱和度应力响应研究与动态预测——以保德和韩城区块为例[J]. 吉林大学学报(地球科学版), 2020, 50(2): 608−616. doi: 10.13278/j.cnki.jjuese.20190252

    Hou W, Zhao T T, Zhang L, et al. Stress sensitivity and prediction of irreducible water saturation in coal reservoirs in Baode and Hancheng blocks based on low-field nuclear magnetic resonance[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 608−616. doi: 10.13278/j.cnki.jjuese.20190252

    [28]

    郑晓薇. 鄂尔多斯盆地杭锦旗地区盒1段优质储层形成机理研究[D]. 北京: 中国石油大学(北京), 2018.

    Zheng X W. Formation mechanism of high-quality reservoir in box section 1 of Hangjinli area, Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2018.

    [29]

    Yang T, Cao Y C, Friis H, et al. Diagenesis and reservoir quality of lacustrine deep-water gravity-flow sandstones in the Eocene Shahejie Formation in the Dongying sag, Jiyang Depression, Eastern China[J]. Geoscienceworld, 2020(5): 104. doi: 10.1306/1016191619917211

    [30]

    Najmeh J, Ali K, Mohammad B, et al. Reservoir characterization of fluvio-deltaic sandstone packages in the framework of depositional environment and diagenesis, the South Caspian Sea Basin[J]. Journal of Asian Earth Sciences, 2022(9): 224.

    [31]

    朱林奇, 张冲, 石文睿, 等. 结合压汞实验与核磁共振测井预测束缚水饱和度方法研究[J]. 科学技术与工程, 2016, 16(15): 22−29. doi: 10.3969/j.issn.1671-1815.2016.15.004

    Zhu L Q, Zhang C, Shi W R, et al. Study on the method of prediction of irreducible water saturation by combining mercury intrusion and NMR logging data[J]. Science Technology and Engineering, 2016, 16(15): 22−29. doi: 10.3969/j.issn.1671-1815.2016.15.004

    [32]

    卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018, 45(3): 436−444. doi: 10.11698/PED.2018.03.08

    Lu S F, Li J Q, Zhang P F, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436−444. doi: 10.11698/PED.2018.03.08

    [33]

    张全培. 鄂尔多斯盆地姬塬地区长7致密砂岩储层微观孔喉结构与分级评价研究[D]. 西安: 西北大学, 2022.

    Zhang Q P. Study on microscopic pore throat structure and grading evaluation of Chang 7 tight sandstone reservoirs in Jiyuan area, Ordos Basin[D]. Xi’an: Northwestern University, 2022.

    [34]

    钟高润, 任媛, 郭京哲, 等. 鄂尔多斯盆地中部延长组长6段低阻油层成因机理与测井识别[J]. 地球物理学进展, 2023, 38(5): 2230−2238. doi: 10.6038/pg2023GG0543

    Zhong G R, Ren Y, Guo J Z, et al. Genetic mechanism and logging identification of low resistivity oil reservoir in Chang 6 member of Yanchang Formation, Ordos Basin[J]. Progress in Geophysics, 2023, 38(5): 2230−2238. doi: 10.6038/pg2023GG0543

    [35]

    曹桐生, 罗龙, 谭先锋, 等. 致密砂岩储层成因及其孔隙演化过程——以杭锦旗十里加汗地区下石盒子组为例[J]. 断块油气田, 2021, 28(5): 598−603.

    Cao T S, Luo L, Tan X F, et al. Genesis and pore evolution of tight sandstone reservoir: Taking lower Shihezi Formation in the Shilijiahan block of Hangjinqi area as an example[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 598−603.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  80
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2024-06-26
修回日期:  2024-11-01
录用日期:  2024-11-20
网络出版日期:  2024-12-25
刊出日期:  2024-12-31

目录