中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

碱性过硫酸盐消解-紫外二阶导数光谱法测定地热水中总溶解氮

刘冰冰, 张琳. 碱性过硫酸盐消解-紫外二阶导数光谱法测定地热水中总溶解氮[J]. 岩矿测试, 2025, 44(3): 478-487. doi: 10.15898/j.ykcs.202411210239
引用本文: 刘冰冰, 张琳. 碱性过硫酸盐消解-紫外二阶导数光谱法测定地热水中总溶解氮[J]. 岩矿测试, 2025, 44(3): 478-487. doi: 10.15898/j.ykcs.202411210239
LIU Bingbing, ZHANG Lin. Total Dissolved Nitrogen in Geothermal Water by Ultraviolet Second Derivative Spectrometry with Alkaline Persulfate Digestion[J]. Rock and Mineral Analysis, 2025, 44(3): 478-487. doi: 10.15898/j.ykcs.202411210239
Citation: LIU Bingbing, ZHANG Lin. Total Dissolved Nitrogen in Geothermal Water by Ultraviolet Second Derivative Spectrometry with Alkaline Persulfate Digestion[J]. Rock and Mineral Analysis, 2025, 44(3): 478-487. doi: 10.15898/j.ykcs.202411210239

碱性过硫酸盐消解-紫外二阶导数光谱法测定地热水中总溶解氮

  • 基金项目: 国家自然科学基金项目(42307555)
详细信息
    作者简介: 刘冰冰,硕士,高级工程师,主要从事水质分析工作。E-mail:408729357@qq.com
    通讯作者: 张琳,硕士,研究员,主要从事地下水同位素研究。E-mail:zhl5369@163.com
  • 中图分类号: O657.3

Total Dissolved Nitrogen in Geothermal Water by Ultraviolet Second Derivative Spectrometry with Alkaline Persulfate Digestion

More Information
  • 地热水的过度开发利用导致地热水中总溶解氮含量过高,造成水质恶化,同时伴随地热水中总溶解氮中不同形态氮的相互转化,对人类健康和经济发展造成严重影响。因此,地热水中总溶解氮的测定,对研究总溶解氮的生物地球化学循环和地热水的合理开发利用具有重要意义。针对地热水具有化学成分复杂多变、干扰组分多的特点,本文建立了碱性过硫酸盐消解-紫外二阶导数光谱法测定地热水中总溶解氮的方法,其中总溶解氮以硝酸根-氮的形式定量测定,其二阶导数光谱图可消除大部分干扰因素。通过研究硝酸根-氮紫外二阶导数光谱图,确定波长266.6nm对应的二阶导数值为特征吸光度。通过单因素水平实验和双因素方差分析实验优化消解反应中的消解参数,表明在一定条件范围内,稀释方案是影响总溶解氮测定最重要的因素,推荐选择消解温度为120℃,消解时间为20min,碱性过硫酸钾溶液体积为5.0mL;选择样品体积为10.0mL,在样品消解前稀释。共存离子干扰实验表明,高含量溴离子对总溶解氮的测定有正干扰。在0.20~5.0mg/L线性范围内,建立硝酸根(以氮计)标准溶液校准曲线,其决定系数R2=0.9996。本方法加标回收率在94.0%~103.5%之间,相对偏差在0.83%~3.36%之间,准确度和可靠性高,干扰因素可控,需要样品量小,仪器成本低,可满足地热水中总溶解氮的快速、简单、准确批量检测需求。

  • 加载中
  • 图 1  硝酸根-氮标准溶液和地热水样品溶液的紫外光谱图(a)、一阶(b)和二阶导数光谱图(c)

    Figure 1. 

    图 2  不同浓度的硝酸根-氮标准溶液的二阶导数光谱图

    Figure 2. 

    图 3  消解时间(a)、消解温度(b)和碱性过硫酸钾溶液体积(c)对总溶解氮(TDN)、溶解无机氮(DIN)和溶解有机氮(DON)质控样品测定结果的影响

    Figure 3. 

    图 4  样品体积与稀释方案对总溶解氮(TDN)、溶解无机氮(DIN)和溶解有机氮(DON)质控样品测定结果的影响

    Figure 4. 

    图 5  共存离子对总溶解氮测定结果的影响

    Figure 5. 

    表 1  实际样品的测定及加标回收率

    Table 1.  Determination of actual samples and spike recoveries

    样品编号 总溶解氮含量(mg/L) 相对偏差
    (%)
    回收率
    (%)
    本底值 加标量 理论测定值 实际测定值
    1# 0.33 0.50 0.83 0.81 2.41 96.0
    1.00 1.33 1.37 3.01 104.0
    2.00 2.33 2.40 3.00 103.5
    2# 1.45 0.50 1.95 1.92 1.54 94.0
    1.00 2.45 2.40 2.04 95.0
    2.00 3.45 3.52 2.03 103.5
    3# 0.49
    0.50 0.99 0.97 2.02 96.0
    1.00 1.49 1.44 3.36 95.0
    2.00 2.49 2.42 2.81 96.5
    4# 1.92 0.50 2.42 2.40 0.83 96.0
    1.00 2.92 2.86 2.05 94.0
    2.00 3.92 3.83 2.30 95.5
    下载: 导出CSV

    表 2  方法对比实验(n=6)

    Table 2.  Comparison of analytical results obtained by different methods (n=6)

    样品编号 总溶解氮含量
    理论值(mg/L)
    本文方法 行业标准方法(碱性过硫酸钾消解
    紫外分光光度法)
    本文方法与行业标准方法
    的相对偏差(%)
    测定值
    (mg/L)
    RSD
    (%)
    与理论值的
    相对偏差(%)
    测定值
    (mg/L)
    RSD
    (%)
    与理论值的
    相对偏差(%)
    S1 1.60 1.62 1.85 1.25 1.65 2.89 3.12 1.83
    S2 4.50 4.54 1.69 0.89 4.64 3.57 3.11 2.18
    下载: 导出CSV
  • [1]

    Cortés-Bautista S, Robles-Jimárez H R, Carrero-Ferrer I, et al. Portable determinations for legislated dissolved nitrogen forms in several environmental water samples as a study case[J]. Science of the Total Environment, 2023, 864: 161131. doi: 10.1016/j.scitotenv.2022.161131

    [2]

    Zhao C, Chen L, Zhong G, et al. A portable analytical system for rapid on-site determination of total nitrogen in water[J]. Water Research, 2021, 202: 117410. doi: 10.1016/j.watres.2021.117410

    [3]

    Yang S, Dong M, Lu H, et al. Explaining nitrogen turnover in sediments and water through variations in microbial community composition and potential function[J]. Chemosphere, 2023, 344: 140379. doi: 10.1016/j.chemosphere.2023.140379

    [4]

    Łukasiewicz E, Shamoushaki M. Heating potential of undeveloped geothermal water intakes in Poland in the context of sustainable development and air protection[J]. Water Resources and Industry, 2022, 27: 100175. doi: 10.1016/j.wri.2022.100175

    [5]

    杨晓飞, 苏翠兰, 锁瑞强, 等. 贵州卫城地热资源热储地质条件分析[J]. 桂林理工大学学报, 2024, 44(1): 51−57. doi: 10.3969/j.issn.1674-9057.2024.01.006

    Yang X F, Su C L, Suo R Q, et al. Analysis on geological conditions of geothermal reservoir for geothermal resources in Weicheng, Guizhou[J]. Journal of Guilin University of Technology, 2024, 44(1): 51−57. doi: 10.3969/j.issn.1674-9057.2024.01.006

    [6]

    王蒙, 郭平业, 金鑫, 等. 废弃矿井抽水蓄能与地热利用系统开发潜力评估[J]. 中南大学学报(英文版), 2024, 31(8): 2872−2890. doi: 10.1007/s11771-024-5727-z

    Wang M, Guo P Y, Jin X, et al. Evaluation of development potential of pumped hydroelectric storage and geothermal utilization system in abandoned coal mine[J]. Journal of Central South University, 2024, 31(8): 2872−2890. doi: 10.1007/s11771-024-5727-z

    [7]

    李曼, 邢林啸, 王贵玲, 等. 冀中坳陷地区地下热水氟分布特征及其风险评估和开发利用建议[J]. 中国地质, 2023, 50(6): 1857−1870. doi: 10.12029/gc20220411005

    Li M, Xing L X, Wang G L, et al. Distribution characteristics of fluorine in deep geothermal water in Jizhong Depression and its risk assessment and development utilization suggestions[J]. Geology in China, 2023, 50(6): 1857−1870. doi: 10.12029/gc20220411005

    [8]

    都聪聪. 地热水中氨氮在高水压下的迁移转化实验研究[D]. 焦作: 河南理工大学, 2021: 1−9.

    Du C C. Experimental study on the migration and transformation of ammonia nitrogen in geothermal water under high water pressure[D]. Jiaozuo: Henan Polytechnic University, 2021: 1−9.

    [9]

    张娟. 地热水与围岩介质中“三氮”迁移机理研究[D]. 焦作: 河南理工大学, 2011: 1−6.

    Zhang J. Studies on transport mechanism of “three nitrogen” between geothermal water and rock mass media surroundings[D]. Jiaozuo: Henan Polytechnic University, 2011: 1−6.

    [10]

    Lin K, Pei J, Li P, et al. Simultaneous determination of total dissolved nitrogen and total dissolved phosphorus in natural waters with an on-line UV and thermal digestion[J]. Talanta, 2018, 185: 419−426. doi: 10.1016/j.talanta.2018.03.085

    [11]

    Lin K, Xu J, Guo H, et al. Flow injection analysis method for determination of total dissolved nitrogen in natural waters using on-line ultraviolet digestion and vanadium chloride reduction[J]. Microchemical Journal, 2021, 164: 105993. doi: 10.1016/j.microc.2021.105993

    [12]

    Badr E A, Achterberg E P, Tappin A D, et al. Determination of dissolved organic nitrogen in natural waters using high-temperature catalytic oxidation[J]. TrAC Trends in Analytical Chemistry, 2003, 22(11): 819−827. doi: 10.1016/S0165-9936(03)01202-0

    [13]

    邓江华, 谭帅霞, 昌慧娟, 等. 氧弹燃烧-离子色谱法测定天然橡胶中的氮含量[J]. 橡胶工业, 2014, 61(3): 184−186. doi: 10.3969/j.issn.1000-890X.2014.03.012

    Deng J H, Tan S X, Chang H J, et al. Determination of nitrogen content in natural rubber by oxygen bomb combustion ion chromatography[J]. China Rubber Industry, 2014, 61(3): 184−186. doi: 10.3969/j.issn.1000-890X.2014.03.012

    [14]

    赵莉. 高温燃烧法测定水质总氮[J]. 分析试验室, 2015, 34(8): 965−968. doi: 10.13595/j.cnki.issn1000-0720.2015.0210

    Zhao L. Determination of total nitrogen in water by high temperature combustion method[J]. Chinese Journal of Analysis Laboratory, 2015, 34(8): 965−968. doi: 10.13595/j.cnki.issn1000-0720.2015.0210

    [15]

    Borba B M D, Jack R F, Rohrer J S, et al. Simultaneous determination of total nitrogen and total phosphorus in environ-mental waters using alkaline persulfate digestion and ion chromatography[J]. Journal of Chromatography A, 2014, 1369: 131−137. doi: 10.1016/j.chroma.2014.10.027

    [16]

    Tamura S Y, Hashihama F, Ogawa H, et al. Automated simultaneous determination of total dissolved nitrogen and phosphorus in seawater by persulfate oxidation method[J]. Talanta Open, 2020, 2: 100016. doi: 10.1016/j.talo.2020.100016

    [17]

    刘振超, 李志雄, 陆迁树, 等. 碱性过硫酸钾-紫外分光光度法测定水质总氮方法的改进[J]. 岩矿测试, 2024, 43(1): 114−123. doi: 10.15898/j.ykcs.202302280028

    Liu Z C, Li Z X, Lu Q S, et al. Improvement of the method for determining total nitrogen in water quality using alkaline potassium persulfate ultraviolet spectro-photometry[J]. Rock and Mineral Analysis, 2024, 43(1): 114−123. doi: 10.15898/j.ykcs.202302280028

    [18]

    梁娟, 黄建, 韩丽娟, 等. 碱性过硫酸钾消解-离子色谱法测定印染废水中总氮含量[J]. 印染, 2019, 45(18): 46−50. doi: 10.3321/j.issn.1000-4017.2019.18.010

    Liang J, Huang J, Han L J, et al. Determination of total nitrogen in dyeing effluents using alkaline potassium persulfate digestion-ion chromatography[J]. China Dyeing and Finishing, 2019, 45(18): 46−50. doi: 10.3321/j.issn.1000-4017.2019.18.010

    [19]

    刘冰, 刘金蓉, 王莹, 等. 双系统离子色谱法同时检测水中硫化物、氰化物、总磷和总氮[J]. 中国无机分析化学, 2023, 13(4): 349−355. doi: 10.3969/j.issn.2095-1035.2023.04.008

    Liu B, Liu J R, Wang Y, et al. Simultaneous determination of sulfide, cyanide, total phosphorus and total nitrogen in water by double-channel ion chromatography[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(4): 349−355. doi: 10.3969/j.issn.2095-1035.2023.04.008

    [20]

    杨雪. 离子色谱法测定地表水中总氮和总磷[J]. 理化检验(化学分册), 2015, 51(11): 1619−1620. doi: 10.11973/lhjy-hx201511033

    Yang X. Determination of total nitrogen and total phosphorus in surface water by ion chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(11): 1619−1620. doi: 10.11973/lhjy-hx201511033

    [21]

    Liu D, Xiong Y, Zeng H, et al. Deep UV-LED induced nitrate-to-nitrite conversion for total dissolved nitrogen determination in water samples through persulfate digestion and capillary electrophoresis[J]. Analytica Chimica Acta, 2023, 1278: 341743. doi: 10.1016/j.aca.2023.341743

    [22]

    王中荣, 魏福祥, 王盼盼, 等. 微顺序注射-镉柱还原分光光度法测定海水中总氮[J]. 分析化学, 2016, 44(9): 1328−1334. doi: 10.11895/j.issn.0253-3820.160162

    Wang Z R, Wei F X, Wang P P, et al. Determination of total nitrogen in seawater by micro sequential injection-cadmium column reduction spectrophotometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(9): 1328−1334. doi: 10.11895/j.issn.0253-3820.160162

    [23]

    王燕, 王艳洁, 赵仕兰, 等. 海水中溶解态总氮测定方法比对及影响因素分析[J]. 海洋环境科学, 2019, 38(4): 644−648. doi: 10.13634/j.cnki.mes.2019.04.025

    Wang Y, Wang Y J, Zhao S L, et al. Method comparison and analysis of influence factors for determination of dissolved total nitrogen in seawater[J]. Marine Environmental Science, 2019, 38(4): 644−648. doi: 10.13634/j.cnki.mes.2019.04.025

    [24]

    时旭, 朱林, 程果锋, 等. 碱性过硫酸钾氧化法-紫外分光光度法测定养殖海水中总氮量[J]. 理化检验(化学分册), 2016, 52(2): 192−195. doi: 10.11973/lhjy-hx201602016

    Shi X, Zhu L, Cheng G F, et al. Ultraviolet spectrophotometric determination of total nitrogen in aquacultural seawater with alkaline persulfate oxidation method[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(2): 192−195. doi: 10.11973/lhjy-hx201602016

    [25]

    祁文科, 刘冠军, 罗勇钢. 基于分光光度法的小型总氮自动分析仪设计[J]. 自动化仪表, 2021, 42(12): 15−18. doi: 10.16086/j.cnki.issn1000-0380.2021040018

    Qi W K, Liu G J, Luo Y G. Design of miniaturized total nitrogen automatic analyzer based on spectrophotometry[J]. Process Automation Instrumentation, 2021, 42(12): 15−18. doi: 10.16086/j.cnki.issn1000-0380.2021040018

    [26]

    薛会会, 黄娟, 张阿磊, 等. 紫外分光光度计法测定硝化纤维素含氮量[J]. 含能材料, 2024, 32(5): 537−544. doi: 10.11943/CJEM2023203

    Xue H H, Huang J, Zhang A L, et al. Determination of nitrogen content of nitrocellulose by ultraviolet spectrophotometer[J]. Chinese Journal of Energetic Materials, 2024, 32(5): 537−544. doi: 10.11943/CJEM2023203

    [27]

    Ferree M A, Shannon R D. Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples[J]. Water Research, 2001, 35(1): 327−332. doi: 10.1016/S0043-1354(00)00222-0

    [28]

    王静敏, 张景超, 张尊举. 二阶导数光谱法快速测定硝酸盐氮和亚硝酸盐氮[J]. 光谱学与光谱分析, 2019, 39(1): 161−165. doi: 10.3964/j.issn.1000-0593(2019)01-0161-05

    Wang J M, Zhang J C, Zhang Z J. Rapid determination of nitrate nitrogen and nitrite nitrogen by second derivative spectrophotometry[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 161−165. doi: 10.3964/j.issn.1000-0593(2019)01-0161-05

    [29]

    陈晓伟. 水体硝酸盐/COD紫外-可见吸收光谱数据定量分析方法研究[D]. 合肥: 中国科学技术大学, 2021: 46−50.

    Chen X W. Research on quantitative method of nitrate/COD in water based on UV-Vis absorption spectroscopy[D]. Hefei: University of Science and Technology of China, 2021: 46−50.

    [30]

    冯蕾, 陈锡芹, 程祖顺, 等. 二阶导数光谱法定量分析凝灰岩石粉对不同侧链长度聚羧酸减水剂吸附性[J]. 光谱学与光谱分析, 2019, 39(9): 2788−2793. doi: 10.3964/j.issn.1000-0593(2019)09-2788-06

    Feng L, Chen X Q, Cheng Z S, et al. Quantitative analysis for adsorption of polycarboxylate super-plasticizer with different side-chain length on tuff powder using second derivative spectrometry[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2788−2793. doi: 10.3964/j.issn.1000-0593(2019)09-2788-06

  • 加载中

(5)

(2)

计量
  • 文章访问数:  81
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2024-11-21
修回日期:  2025-01-13
录用日期:  2025-01-17
网络出版日期:  2025-02-07
刊出日期:  2025-05-30

目录