中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

低铀方解石高空间分辨率LA-MC-ICP-MS U-Pb测年方法

张晨西, 熊玉新, 付佳丽, 赵伟, 舒磊, 李增胜, 徐珺, 周长祥, 洪飞. 低铀方解石高空间分辨率LA-MC-ICP-MS U-Pb测年方法[J]. 岩矿测试, 2025, 44(3): 369-383. doi: 10.15898/j.ykcs.202403160057
引用本文: 张晨西, 熊玉新, 付佳丽, 赵伟, 舒磊, 李增胜, 徐珺, 周长祥, 洪飞. 低铀方解石高空间分辨率LA-MC-ICP-MS U-Pb测年方法[J]. 岩矿测试, 2025, 44(3): 369-383. doi: 10.15898/j.ykcs.202403160057
ZHANG Chenxi, XIONG Yuxin, FU Jiali, ZHAO Wei, SHU Lei, LI Zengsheng, XU Jun, ZHOU Changxiang, HONG Fei. High Spatial Resolution U-Pb Dating of Low-Uranium Calcite Using LA-MC-ICP-MS[J]. Rock and Mineral Analysis, 2025, 44(3): 369-383. doi: 10.15898/j.ykcs.202403160057
Citation: ZHANG Chenxi, XIONG Yuxin, FU Jiali, ZHAO Wei, SHU Lei, LI Zengsheng, XU Jun, ZHOU Changxiang, HONG Fei. High Spatial Resolution U-Pb Dating of Low-Uranium Calcite Using LA-MC-ICP-MS[J]. Rock and Mineral Analysis, 2025, 44(3): 369-383. doi: 10.15898/j.ykcs.202403160057

低铀方解石高空间分辨率LA-MC-ICP-MS U-Pb测年方法

  • 基金项目: 山东省自然科学基金项目(ZR2022QD050);自然资源部金矿成矿过程与资源利用重点实验室和山东省金属矿产成矿地质过程与资源利用重点实验室开放课题(Kfkt202118);江西省自然科学基金项目(20232BAB213070);国家自然科学基金项目(42203034)
详细信息
    作者简介: 张晨西,博士,高级工程师,从事地质样品元素和同位素分析方法研究。E-mail:ZhangCX_1993@163.com
  • 中图分类号: P597.3;O657.63

High Spatial Resolution U-Pb Dating of Low-Uranium Calcite Using LA-MC-ICP-MS

  • 碳酸盐矿物特别是方解石分布广泛,作为原生和次生矿物在多种地质环境中形成,结合U-Pb同位素测年体系,能为地球科学应用提供直接的时间约束,具有广阔的应用前景。但方解石矿物的铀含量通常较低(小于5μg/g),测年难度大,限制了该方法的发展。激光剥蚀多接收电感耦合等离子体质谱仪(LA-MC-ICP-MS)具有高灵敏度和高精度的特点,已成功应用于锆石、方解石等副矿物的高空间分辨率U-Pb测年。本文针对LA-MC-ICP-MS的载气和氮气流速、屏蔽炬状态等实验参数进行了详细优化,建立了适用于低铀方解石矿物的高空间分辨率U-Pb测年方法。为提升仪器灵敏度和等离子体状态,详细讨论了锥组合、屏蔽炬接地状态、N2引入量和Ar载气流速对U、Pb信号强度及氧化物产率(UO/U)的影响。结果表明,在Jet+X锥组合、屏蔽炬接地、8mL/min N2引入量和0.9L/min载气Ar流速条件下,Pb灵敏度达到最高,同时氧化物产率(UO/U)低于1%。为验证该方法的准确性,采用三个低铀(0.04~0.63μg/g)方解石U-Pb定年参考物质进行测试,使用高铀含量的WC-1标准物质作为校正238U/206Pb的外标,同时减小束斑大小和剥蚀频率,保持标准物质和待测样品的剥蚀坑纵横比一致。实验结果表明,在44μm束斑条件下,LD-5、PTKD-2和TARIM的U-Pb年龄测试值分别为73.20±0.56Ma、152.7±2.5Ma和206.2±1.3Ma,与ID-TIMS/ID-MC-ICP-MS的定值结果在误差范围内一致,验证了LA-MC-ICP-MS高空间分辨率测定低铀方解石U-Pb年龄的可靠性。

  • 加载中
  • 图 1  锥组合a(S+H)、b(S+X)和c(Jet+X)时,238U的信号强度在屏蔽炬是否接地和引入氮气量条件下随Ar载气的变化情况

    Figure 1. 

    图 2  锥组合a(S+H)、b(S+X)和c(Jet+X)时,206Pb的信号强度在屏蔽炬是否接地和引入氮气量条件下随Ar载气的变化

    Figure 2. 

    图 3  锥组合a(S+H)、b(S+X)和c(Jet+X)时,氧化物产率(UO/U)在屏蔽炬是否接地和引入氮气量条件下随Ar载气的变化

    Figure 3. 

    图 4  氧化物产率(UO/U)低于1%条件下,不同锥组合(a. S+H,b. S+X和c. Jet+X)、屏蔽炬状态和引入氮气流量条件下206Pb最高信号强度

    Figure 4. 

    图 5  不同激光参数下NIST614玻璃校正WC-1的Tera-Wasserburg图

    Figure 5. 

    图 6  方解石参考物质LD-5在(a) 60μm和(b) 44μm束斑条件下的LA-MC-ICP-MS U-Pb年龄Tera-Wasserburg图和测试点的U元素含量分布不同激光参数下WC-1的未校正Tera-Wasserburg图

    Figure 6. 

    图 7  方解石参考物质PTKD-2在(a) 60μm和(b)44μm束斑条件下的LA-MC-ICP-MS U-Pb年龄Tera-Wasserburg图和测试点的U元素含量分布不同激光参数下WC-1的未校正Tera-Wasserburg图

    Figure 7. 

    图 8  方解石参考物质TARIM在(a) 60μm和(b) 44μm束斑条件下的LA-MC-ICP-MS U-Pb年龄Tera-Wasserburg图和测试点的U元素含量分布不同激光参数下WC-1的未校正Tera-Wasserburg图

    Figure 8. 

    表 1  硅酸盐玻璃和方解石标准物质

    Table 1.  Silicate glass and calcite reference materials

    标准物质编号 样品类型 铀含量
    (μg/g)
    ID-TIMS或
    ID-MC年龄
    (Ma)
    ID-TIMS或ID-MC
    测得初始铅
    207Pb/206Pb
    LA-(MC)-ICP-MS
    年龄(Ma)
    参考文献
    NIST612 玻璃 37.38 Jochum等 (2011)28
    NIST614 玻璃 0.823 Jochum等 (2011)28
    WC-1 海相方解石 2~8 254.4±6.4 0.85 254.4±1.6 Roberts等 (2017)29
    LD-5 矿区方解石 0.2~5 72.36±0.27 0.863 72.5±1.5 昆士兰大学地球与环境科学学院,
    放射性同位素实验室内部标准物质
    PTKD-2 矿区方解石 约0.16 153.7±1.7 0.85 153.8±0.8 Nguyen等(2019)26
    TARIM 沉积碳酸盐地层
    方解石巨晶
    0.03~1.53
    (0.48)
    208.8±0.6 0.86 208.0±0.4
    (3.2)
    Zhang等(2022)27
    下载: 导出CSV

    表 2  仪器设备及测试参数

    Table 2.  Instrumental operating conditions

    杯结构设置
    检测器 IC4-CDD IC5-CDD IC3-SEM IC2-SEM IC1-SEM IC6-CDD IC7-CDD 色散
    电压
    (V)
    同位素 202Hg 204Pb+204Hg 206Pb 207Pb 208Pb 232Th 238U 1
    MC-ICP-MS
    仪器型号 NEPTUNE Plus
    射频功率 1200W
    屏蔽矩 ON, OFF
    等离子体气流速 16.0L/min
    辅助气流速 0.80L/min
    样品载气流速 0.35~1.45L/min
    氮气 0~8mL/min
    锥类型 三套Ni锥组合:标准采样锥+H截取锥(S+H);标准
    采样锥+X截取锥(S+X);Jet采样锥+X截取锥(Jet+X)
    数据采集参数
    采集模式 静态
    检测器 离子计数器
    杯结构 202Hg (IC4-CDD), 204Pb+204Hg (IC5-CDD),
    206Pb (IC3-SEM), 207Pb (IC2-SEM), 208Pb (IC1-SEM), 232Th (IC6-CDD), 238U (IC7-CDD)
    分辨率 低分辨
    积分时间 0.262s
    信号采集量 1 Block 200 cycles
    激光设置
    激光类型 ArF
    脉冲宽度 15ns
    波长 193nm
    载气及流量 氦气,0.60L/min
    剥蚀模式 单点模式
    能量密度 3~5J/cm2
    束斑大小 32~120μm
    激光频率 2~10Hz
    下载: 导出CSV

    表 3  不同激光参数下NIST614玻璃校正WC-1的U-Pb年龄结果

    Table 3.  The U-Pb age results of WC-1 with different laser parameters corrected by NIST614 glass

    激光束斑
    (μm)
    激光频率
    (Hz)
    剥蚀坑纵横比38 未校正年龄
    (Ma)
    不确定度
    (Ma)
    外标NIST614玻璃的
    激光束斑和频率
    32 7 0.79 308.7 3.4 44μm,10Hz
    44 10 0.82 309.0 1.5
    32 4 0.45 273.4 2.4 60μm,7Hz
    60 7 0.42 273.62 0.91
    下载: 导出CSV
  • [1]

    Rasbury E T, Cole J M. Directly dating geologic events: U‐Pb dating of carbonates[J]. Reviews of Geophysics, 2009, 47(3): RG3001. doi: 10.1029/2007RG000246

    [2]

    Roberts N M W, Holdsworth R E. Timescales of faulting through calcite geochronology: A review[J]. Journal of Structural Geology, 2022, 158: 104578. doi: 10.1016/j.jsg.2022.104578

    [3]

    肖志斌, 耿建珍, 涂家润, 等. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究[J]. 岩矿测试, 2020, 39(2): 262−273. doi: 10.15898/j.cnki.11-2131/td.201908120129

    Xiao Z B, Geng J Z, Tu J R, et al. In situ U-Pb isotope dating techniques for sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262−273. doi: 10.15898/j.cnki.11-2131/td.201908120129

    [4]

    赵令浩, 詹秀春, 曾令森, 等. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753. doi: 10.15898/j.cnki.11-2131/td.202202260035

    Zhao L H, Zhan X C, Zeng L S, et al. Direct calibration method for LA-HR-ICP-MS apatite U-Pb dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744−753. doi: 10.15898/j.cnki.11-2131/td.202202260035

    [5]

    Jahn B, Cuvellier H. Pb-Pb and U-Pb geochronology of carbonate rocks: An assessment[J]. Chemical Geology, 1994, 115(1−2): 125−151. doi: 10.1016/0009-2541(94)90149-X

    [6]

    Roberts N M W, Drost K, Horstwood M S A, et al. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: Strategies, progress, and limitations[J]. Geochronology, 2020, 2(1): 33−61. doi: 10.5194/gchron-2-33-2020

    [7]

    赵子贤, 施炜. 方解石LA-(MC-)ICP-MS U-Pb定年技术及其在脆性构造中的应用[J]. 地球科学与环境学报, 2019, 41(5): 505−516. doi: 10.3969/j.issn.1672-6561.2019.05.001

    Zhao Z X, Shi W. LA-(MC-)ICP MS U-Pb dating technique of calcite and its application in brittle structures[J]. Journal of Earth Sciences and Environment, 2019, 41(5): 505−516. doi: 10.3969/j.issn.1672-6561.2019.05.001

    [8]

    杨鹏, 袁海锋, 马奎, 等. 川中太和气区震旦系灯影组二段储层成岩流体演化及油气成藏史——来自岩石学、原位地球化学、流体包裹体及年代学的证据[J]. 地质学报, 2023, 97(7): 2332−2353. doi: 10.3969/j.issn.0001-5717.2023.07.014

    Yang P, Yuan H F, Ma K, et al. Diagenetic fluid evolution and hydrocarbon accumulation history of second member of the Sinian Dengying Formation in the Taihe gas area, central Sichuan Basin: Evidence from petrology, in situ geochemistry, fluid inclusions and chronology[J]. Acta Geologica Sinica, 2023, 97(7): 2332−2353. doi: 10.3969/j.issn.0001-5717.2023.07.014

    [9]

    刘恩涛, ZHAO Jian-xin, 潘松圻, 等. 盆地流体年代学研究新技术: 方解石激光原位U-Pb定年法[J]. 地球科学, 2019, 44(3): 698−712. doi: 10.3799/dqkx.2019.958

    Liu E T, Zhao J X, Pan S Q, et al. A new technology of basin fluid geochronology: In-situ U-Pb dating of calcite[J]. Earth Science, 2019, 44(3): 698−712. doi: 10.3799/dqkx.2019.958

    [10]

    高伊雪, 邱昆峰, 于皓丞, 等. 碳酸盐矿物激光原位U-Pb定年基本原理、分析方法与地学应用[J]. 岩石矿物学杂志, 2022, 41(4): 786−803. doi: 10.3969/j.issn.1000-6524.2022.04.008

    Gao Y X, Qiu K F, Yu H C, et al. Principle, methods, and geological applications of carbonates LA-ICP-MS U-Pb geochronology[J]. Acta Petrologica et Mineralogica, 2022, 41(4): 786−803. doi: 10.3969/j.issn.1000-6524.2022.04.008

    [11]

    张亮亮, 朱弟成, 谢锦程, 等. 碳酸盐矿物激光原位U-Pb定年:进展与展望[J]. 矿物岩石地球化学通报, 2022, 41(6): 1120−1134. doi: 10.19658/i.issn.1007-2802.2022.41.091

    Zhang L L, Zhu D C, Xie J C, et al. Advances and perspectives of the in-situ laser ablation carbonate minerals U-Pb dating[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(6): 1120−1134. doi: 10.19658/i.issn.1007-2802.2022.41.091

    [12]

    Pickering R, Kramers J D, Partridge T, et al. U-Pb dating of calcite-aragonite layers in speleothems from hominin sites in South Africa by MC-ICP-MS[J]. Quaternary Geochronology, 2010, 5(5): 544−558. doi: 10.1016/j.quageo.2009.12.004

    [13]

    Rasbury E T, Hanson G N, Meyers W J, et al . Dating of the time of sedimentation using U-Pb ages for paleosol calcite[J]. Geochimica et Cosmochimica Acta, 1997, 61(7): 1525−1529. doi: 10.1016/S0016-7037(97)00043-4

    [14]

    Brannon J C, Cole S C, Podosek F A, et al. Th-Pb and U-Pb dating of ore-stage calcite and Paleozoic fluid flow[J]. Science, 1996, 271(5248): 491−493. doi: 10.1126/science.271.5248.491

    [15]

    Yang P, Wu G H, Nuriel P, et al. In situ LA-ICPMS U-Pb dating and geochemical characterization of fault-zone calcite in the central Tarim Basin, Northwest China: Implications for fluid circulation and fault reactivation[J]. Chemical Geology, 2021, 568: 120125. doi: 10.1016/j.chemgeo.2021.120125

    [16]

    Roberts N M W, Walker R J. U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the Northeast Atlantic margin[J]. Geology, 2016, 44(7): 531−534. doi: 10.1130/G37868.1

    [17]

    Coogan L A, Parrish R R, Roberts N M W. Early hydrothermal carbon uptake by the upper oceanic crust: Insight from in situ U-Pb dating[J]. Geology, 2016, 44(2): 147−150. doi: 10.1130/G37212.1

    [18]

    鲁雪松, 桂丽黎, 陈玮岩, 等. 激光原位碳酸盐岩U-Pb定年实验方法改进与石油地质应用[J]. 中国科学: 地球科学, 2023, 66(12): 2914−2929. doi: 10.1360/SSTe-2022-0257

    Lu X S, Gui L L, Chen W Y, et al. Improvement of in situ LA-ICP-MS U-Pb dating method for carbonate minerals and its application in petroleum geology[J]. Science China Earth Sciences, 2023, 66(12): 2914−2929. doi: 10.1360/SSTe-2022-0257

    [19]

    吴石头, 杨岳衡, Nick M. W. Roberts, 等. 高灵敏度-单接收杯LA-SF-ICP-MS原位方解石U-Pb定年[J]. 中国科学: 地球科学, 2022, 65(6): 1146−1160. doi: 10.1360/N072021-0165

    Wu S T, Yang Y H, Roberts N M W, et al. In situ calcite U-Pb geochronology by high-sensitivity single-collector LA-SF-ICP-MS[J]. Science China Earth Sciences, 2022, 65(6): 1146−1160. doi: 10.1360/N072021-0165

    [20]

    Luo K, Zhou J X, Feng Y X, et al. In situ U-Pb dating of calcite from the South China antimony metallogenic belt[J]. iScience, 2020, 23: 101575. doi: 10.1016/j.isci.2020.101575

    [21]

    谢博航, 吴石头, 杨岳衡, 等. LA-MC-ICP-MS方解石U-Pb定年技术[J]. 岩石学报, 2023, 39(1): 236−248. doi: 10.18654/1000-0569/2023.01.16

    Xie B H, Wu S T, Yang Y H, et al. LA-MC-ICP-MS calcite U-Pb dating technique[J]. Acta Petrologica Sinica, 2023, 39(1): 236−248. doi: 10.18654/1000-0569/2023.01.16

    [22]

    Zhang L L, Zhu D C, Yang Y H, et al. U-Pb geochronology of carbonate by laser ablation MC-ICP-MS: Method improvements and geological applications[J]. Atomic Spectroscopy, 2021, 42(6): 335−348. doi: 10.46770/AS.2021.803

    [23]

    程婷, Jianxin Zhao, Yuexing Feng, 等. 低铀碳酸盐矿物的LA-MC-ICPMS微区原位U-Pb定年方法[J]. 科学通报, 2020, 65(2−3): 150−154. doi: 10.1360/TB-2019-0355

    Cheng T, Zhao J X, Feng Y X, et al. LA-MC-ICPMS U-Pb dating method for low-uranium carbonate minerals[J]. Chinese Science Bulletin, 2020, 65(2−3): 150−154. doi: 10.1360/TB-2019-0355

    [24]

    Nuriel P, Craddock J, Kylander-Clark A R C, et al. Reactivation history of the North Anatolian fault zone based on calcite age-strain analyses[J]. Geology, 2019, 47(5): 465−469. doi: 10.1130/G45727.1

    [25]

    Yokoyama T, Kimura J, Mitsuguchi T, et al. U-Pb dating of calcite using LA-ICP-MS: Instrumental setup for non-matrix-matched age dating and determination of analytical areas using elemental imaging[J]. Geochemical Journal, 2018, 52(6): 531−540. doi: 10.2343/geochemj.2.0541

    [26]

    Nguyen A D, Feng Y X, Cheng T, et al. LA‐(MC)‐ICP-MS U‐Pb geochronology-potential calcite reference materials[A].Barcelona: Goldschmidt Conference, 2019.

    [27]

    Zhang L L, Zhu D C, Xie J C, et al. TARIM calcite: A potential reference material for laser ICPMS in situ calcite U-Pb dating[J]. Journal of Analytical Atomic Spectrometry, 2023, 38(11): 2302−2312. doi: 10.1039/d3ja00222e

    [28]

    Jochum K P, Weis U, Stoll B, et al. Determination of reference values for NIST SRM610−617 glasses following ISO guidelines[J]. Geostandards and Geoanalytical Research, 2011, 35(4): 397−429. doi: 10.1111/j.1751-908X.2011.00120.x

    [29]

    Roberts N M W, Rasbury E T, Parrish R R, et al. A calcite reference material for LA‐ICP‐MS U‐Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807−2814. doi: 10.1002/2016GC006784

    [30]

    Paton C, Hellstrom J, Paul B, et al. Iolite: Freeware for the visualization and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508−2518. doi: 10.1039/C1JA10172B

    [31]

    Vermeesch P. IsoplotR: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1479−1493. doi: 10.1016/j.gsf.2018.04.001

    [32]

    Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391−1399. doi: 10.1039/c2ia30078h

    [33]

    Flamigni L, Koch J, Günther D. The effect of carrier gas humidity on the vaporization of laser-produced aerosols in inductively coupled plasmas[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(2): 280−286. doi: 10.1039/c3ja50314c

    [34]

    He T, Ni Q, Miao Q, et al. Effects of cone combinations on the signal enhancement by nitrogen in LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33: 1021−1030. doi: 10.1039/C7JA00376E

    [35]

    何焘, 张晨西, 张文, 等. 高空间分辨率LA-ICP-MS测定硅酸盐玻璃标准物质中42种微量元素[J]. 岩矿测试, 2023, 42(5): 983−995. doi: 10.15898/j.ykcs.202308090134

    He T, Zhang C X, Zhang W, et al. Determination of 42 trace elements in silicate glass reference materials by high spatial resolution LA-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(5): 983−995. doi: 10.15898/j.ykcs.202308090134

    [36]

    ver Hoeve T J, Scoates J S, Wall C J, et al. Evaluating downhole fractionation corrections in LA-ICP-MS U-Pb zircon geochronology[J]. Chemical Geology, 2018, 483: 201−217. doi: 10.1016/j.chemgeo.2017.12.014

    [37]

    罗涛, 胡兆初. 激光剥蚀电感耦合等离子体质谱副矿物U-Th-Pb定年新进展[J]. 地球科学, 2022, 47(11): 4122−4144. doi: 10.3799/dqkx.2022.365

    Luo T, Hu Z C. Recent advances in U-Th-Pb dating of accessory minerals by laser ablation inductively coupled plasma[J]. Earth Science, 2022, 47(11): 4122−4144. doi: 10.3799/dqkx.2022.365

    [38]

    Guillong M, Wotzlaw J F, Looser N, et al. Evaluating the reliability of U-Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: Matrix issues and a potential calcite validation reference material[J]. Geochronology, 2020, 2(1): 155−167. doi: 10.5194/gchron-2-155-2020

  • 加载中

(8)

(3)

计量
  • 文章访问数:  45
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2024-03-16
修回日期:  2025-01-08
录用日期:  2025-01-16
网络出版日期:  2025-02-22
刊出日期:  2025-05-30

目录