Petrogenesis Research of Basic Rock in the Hongliugou Area of the Altun Orogen Based on Baddeleyite Chronology and Whole-Rock Geochemical Analyses
-
摘要:
诸多证据表明阿尔金地块有可能参与了Rodinia超大陆的裂解过程,然而,该地区此前并未见有关板内性质基性-超基性岩体的报道。阿尔金造山带红柳沟地区出露一套基性-超基性岩体,本文采用LA-ICP-MS、XRF、ICP-MS和MC-ICP-MS等技术手段对其中的基性岩组分进行了斜锆石U-Pb定年研究、全岩主量元素、微量元素(包括稀土元素)及Sr-Nd同位素研究。结果表明:基性岩的侵位年龄为748±87Ma,岩石化学属性属于拉班玄武岩。Zr/Sm比值为26~33,Zr/Y比值为3.2~5.5,显示出板内玄武岩的元素特征。La、Ba、Nb、Zr、Th等元素特征显示岩浆源区可能遭受过俯冲流体的改造。全岩主量、微量元素及Sr、Nd同位素测试结果显示该基性岩浆源于软流圈地幔低程度(<5%)的部分熔融,源区贫石榴石(<1%)。这些地球化学特征指示阿尔金地区的基性-超基性岩体形成于大陆裂谷环境。与前人在华南和塔里木地区发现的与Rodimia超大陆裂解相关的基性岩相比,本次报道的红柳沟基性岩形成时代相近,岩石地球化学属性类似,很可能是Rodinia超大陆裂解的产物。
Abstract:Previous studies suggest that the Alton Block may have participated in the breakup of the Rodinia supercontinent, however, there have been no prior reports of intraplate basic-ultrabasic rock bodies in the region. A suite of basic-ultrabasic rock bodies has been exposed in the Hongliugou area of the Alton Orogen. An integrated analytical approach utilizing LA-ICP-MS, XRF, ICP-MS, and MC-ICP-MS was employed to systematically investigate the mafic components, including baddeleyite U-Pb geochronology, whole-rock major and trace elements (including rare earth elements), and Sr-Nd isotopic compositions. The results indicate a crystallization age of 748±87Ma for the basic rocks, with geochemical characteristics consistent with the tholeiitic basalt. The Zr/Sm ratio ranges from 26 to 33, and the Zr/Y ratio from 3.2 to 5.5, reflecting the elemental characteristics typical of intraplate basalt. The presence of La, Ba, Nb, Zr, and Th suggests that the magma source region may have experienced alteration by subduction-related fluids. Whole-rock major and trace element analyses, along with Sr and Nd isotopic data, indicate that the basic magma originated from low-degree (<5%) partial melting of the aesthenosphere mantle, with a source region characterized by low garnet content (<1%). These geochemical features imply that the basic-ultrabasic rock bodies discovered in the Alton region formed in a continental rift environment. The Hongliugou mafic rocks exhibit robust temporal and geochemical parallels with Neoproterozoic mafic magmatism documented in the South China and Tarim blocks, both of which have been genetically linked to the Rodinia supercontinent breakup. The temporal congruence (~750Ma) and diagnostic intraplate basalt affinities (tholeiitic series with subduction-modified mantle signatures) observed in these rocks strongly support their classification as petrogenetic products of Rodinia’s rifting episodes.
-
Key words:
- Altun /
- baddeleyite /
- basic rocks /
- Rodinia /
- LA-ICP-MS
-
-
表 1 阿尔金造山带前寒武纪基性-超基性岩浆记录
Table 1. Precambrian basic-ultrabasic magmatic records in the Altun Orogen
构造单元 岩性 年龄(Ma) 分析方法 构造环境
(地化属性)数据来源 北阿尔金俯冲-
增生杂岩带变玄武岩 2270±39 Sm-Nd等时线 OIB 沟口泉幅1∶5万区调报告(2010) 变辉长岩 1932±240 Sm-Nd等时线 / 沟口泉幅1∶5万区调报告(2010) 玄武岩 775±14 SHRIMP锆石U-Pb 原特提斯洋初始扩张 赵恒乐等(2011)[20] 双峰式火山岩 750±5 LA-ICP-MS锆石U-Pb 大陆裂谷 刘函等(2012)[21] 辉绿岩 739±15 LA-ICP-MS锆石U-Pb 大陆裂谷 Li等(2020)[22] 辉绿岩 742±19 SHRIMP斜锆石U-Pb 大陆裂谷 Li等(2020)[22] 阿中地块 变玄武岩 1818±25 SHRIMP锆石U-Pb 蛇绿岩套 沟口泉幅1∶5万区调报告
(2010)斜长岩 1889±27 变辉长岩 1869±27 变辉长岩 1836±40 变辉长岩 1836±46 南阿尔金俯冲-
碰撞杂岩带榴辉岩 780(精度未提供) SHRIMP锆石U-Pb / Li 等(2015)[23] 中性-镁铁质变质火山岩 763±17(原岩年龄) SHRIMP锆石U-Pb / 张建新等(2015)[24] 榴辉岩 754±9(原岩年龄) LA-ICP-MS锆石U-Pb / Liu 等(2007)[25] 榴辉岩 752±7(原岩年龄) LA-ICP-MS锆石U-Pb / Liu 等(2012)[26] 表 2 Rb-Sr、Sm-Nd同位素分析方法要点
Table 2. Key points of Rb-Sr and Sm-Nd isotope analytical methods
元素 法拉第杯配置 样品锥和截取锥配置 灵敏度要求 参考物质 质量歧视校正 信号采集 Sr 83Kr+,167Er++,84Sr+,85Rb+,86Sr+,173Yb++,87Sr+,88Sr+ X截取锥和
Jet样品锥NIST SRM 987的88Sr信号应大于 4.0V Sr溶液单标用于仪器调谐,
NIST SRM 987用于监控实验
重复率和精准度88Sr/86Sr内标:8.375209 10 blocks of
10 cycles,
分析时间:~7minNd 142Nd+,143Nd+,144Nd+,145Nd+,146Nd+,147Sm+,148Nd+,149Sm+,150Nd+ H 截取锥和
样品锥JNdi-1的144Nd信号
应大于2.5VNd溶液单标用于仪器调谐,JNdi-1用于监控实验重复率和精准度 146Nd /144Nd内标:0.7219 10 blocks of
10 cycles,
分析时间:~7min表 3 红柳沟变辉绿玢岩样品21AR13的LA-ICP-MS斜锆石U-Pb定年分析结果
Table 3. LA-ICP-MS U-Pb analytical results for baddeleyite from the Hongliugou metadiabase porphyrite 21AR13
样品编号 测试编号 U含量
(µg/g)Pb含量
(µg/g)207Pb/235U
(比值±1s)206Pb/238U
(比值±1s)207Pb/206Pb
(比值±1s)207Pb/235U年龄
(Ma)±1s206Pb/238U年龄
(Ma) ±1s207Pb/206Pb年龄
(Ma)±1sDisc.
(%)Phalaborwa 002PHA01.D 815 732 6.5632±0.0989 0.3737±0.0051 0.1273±0.0017 2057±15 2046±24 2058±23 0.55 010PHA01.D 805 690 6.7853±0.1055 0.3843±0.0045 0.1270±0.0015 2083±14 2096±21 2055±21 −1.97 018PHA01.D 848 568 6.4918±0.0882 0.3697±0.0045 0.1275±0.0016 2048±14 2028±21 2062±21 1.69 028PHA01.D 829 657 6.6786±0.1418 0.3824±0.0084 0.1271±0.0018 2068±19 2086±39 2056±24 −1.46 PZH 003PZH01.D 1805 134 0.2826±0.0127 0.0391±0.0006 0.0523±0.0019 253±10 247±4 290±80 2.09 011PZH01.D 6479 415 0.2923±0.0113 0.0371±0.0009 0.0569±0.0023 260±9 235±5 482±91 10.83 019PZH01.D 2304 118 0.3002±0.0146 0.0423±0.0011 0.0548±0.0020 266±11 267±7 398±83 −0.30 029PZH01.D 4519 221 0.3218±0.0437 0.0396±0.0025 0.0669±0.0131 282±33 250±15 734±329 12.58 21AR13 004A1301.D 960 173 0.8959±0.0322 0.0990±0.0028 0.0666±0.0021 649±17 608±17 815±66 6.67 005A1302.D 1595 269 0.8842±0.0361 0.0980±0.0025 0.0666±0.0018 642±19 603±15 820±57 6.54 006A1303.D 651 111 0.9251±0.0581 0.0958±0.0044 0.0715±0.0051 663±31 589±26 947±149 12.56 007A1304.D 919 117 0.6993±0.0239 0.0744±0.0008 0.0691±0.0023 538±14 463±5 896±69 16.25 013A1307.D 791 118 0.7965±0.0263 0.0848±0.0027 0.0687±0.0022 594±15 525±16 878±67 13.22 015A1309.D 1516 221 0.8908±0.0538 0.1024±0.0039 0.0650±0.0032 646±29 629±23 771±106 2.81 016A1310.D 746 102 0.9128±0.0733 0.1028±0.0027 0.0680±0.0062 657±39 631±16 847±187 4.16 020A1311.D 2785 394 1.1612±0.0866 0.1281±0.0036 0.0739±0.0085 782±41 777±21 1032±233 0.70 021A1312.D 1221 158 0.7716±0.0337 0.0843±0.0017 0.0673±0.0030 580±19 522±10 834±97 11.15 022A1313.D 1330 191 0.7756±0.0370 0.0885±0.0037 0.0638±0.0026 582±21 546±22 724±85 6.55 025A1316.D 1648 213 0.8343±0.0303 0.0927±0.0021 0.0680±0.0025 615±17 572±12 861±78 7.67 注: Disc.为不谐和度(Discordance),计算公式为:Disc. (%)=100×([207Pb/206Pb年龄]−[238U /206Pb年龄])/[207Pb/206Pb年龄]。 表 4 红柳沟变辉绿(玢)岩主量元素含量(%)
Table 4. Whole-rock major elements (%) compositions for the Hongliugou metadiabase porphyrite
主量
元素检出限 辉长岩
标准
GSR-10超镁基岩
标准
DZ∑2辉绿岩Diabase 21AR01 21AR02 21AR03 21AR04 21AR05 21AR06 21AR07 21AR08 21AR09 21AR10 21AR11 21AR13 SiO2 0.01 35.6 37.5 47.8 49.1 46.7 51.8 51.1 50.2 49.8 47.1 49.5 49.5 49.1 47.7 TiO2 0.01 7.66 <0.01 1.20 1.24 1.09 1.22 1.19 1.18 1.44 2.98 1.82 1.32 1.31 1.37 Al2O3 0.01 14.2 0.2 13.4 13.9 12.0 12.1 12.5 14.0 15.3 13.1 12.1 14.2 13.9 15.6 Fe2O3 0.01 10.0 5.18 2.44 2.25 2.16 1.81 2.66 2.19 1.99 3.17 2.6 2.09 2.37 1.62 FeO 0.01 13.1 / 13.4 12.4 11.9 10.0 14.6 12.0 10.9 17.5 14.3 11.5 13.0 8.9 MnO 0.01 0.19 0.09 0.18 0.16 0.18 0.15 0.1 0.16 0.17 0.13 0.17 0.19 0.14 0.15 MgO 0.01 5.22 38.3 6.2 6.15 5.65 5.97 5.54 7.24 5.42 5.32 3.96 5.35 6.27 4.65 CaO 0.01 9.90 1.79 5.41 4.25 8.95 7.32 2.81 3.08 5.18 2.94 6.58 5.38 4.53 7.49 Na2O 0.01 2.10 0.03 2.74 3.44 2.38 3.44 3.37 3.73 3.10 2.92 2.49 3.20 4.42 3.54 K2O 0.01 0.14 0.01 1.19 1.51 0.78 0.68 1.37 1.00 1.60 2.09 1.49 1.71 1.28 1.63 P2O5 0.01 0.02 <0.01 0.11 0.12 0.1 0.11 0.12 0.11 0.14 0.13 0.17 0.12 0.11 0.13 LOI 0.01 0.28 14.78 5.96 5.64 8.26 5.51 4.84 5.22 5.05 2.8 4.93 5.40 3.60 7.23 Total / 98.3 97.9 100 100 100 100 100 100 100 100 100 100 100 100 Mg# / / / 28.4 29.9 29.0 34.0 24.6 34.1 29.9 20.8 19.3 28.6 29.3 31.0 注: Mg#=100×[Mg2+/(Mg2++Fe2+)]。 表 5 红柳沟变辉绿(玢)岩微量元素含量(µg/g)
Table 5. Whole-rock trace elements (µg/g) compositions for the Hongliugou metadiabase porphyrite
痕量元素 检出限 辉长岩
标准
GSR-10超镁基岩
标准
DZ∑2变辉绿(玢)岩 21AR01 21AR02 21AR03 21AR04 21AR05 21AR06 21AR07 21AR08 21AR09 21AR10 21AR11 21AR13 Cu 0.25 30.8 4.79 16.8 24.5 40.3 13.8 51.7 16.2 29.6 39.9 45.1 234 32.3 269 Pb 0.01 4.65 2.46 7.09 5.09 9.24 8.75 9.69 6.18 7.44 16.20 12.20 6.94 8.48 8.02 Zn 0.03 121 45.3 143 139 129 150 109 108 123 235 190 106 178 250 Cr 0.50 13.2 2700 30.2 36.2 31 24.4 31.8 38.2 37.1 11.5 10.6 21.2 30.1 37.7 Ni 0.33 71.6 2260 49.9 52.2 40.6 31.5 49.4 53.3 56.7 26.6 30.6 32.8 42.0 58.7 Co 0.05 88.7 97.7 62.7 67.7 47.9 52.7 62 53 44.4 70.8 57.1 45.4 53.8 45.9 Cs 0.27 0.14 0.09 1.06 1.32 0.49 0.82 2.75 1.44 1.99 2.41 1.59 2.20 1.61 2.01 Ba 0.12 97.9 10.9 167 304 117 116 171 163 331 277 300 268 194 372 V 0.67 777 23.9 425 429 365 379 423 388 360 685 566 388 480 363 Nb 0.06 8.86 0.36 7.85 8.05 7.06 7.78 7.51 7.02 10.2 11.7 11.8 8.08 7.80 10.5 Ta / 0.69 0.12 1.11 0.91 0.93 0.94 0.93 0.74 0.87 1.19 1.15 0.81 0.82 0.89 Zr 0.25 28.8 1.59 99.6 104 89.5 97.7 101 93.1 141 135 153 106 105 143 Hf 0.12 0.74 0.06 2.97 3.02 2.58 2.89 3.04 3.01 4.10 4.08 4.83 3.46 3.23 4.17 Be 0.01 1.02 0.02 0.76 0.89 0.64 0.85 0.76 0.70 1.16 1.54 1.16 0.82 0.8 0.79 Ga 0.01 22.9 0.46 20.5 19.2 17.0 17.0 17.3 18.2 22.3 23.2 21.1 18.1 19.8 22.8 Ge 0.01 1.05 0.62 1.40 1.09 1.44 1.53 1.44 1.58 1.35 1.99 1.93 1.23 1.36 1.27 U 0.25 0.07 0.32 0.89 1.01 0.98 0.93 0.9 1.08 1.41 2.05 1.62 1.23 1.06 1.43 Th 0.01 0.31 0.16 3.71 3.76 3.3 3.31 3.23 3.66 4.98 4.43 5.89 4.09 3.96 5.09 La 0.01 1.95 0.24 17.1 11.9 13.0 12.4 11.6 11.4 18.2 15.3 18.3 13.8 12.7 18.2 Ce 0.01 4.35 0.45 31.8 24.7 25.7 25.3 23.3 24.4 35.9 29.5 41.1 27.9 24.9 36.5 Pr 0.01 0.87 0.05 4.37 3.31 3.52 3.46 3.40 3.33 5.15 4.15 5.52 4.06 3.40 5.25 Nd 0.01 4.15 0.21 14.1 13.2 13.2 13.000 11.9 12.4 19.4 15.4 20.6 14.8 12.7 18.6 Sm 0.00 1.28 0.03 3.69 3.58 3.50 3.33 3.12 3.47 5.24 4.24 5.30 4.12 3.20 4.52 Eu 0.01 0.81 0.01 1.61 1.17 1.01 1.08 0.98 1.05 1.47 1.43 1.62 1.18 1.19 1.21 Gd 0.00 1.43 0.35 4.72 4.34 4.26 5.07 4.08 4.52 5.99 5.60 6.83 5.31 4.37 5.30 Tb 0.00 0.22 0.00 0.91 0.85 0.80 0.78 0.72 0.82 1.01 0.96 1.28 0.95 0.83 0.87 Dy 0.00 1.24 0.03 5.67 5.82 5.51 4.90 4.90 5.64 6.40 7.08 8.66 6.22 5.88 5.24 Ho 0.00 0.23 0.01 1.18 1.12 1.12 0.98 1.04 1.10 1.20 1.43 1.71 1.24 1.20 1.03 Er 0.00 0.49 0.01 3.74 3.55 3.66 3.18 3.44 3.66 3.76 4.36 5.60 3.95 3.89 3.12 Tm 0.01 0.08 0.00 0.55 0.52 0.51 0.49 0.49 0.50 0.50 0.61 0.81 0.54 0.52 0.39 Yb 0.00 0.39 0.01 3.65 3.56 3.56 3.37 3.59 3.58 3.51 4.80 5.62 3.72 3.99 2.88 Lu 0.01 0.06 0.00 0.57 0.58 0.53 0.54 0.53 0.56 0.48 0.70 0.87 0.58 0.58 0.41 Y 0.01 5.59 0.17 31.30 29.20 27.90 24.30 22.80 26.30 28.80 31.60 42.30 29.70 28.30 25.80 表 6 阿尔金微陆块北侧红柳沟地区变辉绿(玢)岩全岩Sr-Nd同位素组成
Table 6. Whole-rock Sr-Nd isotopic data for the Hongliugou metadiabase porphyrite in northern Altun microcontinent
同位素组成参数 变辉绿(玢)岩 21AR05 21AR08 21AR11 87Rb/86Sr 1.8041 1.6348 1.6142 87Sr/86Sr 0.7306689 0.7256859 0.7232916 2σ 7.983×10−6 9.203×10−6 1.022×10−5 ISr (t) 0.71031 0.70724 0.70508 147Sm/144Nd 0.1651 0.1734 0.1587 143Nd/144Nd 0.5124881 0.5124391 0.5124685 2σ 1.816×10−5 1.051×10−5 1.475×10−5 TDM (Ma) 1826 2287 1692 143Nd/144Nd(t) 0.5116191 0.5116191 0.5116191 εNd(t) 0.94 −0.82 1.19 注:(1) ISr(t)=87Sr/86Sr-87Rb/86Sr×(eλT−1), λRb=1.42×10−11a−1; (2) εNd(t)={[143Nd/144Nd-147Sm/144Nd×(eλT−1)]/[143Nd/144Nd]CHUR(0)-(147Sm/144Nd)CHUR(0)×(eλT−1)}−1}×104, λSm=6.54×10−12a−1; (143Nd/144Nd)CHUR(0)=0.512638; (147Sm/144Nd)CHUR(0)=0.1967; (3) T=750Ma, representing intrusive age of the Hongliugou mafic rocks.
-
[1] 张旗. 镁铁-超镁铁岩的分类及其构造意义[J]. 地质科学, 2014, 49(3): 982−1017. doi: 10.3969/j.issn.0563-5020.2014.03.022
Zhang Q. Classifications of mafic-ultramafic rocks and their tectonic significance[J]. Chinese Journal of Geology, 2014, 49(3): 982−1017. doi: 10.3969/j.issn.0563-5020.2014.03.022
[2] Ernst R E, Head J W, Parfitt E, et al. Giant radiating dyke swarms on Earth and Venus[J]. Earth-Science Reviews, 1995, 39: 1−58. doi: 10.1016/0012-8252(95)00017-5
[3] Zhang S B, Wu R X, Zheng Y F. Neoproterozoic continental accretion in South China: Geochemical evidence from the Fuchuan ophiolite in the Jiangnan Orogen[J]. Precambrian Research, 2012, 220: 45−64. doi: 10.1016/j.precamres.2012.07.010
[4] Munteanu M, Wilson A H, Costin G, et al. The mafic-ultramafic dykes in the Yanbian Terrane (Sichuan Province, SW China): Record of magma differentiation and emplacement in the Emeishan Large Igneous Province[J]. Journal of Petrology, 2017, 58: 513−538. doi: 10.1093/petrology/egx025
[5] Rogers C, Kamo S L, Söderlund U, et al. Geochemistry and U-Pb geochronology of 1590 and 1550Ma Mafic Dyke Swarms of western Laurentia: Mantle plume magmatism shared with Australia[J]. Lithos, 2018, 314−315: 216−235. doi: 10.1016/j.lithos.2018.06.002
[6] Bleeker W, Ernst R E. Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth’s paleogeographic record back to 2.6Ga[M]//Hanski E, Mertanen S, Rämö T, et al. Dyke swarms-time markers of crustal evolution. Taylor and Francis Group, 2006: 3−26.
[7] Li X H, Li W X, Li Z X, et al. 850−790Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos, 2008, 102: 341−357. doi: 10.1016/j.lithos.2007.04.007
[8] Pisarevsky S A, Gladkochub D P, Konstantinov K M, et al. Paleomagnetism of Cryogenian Kitoi Mafic dykes in South Siberia: Implications for Neoproterozoic paleogeography[J]. Precambrian Research, 2013, 231: 372−382. doi: 10.1016/j.precamres.2013.04.007
[9] Teixeira W, D’Agrella-Filho M S, Hamilton M A, et al. U-Pb (ID-TIMS) baddeleyite ages and paleomagnetism of 1.79 and 1.59Ga tholeiitic dyke swarms, and position of the Rio de la Plata Craton within the Columbia supercontinent[J]. Lithos, 2013, 174: 157−174. doi: 10.1016/j.lithos.2012.09.006
[10] Fitzsimons I C W. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens[J]. Geology, 2000, 28(10): 879−882. doi: 10.1130/0091-7613(2000)28<879:GBPIEA>2.0.CO;2
[11] Cawood P A, Nemchin A A. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, western Australia[J]. Sedimentary Geology, 2000, 134: 209−234. doi: 10.1016/S0037-0738(00)00044-0
[12] Evans D A D. Reconstructing pre-Pangean super-continents[J]. Geological Society of America Bulletin, 2013, 125: 1735−1751. doi: 10.1130/B30950.1
[13] Zhou M, Yan D. Subduction-related origin of the 750Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China[J]. Earth and Planetary Science Letters, 2006, 248: 286−300. doi: 10.1016/j.jpgl.2006.05.032
[14] Gernon T M, Hincks T K, Tyrrell T, et al. Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup[J]. Nature Geoscience, 2016, 9: 242−248. doi: 10.1038/ngeo2632
[15] Wang W, Cawood P A, Zhou M, et al. Low-δ18O rhyolites from the Malani Igneous Suite: A positive test for South China and NW India linkage in Rodinia[J]. Geophysical Research Letters, 2017, 44(10): 10298−10305.
[16] Zhao G C, Wang Y J. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262−286. doi: 10.1016/j.earscirev.2018.10.003
[17] Zhou J B, Wilde S A. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 76−93. doi: 10.1016/j.earscirev.2017.01.012
[18] He Z, Klemd R, Yan L. The origin and crustal evolution of microcontinents in the Beishan Orogen of the southern central Asian Orogenic Belt[J]. Earth-Science Reviews, 2018, 185: 1−14. doi: 10.1016/j.earscirev.2018.05.012
[19] He Z Y, Klemd R, Yan L L, et al. Mesoproterozoic juvenile crust in microcontinents of the central Asian Orogenic Belt: Evidence from oxygen and hafnium isotopes in zircon[J]. Scientific Reports, 2018, 8: 5054. doi: 10.1038/s41598-018-23393-4
[20] 赵恒乐, 曹福根, 李佳, 等. 阿尔金红柳沟北南华纪火山岩地质特征及锆石U-Pb SHRIMP定年[J]. 西部探矿工程, 2011, 23(9): 107−111. doi: 10.3969/j.issn.1004-5716.2011.09.036
[21] 刘函, 王国灿, 曹树钊, 等. 北阿尔金南华纪双峰式火山岩的发现及构造意义[J]. 地球科学——中国地质大学学报, 2012, 37(5): 917−928. doi: 10.3799/dqkx.2012.100
Liu H, Wang G C, Cao S Z, et al. Discovery of Nanhuaian bimodal volcanics in northern Altyn Tagh and its tectonic significance[J]. Earth Science—Journal of China University of Geosciences, 2012, 37(5): 917−928. doi: 10.3799/dqkx.2012.100
[22] Li Y, Song S, Yang X, et al. Age and composition of Neoproterozoic diabase dykes in North Altyn Tagh, northwest China: Implications for Rodinia break-up[J]. International Geology Review, 2020, 65(7): 1000−1016. doi: 10.1080/00206814.2020.1857851
[23] Li Y, Zhang J, Yu S, et al. Origin of early Paleozoic garnet peridotite and associated garnet pyroxenite in the South Altyn Tagh, NW China: Constraints from geochemistry, SHRIMP U-Pb zircon dating and Hf isotopes[J]. Journal of Asian Earth Sciences, 2015, 100: 60−77. doi: 10.1016/j.jseaes.2015.01.004
[24] 张建新, 于胜尧, 李云帅, 等. 原特提斯洋的俯冲、增生及闭合: 阿尔金—祁连—柴北缘造山系早古生代增生/碰撞造山作用[J]. 岩石学报, 2015, 31(12): 3531−3554.
Zhang J X, Yu S Y, Li Y S, et al. Subduction, accretion and closure of proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun—Qilian—North Qaidam orogenic system[J]. Acta Petrologica Sinica, 2015, 31(12): 3531−3554.
[25] Liu L, Zhang A, Chen D, et al. Implications based on LA-ICP-MS zircon U-Pb ages of eclogite and its country rock from Jianggalesayi area, Altyn Tagh, China[J]. Earth Science Frontiers, 2007, 14(1): 98−107. doi: 10.1016/S1872-5791(07)60004-9
[26] Liu L, Wang C, Cao Y T, et al. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China[J]. Lithos, 2012, 136−139: 10−26. doi: 10.1016/j.lithos.2011.09.014
[27] Demetriades A, Johnson C C, Smith D B, et al. International union of geological sciences manual of standard methods for establishing the global geochemical reference network[R]. IUGS Commission on Global Geochemical Baselines, 2022: 515.
[28] Paton C, Hellstrom J, Paul B, et al. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26: 2508−2518. doi: 10.1039/C1JA10172B
[29] Eriksson S C. Age of carbonatite and phoscorite magmatism of the Phalaborwa complex (South Africa)[J]. Isotope Geoscience, 1984, 2: 291−299.
[30] Wang S, Sun X, Li Y, et al. Baddeleyite U-Pb age and Hf isotopes, and constraints on genesis of the Panzhihua carbonatite in SW China[J]. Ore Geology Reviews, 2023, 152: 105228. doi: 10.1016/j.oregeorev.2022.105228
[31] Ludwig K R. Isoplot 3.00: A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center, 2003.
[32] 李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS定年方法及应用[J]. 地质学报, 2015, 89(12): 2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
Li Y G, Wang S S, Liu M W, et al. U-Pb dating study of baddeleyite by LA-ICP-MS technique and application[J]. Acta Geologica Sinica, 2015, 89(12): 2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
[33] Winchester J A, Floyd P A. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1976, 28: 459−469. doi: 10.1016/0012-821X(76)90207-7
[34] Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321−355. doi: 10.2475/ajs.274.4.321
[35] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts; Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
[36] Zhang J X, Zhang Z M. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China[J]. Lithos, 2001, 56: 187−206. doi: 10.1016/S0024-4937(00)00052-9
[37] Zhang J X, Mattinson C G. Combined rutile-zircon thermometry and U-Pb geochronology: New constraints on early Paleozoic HP/UHT granulite in the South Altyn Tagh, North Tibet, China[J]. Lithos, 2014, 200−201: 241−257. doi: 10.1016/j.lithos.2014.05.006
[38] Humphris S E, Thompson G. Trace element mobility during hydrothermal alteration of oceanic basalts[J]. Geochimica et Cosmochimica Acta, 1978, 42(1): 127−136. doi: 10.1016/0016-7037(78)90222-3
[39] Rollinson H R. Using geochemical data: Evaluation, presentation, interpretation[J]. Essex: Longman Science & Technical, 1993: 120−121.
[40] Jiang S Y, Wang R C, Xu X S, et al. Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine hydrothermal systems[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2005, 30(17−18): 1020−1029. doi: 10.1016/j.pce.2004.11.004
[41] Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 1978, 19: 463−513. doi: 10.1093/petrology/19.3.463
[42] Hess P C. Phase equilibria constraints on the origin of ocean floor basalts[J]. Geophysical Monograph, 1992, 71: 67−102. doi: 10.1029/GM071p0067
[43] Pearce J A. Immobile element fingerprinting of ophiolites[J]. Elements, 2014, 10: 101−108. doi: 10.2113/gselements.10.2.101
[44] Saunders A D, Storey M, Kent R W, et al. Consequences of plume-lithosphere interactions[J]//Storey B C, Alabaster T, Pankhurst R J. Magmatism and the cause of continental breakup. Geological Society London Special Publications, 1992, 68: 41−60.
[45] Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction related metasomatism in the upper mantle[J]. Precambrian Research, 2007, 152: 27−47. doi: 10.1016/j.precamres.2006.09.002
[46] Rudnick R L, Gao S. The composition of the continental crust[J]//Rudnick R L. The crust. Oxford: Elsevier-Pergamon, 2003: 1−64.
[47] Fitton J G, James D, Leeman W P. Basic magmatism associated with the late Cenozoic extension in the western United States: Compositional variations in space and time[J]. Journal of Geophysical Research, 1991, 96: 13693−13711. doi: 10.1029/91jb00372
[48] George R M, Rogers N W. Plume dynamics beneath the African plate inferred from the geochemistry of the Tertiary basalts of southern Ethiopia[J]. Contributions to Mineralogy and Petrology, 2002, 144: 286−304. doi: 10.1007/s00410-002-0396-z
[49] Jourdan F, Bertrand H, Schärer U, et al. Major and trace element and Sr, Nd, Hf and Pb isotope compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe: Lithosphere vs mantle plume contribution[J]. Journal of Petrology, 2007, 48(6): 1043−1077. doi: 10.1093/petrology/egm010
[50] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[J]//Thorpe R S. Andesites. New York: John Wiley and Sons, 1982: 525−548.
[51] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69: 33−47. doi: 10.1007/BF00375192
[52] McKenzie D A N, O’Nions R K. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal of Petrology, 1991, 32: 1021−1091. doi: 10.1093/petrology/32.5.1021
[53] Wilson M. Igneous petrogenesis[M]. London: Unwin Hyman, 1989.
[54] Peng Y, Yu S, Li S, et al. Early Neoproterozoic magmatic imprints in the Altun—Qilian—Kunlun region of the Qinghai—Tibet Plateau: Response to the assembly and breakup of Rodinia supercontinent[J]. Earth Science Reviews, 2019, 199: 1029−1054. doi: 10.1016/j.earscirev.2019.102954
[55] Hao J, Wang C, Zhang S, et al. Grenvillian evolution of the Qaidam block and its position in Rodinia constrained by U-Pb-Hf composition of detrital zircons from the Altyn Tagh, northern Tibet[J]. Gondwana Research, 2023, 122: 60−73. doi: 10.1016/j.gr.2023.06.003
-