中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

X射线衍射-电子探针研究冀北铁岭组古风化壳稀土元素赋存状态

陈海燕, 张运强, 毛香菊, 李瑞红. X射线衍射-电子探针研究冀北铁岭组古风化壳稀土元素赋存状态[J]. 岩矿测试, 2024, 43(6): 836-846. doi: 10.15898/j.ykcs.202312160183
引用本文: 陈海燕, 张运强, 毛香菊, 李瑞红. X射线衍射-电子探针研究冀北铁岭组古风化壳稀土元素赋存状态[J]. 岩矿测试, 2024, 43(6): 836-846. doi: 10.15898/j.ykcs.202312160183
CHEN Haiyan, ZHANG Yunqiang, MAO Xiangju, LI Ruihong. Occurrence State of Rare Earth Elements in the Paleo-Weathering Crust of the Tieling Formation, Northern Hebei Province by X-Ray Diffraction and Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2024, 43(6): 836-846. doi: 10.15898/j.ykcs.202312160183
Citation: CHEN Haiyan, ZHANG Yunqiang, MAO Xiangju, LI Ruihong. Occurrence State of Rare Earth Elements in the Paleo-Weathering Crust of the Tieling Formation, Northern Hebei Province by X-Ray Diffraction and Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2024, 43(6): 836-846. doi: 10.15898/j.ykcs.202312160183

X射线衍射-电子探针研究冀北铁岭组古风化壳稀土元素赋存状态

  • 基金项目: 中国地质调查局地质调查项目(DD20242942,DD20230383)
详细信息
    作者简介: 陈海燕,硕士,高级工程师,主要从事区域地质矿产调查及科普工作。E-mail:chenhaiyanok@163.com
    通讯作者: 张运强,硕士,高级工程师,主要从事战略性矿产资源调查评价工作。E-mail:zhyqok@163.com
  • 中图分类号: P575.1;O614.33

Occurrence State of Rare Earth Elements in the Paleo-Weathering Crust of the Tieling Formation, Northern Hebei Province by X-Ray Diffraction and Electron Probe Microanalysis

More Information
  • 近年来发现的古风化壳型稀土矿具有稳定、易于开采等优点,由于对其元素赋存状态的研究程度较低,制约了矿床富集机理的研究。本文采用逐级化学提取、X射线粉晶衍射、重砂鉴定、电子探针等测试技术,对铁岭组古风化壳稀土元素的赋存状态进行了系统研究。逐级化学提取显示古风化壳中稀土元素主要以矿物相存在,约占总含量的99.38%。水溶相、离子相及胶态沉积相中的稀土元素分别占比0.01%、0.22%和0.39%;X射线衍射分析显示古风化壳样品中的伊利石、伊蒙混层等黏土矿物可能吸附了极少量稀土元素;电子探针测试结果显示古风化壳样品中的锐钛矿、白钛矿和重晶石中含有0.1%左右的Ce、Nd、Sm等轻稀土元素。初步认为:古风化壳中稀土元素主体以矿物相存在,一部分以类质同象赋存于锐钛矿、白钛矿和重晶石中,其余则可能以纳米级微细颗粒存在于锐钛矿表面以及大量的黏土矿物中。极少量的离子态稀土元素可能吸附于伊利石、伊蒙混层等黏土矿物表面;呈水溶相及胶态沉积相中的稀土元素含量极低。本文对古风化壳稀土元素赋存状态的研究有助于优化开发利用工艺,为稀土资源的选冶利用提供数据基础。

  • 加载中
  • 图 1  冀北紫石口地区地质简图

    Figure 1. 

    图 2  元素逐级分离实验流程

    Figure 2. 

    图 3  铁岭组古风化壳样品中黏土岩(a)泥状结构和(b)碎屑成分特征(正交偏光)

    Figure 3. 

    图 4  铁岭组古风化壳样品中黏土矿物X射线衍射分析图谱

    Figure 4. 

    表 1  稀土元素赋存状态逐级分离实验分析结果

    Table 1.  Analytical results of occurrence state of REEs in step-by-step separation test

    REEs相态REEs各相态含量
    (×10−6)
    REEs各相态占比
    (%)
    水溶相0.0170.01
    离子相1.240.22
    胶体相2.220.39
    矿物相56099.38
    全相563.477100.0
    下载: 导出CSV

    表 2  铁岭组古风化壳样品中的重矿物鉴定分析结果

    Table 2.  Identificatied results of heavy minerals in the paleo-weathering crust samples of the Tieling Formation

    矿物名称 含量(%) 有用矿物及副矿物特征描述
    赤褐铁矿 84.06 红褐色,棱角次棱角块状,不透明,弱金属光泽,中高硬度,部分有蚀变,粒径0.05~0.6mm
    重晶石 3.02 无色、白色,板状,透明,珍珠光泽,低硬度,粒径0.03~0.5mm
    锆石 2.60 粉色,次滚圆-滚圆柱状,透明-半透明,弱金刚-毛玻光泽,表面较粗糙,断口有溶磨痕迹,伸长系数1.2~2.0,粒径0.02~0.13mm,锆石磨圆度较高,分选性较好,略显搬运痕迹
    磁铁矿 1.34 黑色,半自形八面体、次棱角块状,不透明,金属光泽,高硬度,粒径0.03~0.3mm
    电气石 0.52 褐色,次滚圆柱状、粒状,透明,毛玻光泽,高硬度,粒径0.05~0.25mm
    白钛矿 0.25 驼色、灰色,次滚圆粒状、扁粒状,不透明,瓷状光泽,中高硬度,粒径0.03~0.1mm
    锐钛矿 0.16 灰蓝色、灰绿色、灰褐色,次滚圆粒状,半透明,油脂光泽,高硬度粒径0.03-0.1mm
    金红石 0.11 暗红色、黑色,次滚圆柱状,微透明,油脂光泽,高硬度,粒径0.03~0.1mm
    黄铁矿 0.01 铜黄色,棱角-次棱角块状、半自形次滚圆粒状、半自形立方体,不透明,金属光泽,高硬度,粒径0.05~0.3mm
    榍石 0.01 浅褐黄色,次棱角块状,透明,油脂光泽,中高硬度,粒径0.05~0.25mm
    其余矿物 7.92 石英、蚀变矿物
    下载: 导出CSV

    表 3  铁岭组古风化壳样品中的重矿物电子探针分析结果(%)

    Table 3.  EPMA analysis results of heavy minerals in the paleo-weathering crust samples of the Tieling Formation

    样品编号 K2O CaO TiO2 Na2O Ga2O3 MgO Al2O3 SiO2 La2O3 BaO CoO SO3 Ce2O3 Pr2O3 Nd2O3 Sm2O3 Eu2O3 FeO 合计
    PTD-2-Rz1 0.017 98.025 0.045 0.099 0.013 0.01 0.049 0.091 98.349
    PTD-2-Rz2 0.016 0.009 98.583 0.018 0.04 0.028 0.059 0.097 98.85
    PTD-2 -Ant1 0.014 0.007 99.041 0.016 0.011 0.085 0.112 99.286
    PTD-2- Ant2 98.919 0.033 0.06 0.005 0.009 0.011 0.069 0.053 0.07 99.229
    PTD-2-Ant3 0.013 98.849 0.026 0.076 0.034 0.141 0.043 99.187
    PTD-2- Ant4 0.024 0.01 99.381 0.016 0.016 0.04 0.004 0.063 99.577
    PTD-2-Btk1 0.047 0.035 94.471 0.12 0.007 0.266 0.808 1.857 97.611
    PTD-2-Btk2 0.122 0.057 96.298 0.036 0.052 0.469 0.727 0.039 0.662 98.462
    PTD-2-Btk3 0.014 0.03 95.658 0.006 0.007 0.179 0.315 0.1 0.015 0.016 0.565 96.905
    PTD-2- Btk4 0.001 0.028 96.167 0.036 0.21 1.515 0.622 98.592
    PTD-2 -Brt1 0.193 0.071 0.029 0.032 0.012 64.441 0.05 35.892 0.058 0.035 0.02 100.833
    PTD-2-Brt2 0.032 0.092 0.027 63.63 36.157 0.046 0.027 0.007 100.018
    PTD-2-Brt3 0.1 0.064 0.04 0.043 0.05 64.649 35.316 0.095 0.002 100.39
    PTD-2-Brt4 0.09 0.073 0.037 65.395 0.023 34.686 0.064 0.012 100.39
    注:“−”表示低于EPMA分析方法检出限,未检出。矿物代号: Rz—金红石; Ant—锐钛矿;Lm—褐铁矿;Brt—重晶石;Btk—白钛矿。
    下载: 导出CSV
  • [1]

    张培善. 中国稀土矿床成因类型[J]. 地质科学, 1989(1): 26−32.

    Zhang P S. A study on the genetic classification of rare earth mineral deposits of China[J]. Scientia Geologica Sinica, 1989(1): 26−32.

    [2]

    王彪, 黄庆, 何良伦, 等. 黔西北麻乍地区沉积型稀土矿稀土元素赋存状态研究[J]. 矿物学报, 2023, 43: 1−14. doi: 10.16461/j.cnki.1000-4734.2023.43.087

    Wang B, Huang Q, He L L, et al. The occurrence state of rare earth elements in sedimentary rare earth deposits in Mazha area, Northwest Guizhou[J]. Acta Mineralogica Sinica, 2023, 43: 1−14. doi: 10.16461/j.cnki.1000-4734.2023.43.087

    [3]

    郑禄林, 魏怀瑞, 高军波, 等. 黔西北峨眉山玄武岩风化壳三稀矿产资源富集成矿规律[J]. 黄金, 2022, 43(9): 12−19. doi: 10.11792/hj20220903

    Zheng L L, Wei H R, Gao J B, et al. Accumulation and mineralization regularity of three rare mineral resources in weathering crust of basalt in Northwestern Guizhou[J]. Gold, 2022, 43(9): 12−19. doi: 10.11792/hj20220903

    [4]

    衮民汕, 蔡国盛, 曾道国, 等. 贵州西部二叠系峨眉山玄武岩顶部古风化壳钪-铌-稀土矿化富集层的发现与意义[J]. 矿物学报, 2021, 41(4−5): 531−547. doi: 10.16461/j.cnki.1000-4734.2021.41.089

    Gun M S, Cai G S, Zeng D G, et al. Discovery and significance of the Sc-Nb-REE-enriched zone in the paleocrust of weathering atop the Permian Emeishan basalt in the Western Guizhou, China[J]. Acta Mineralogica Sinica, 2021, 41(4−5): 531−547. doi: 10.16461/j.cnki.1000-4734.2021.41.089

    [5]

    高军波, 杨光海, 汪龙波, 等. 贵州镇远煌斑岩风化壳中稀土-铌的富集特征与赋存状态[J]. 矿物学报, 2021, 41(4−5): 548−557. doi: 10.16461/j.cnki.1000-4734.2021.41.102

    Gao J B, Yang G H, Wang L B, et al. A study on features and occurrence states of rare earth elements and niobium in the weathering crust of lamprophyre in Zhenyuan, Guizhou Province, China[J]. Acta Mineralogica Sinica, 2021, 41(4−5): 548−557. doi: 10.16461/j.cnki.1000-4734.2021.41.102

    [6]

    张保涛, 胡兆国, 梅贞华, 等. 华北地区本溪组首次发现古风化壳沉积金红石型钛矿[J]. 地质学报, 2022, 96(6): 2251−2253. doi: 10.19762/j.cnki.dizhixuebao.2022290

    Zhang B T, Hu Z G, Mei Z H, et al. First discovery of the paleoweathering crust sedimentary-type rutile phase titanium ore deposit in Benxi Group of North China[J]. Acta Geologica Sinica, 2022, 96(6): 2251−2253. doi: 10.19762/j.cnki.dizhixuebao.2022290

    [7]

    杨鑫朋, 张运强, 程洲, 等. 河北省奥陶纪马家沟组顶部古风化壳中三稀元素赋存状态及富集机制[J]. 矿床地质, 2023, 42(1): 157−169. doi: 10.16111/j.0258-7106.2023.01.010

    Yang X P, Zhang Y Q, Cheng Z, et al. Occurrence state and enrichment mechanism of rare earth, rare metal and rare dispersed elements in paleo-weathering crust of Ordovician Majiagou Formation, Hebei[J]. Mineral Deposits, 2023, 42(1): 157−169. doi: 10.16111/j.0258-7106.2023.01.010

    [8]

    文俊, 竹合林, 张金元, 等. 川南沐川地区首次发现宣威组底部古风化壳-沉积型铌、稀土矿[J]. 中国地质, 2021, 48(3): 970−971. doi: 10.12029/gc20210327

    Wen J, Zhu H L, Zhang J Y, et al. The first discovery of the paleo-weathering crust-sedimentary Nb and rare earth deposits at the bottom of Xuanwei Formation in the Muchuan area of Southern Sichuan[J]. Geology in China, 2021, 48(3): 970−971. doi: 10.12029/gc20210327

    [9]

    文俊, 刘冶成, 赵俊兴, 等. 川南沐川地区宣威组底部铌-稀土多金属富集层富集规律、沉积环境与成矿模式[J]. 地质学报, 2022, 96(2): 592−615. doi: 10.19762/j.cnki.dizhixuebao.2021281

    Wen J, Liu Y C, Zhao J X, et al. Enrichment regularity, sedimentary environment and metallogenic model of niobium-rare earth polymetallic enrichment layer at the bottom of the Xuanwei Formation in Muchuan area, South Sichuan[J]. Acta Geologica Sinica, 2022, 96(2): 592−615. doi: 10.19762/j.cnki.dizhixuebao.2021281

    [10]

    文俊, 刘冶成, 竹合林, 等. 川南沐川地区上二叠统宣威组底部 Nb-REE 超常富集特征及其地质意义[J]. 矿床地质, 2021, 40(5): 1045−1071. doi: 10.16111/j.0258-7106.2021.05.010

    Wen J, Liu Y C, Zhu H L, et al. Characteristics and geological significance of abnormal enrichment of Nb-REE in bottom of upper Permian Xuanwei Formation in Muchuan area, Southern Sichuan[J]. Mineral Deposits, 2021, 40(5): 1045−1071. doi: 10.16111/j.0258-7106.2021.05.010

    [11]

    王登红, 赵芝, 于扬, 等. 我国离子吸附型稀土矿产科学研究和调查评价新进展[J]. 地球学报, 2017, 38(3): 317−325. doi: 10.3975/cagsb.2017.03.02

    Wang D H, Zhao Z, Yu Y, et al. A review of the achievements in the survey and study of ion-absorption type REE deposits in China[J]. Acta Geoscientica Sinica, 2017, 38(3): 317−325. doi: 10.3975/cagsb.2017.03.02

    [12]

    赵芝, 王登红, 王成辉, 等. 离子吸附型稀土找矿及研究新进展[J]. 地质学报, 2019, 93(6): 1454−1465. doi: 10.19762/j.cnki.dizhixuebao.2019086

    Zhao Z, Wang D H, Wang C H, et al. Progress in prospecting and research of ion-adsorption type REE deposits[J]. Acta Geologica Sinica, 2019, 93(6): 1454−1465. doi: 10.19762/j.cnki.dizhixuebao.2019086

    [13]

    雒恺, 马金龙. 花岗岩风化过程中稀土元素迁移富集机制研究进展[J]. 地球科学进展, 2022, 37(7): 692−708. doi: 10.11867/j.issn.1001-8166.2022.7.dqkxjz202207003

    Luo K, Ma J L. Recent advances in migration and enrichment of rare earth elements during chemical weathering of granite[J]. Advances in Earth Science, 2022, 37(7): 692−708. doi: 10.11867/j.issn.1001-8166.2022.7.dqkxjz202207003

    [14]

    刘阳, 付勇, 周祖虎, 等. 黔西北上二叠统峨眉山玄武岩风化壳中铌富集机制初探[J]. 矿床地质, 2021, 40(4): 776−792. doi: 10.16111/j.0258-7106.2021.04.008

    Liu Y, Fu Y, Zhou Z H, et al. Preliminary study on the enrichment mechanism of niobium in clay layer of weathering crust of Upper Permian basalt in North Western Guizhou[J]. Mineral Deposits, 2021, 40(4): 776−792. doi: 10.16111/j.0258-7106.2021.04.008

    [15]

    张海, 郭佩佩. 贵州西部峨眉山玄武岩风化壳稀土元素迁移富集规律研究[J]. 中国稀土学报, 2021, 39(5): 786−795. doi: 10.11785/S1000-4343.20210512

    Zhang H, Guo P P. Rare earth element migration and enrichment of weathered crust of Emeishan basalt from West Guizhou Province[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(5): 786−795. doi: 10.11785/S1000-4343.20210512

    [16]

    薛洪富, 向震中, 吴林, 等. 黔西北玉龙地区Nb-REE富集层中稀土赋存形式[J]. 矿物学报, 2022, 42(4): 555−556. doi: 10.16461/j.cnki.1000-4734.2022.42.074

    Xue H F, Xiang Z Z, Wu L, et al. Occurrence of rare earth elements from the Nb-REE enrichment layer in the Yulong area, North Western Guizhou[J]. Acta Mineralogica Sinica, 2022, 42(4): 555−556. doi: 10.16461/j.cnki.1000-4734.2022.42.074

    [17]

    张迪, 陈意, 毛骞, 等. 电子探针分析技术进展及面临的挑战[J]. 岩石学报, 2019, 35(1): 261−274. doi: 10.18654/1000-0569/2019.01.21

    Zhang D, Chen Y, Mao Q, et al. Progress and challenge of electron probe microanalysis technique[J]. Acta Petrologica Sinica, 2019, 35(1): 261−274. doi: 10.18654/1000-0569/2019.01.21

    [18]

    万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145−155. doi: 10.15898/j.cnki.11-2131/td.202005060009

    Wan J J, Pan C R, Yan J, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan uranium rare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145−155. doi: 10.15898/j.cnki.11-2131/td.202005060009

    [19]

    杨波, 杨莉, 孟文祥. 电子探针技术探究钪在白云鄂博矿床不同矿物中的赋存特征[J]. 岩矿测试, 2022, 41(2): 185−198. doi: 10.15898/j.cnki.11-2131/td.202110140150

    Yang B, Yang L, Meng W X. Application of electron probe microanalyzer in exploring the occurrence characteristics scandium in different minerals of the Bayan Obo deposit[J]. Rock and Mineral Analysis, 2022, 41(2): 185−198. doi: 10.15898/j.cnki.11-2131/td.202110140150

    [20]

    刘建栋, 王秉璋, 李五福, 等. 电子探针技术研究东昆仑大格勒角闪石岩中铌和稀土元素的含量和赋存状态[J]. 岩矿测试, 2023, 42(4): 721−736. doi: 10.15898/j.ykcs.202209160173

    Liu J D, Wang B Z, Li W F, et al. Content and occurrence state of niobium and rare earth elements in hornblendite of Dagele, East Kunlun by the electron probe technique[J]. Rock and Mineral Analysis, 2023, 42(4): 721−736. doi: 10.15898/j.ykcs.202209160173

    [21]

    张运强, 贠杰, 李广栋, 等. 冀北首次发现前寒武系古风化壳型稀土矿化层[J]. 地质与资源, 2022, 31(4): 574−575. doi: 10.13686/j.cnki.dzyzy.2022.04.015

    Zhang Y Q, Yun J, Li G D, et al. Precambrian rare earth mineralization layer of paleoweathering crust type discovered in Northern Hebei Province[J]. Geology and Resources, 2022, 31(4): 574−575. doi: 10.13686/j.cnki.dzyzy.2022.04.015

    [22]

    张运强, 陈海燕, 杨鑫朋, 等. 冀北蓟县系铁岭组古风化壳稀土元素富集规律及古环境意义[J]. 矿床地质, 2023, 42(5): 1035−1047. doi: 10.16111/j.0258-7106.2023.05.012

    Zhang Y Q, Chen H Y, Yang X P, et al. REE enrichment and palaeoenvironmental significance of paleo-weathering crust of Tieling Formation of Jixian system, Northern Hebei Province[J]. Mineral Deposits, 2023, 42(5): 1035−1047. doi: 10.16111/j.0258-7106.2023.05.012

    [23]

    Moore F, Esmaeili A. Mineralogy and geochemistry of the coals from the Karmozd and Kiasar coal mines, Mazandaran Province, Iran[J]. International Journal of Coal Geology, 2012, 96-97(4): 9−21. doi: 10.1016/j.coal.2012.02.012

    [24]

    汪春园, 王玲, 贾木欣, 等. 大洋沉积物中稀土赋存状态研究[J]. 稀土, 2020, 41(3): 17−25. doi: 10.16533/j.cnki.15-1099/tf.20200025

    Wang C Y, Wang L, Jia M X, et al. Research on the occurrence of rare earth elements in the ocean sediments[J]. Chinese Rare Earths, 2020, 41(3): 17−25. doi: 10.16533/j.cnki.15-1099/tf.20200025

    [25]

    梁晓亮, 谭伟, 马灵涯, 等. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29−41. doi: 10.13745/j.esf.sf.2021.8.8

    Liang X L, Tan W, Ma L Y, et al. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits[J]. Earth Science Frontiers, 2022, 29(1): 29−41. doi: 10.13745/j.esf.sf.2021.8.8

    [26]

    郭娜欣, 刘善宝, 陈振宇, 等. 江西崇义铁木里碱长花岗岩中铌和稀土元素的富集机制[J]. 岩石学报, 2022, 38(2): 371−392. doi: 10.18654/1000-0569/2022.02.05

    Guo N X, Liu S B, Chen Z Y, et al. Mechanism of Nb and REE enrichment in the Tiemuli alkali feldspar granite, Chongyi County, Jiangxi Province[J]. Acta Petrologica Sinica, 2022, 38(2): 371−392. doi: 10.18654/1000-0569/2022.02.05

    [27]

    张玉松, 张杰. 云南富源某红土型钛矿稀土元素地球化学特征[J]. 稀土, 2015, 36(3): 1−8. doi: 10.16533/J.CNKI.15-1099/TF.201503001

    Zhang Y S, Zhang J. REE geochemistry of lateritic type titanium ore in Fuyuan, Yunnan[J]. Chinese Rare Earths, 2015, 36(3): 1−8. doi: 10.16533/J.CNKI.15-1099/TF.201503001

    [28]

    李以科, 陈仁义, 柯昌辉, 等. 巴西与碱性岩-碳酸岩杂岩体相关的关键矿产成矿作用与规律[J]. 地质学报, 2019, 93(6): 1422−1443. doi: 10.19762/j.cnki.dizhixuebao.2019157

    Li Y K, Chen R Y, Ke C H, et al. The strategic and critical minerals associated with alkaline and alkaline-carbonatite complexes Brazil[J]. Acta Geologica Sinica, 2019, 93(6): 1422−1443. doi: 10.19762/j.cnki.dizhixuebao.2019157

    [29]

    王汝成, 徐士进, 陆建军, 等. 钙钛矿族矿物的晶体化学分类和地球化学演化[J]. 地学前缘, 2000, 7(2): 457−465. doi: 10.3321/j.issn:1005-2321.2000.02.013

    Wang R C, Xu S J, Lu J J, et al. Crystal-chemistry and geochemistry of perovskite-group minerals[J]. Earth Science Frontiers, 2000, 7(2): 457−465. doi: 10.3321/j.issn:1005-2321.2000.02.013

  • 加载中

(4)

(3)

计量
  • 文章访问数:  49
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2023-12-16
修回日期:  2024-09-24
录用日期:  2024-10-15
网络出版日期:  2024-10-31
刊出日期:  2024-12-31

目录