Discussion on Matrix Interference in Trace-Level Bromate Detection of Natural Mineral Water in Southwest China Karst Area
-
摘要:
溴酸盐作为天然矿泉水界限指标,具有潜在致癌风险,世界卫生组织与中国国家标准设置了严格浓度限值,仅为0.01mg/L。中国西南贵州岩溶区天然矿泉水中溴酸盐浓度通常为痕量级,但水化学环境背景复杂,使用离子色谱检测时极易因基质干扰导致无法准确定性、定量。本文通过逐一排除干扰离子的方法确定了硫酸盐为基质干扰主要因素,高浓度硫酸盐更易占据色谱柱中固定相点位,造成离子峰向前漂移及信号减弱。为实现痕量级溴酸盐准确检测提出三种检测方法:离子色谱-电导检测器法Ⅰ(IC-CDⅠ)采用可消除基质干扰的标准加入法;离子色谱-电导检测器法Ⅱ(IC-CDⅡ)创新使用Ba柱去除硫酸盐基质干扰;离子色谱-电感耦合等离子体质谱法(IC-ICP-MS)使用抗干扰性更强的质谱作检测器。结果表明,三种方法均能有效地消除高浓度硫酸盐基质干扰,IC-CDⅠ方法的相关系数为0.9993;IC-CDⅡ方法精密度(RSD)为0.42%~0.76%,加标回收率为94.5%~102.7%;IC-ICP-MS方法精密度(RSD)为0.31%~0.48%,加标回收率为95.9%~97.7%。并且,IC-CDⅡ与IC-ICP-MS方法定量限均低于《食品安全国家标准 饮用天然矿泉水检验方法》(GB 8538—2022)。当溴酸盐浓度低于10.0μg/L时,采用IC-CDⅡ与IC-ICP-MS方法;当溴酸盐浓度高于10.0μg/L时,三种方法均可采用。三种方法为存在高浓度硫酸盐基质干扰的天然矿泉水中痕量级溴酸盐的测定提供了思路和依据。
-
关键词:
- 溴酸盐 /
- 天然矿泉水 /
- 基质干扰 /
- 离子色谱法 /
- 离子色谱-电感耦合等离子体质谱法
Abstract:As a limitation of natural mineral water, bromate has potential carcinogenic risk. The World Health Organization and China National Standard have set a strict concentration limit of 0.01mg/L. The bromate in natural mineral water in the Guizhou karst area of southwest China is usually at trace levels while the chemical background of water is complex, which causes great difficulties using ion chromatography to detect the bromate due to matrix interference. Sulfate was determined as the factor of matrix interference by screening interference factors. High concentration sulfate readily occupied the stationary phase points of the chromatographic column, thus the peak of bromate was drifted and the signal response was reduced. In order to detect the trace-level bromate accurately, three detection methods were proposed: ion chromatography-conductivity detector method Ⅰ(IC-CDⅠ) used a standard addition method to eliminate matrix interference; ion chromatography-conductivity detector method Ⅱ (IC-CDⅡ) innovatively adopted Ba column to remove sulfate matrix interference; ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS) employed the anti-interference mass spectrometer as a detector. The results showed that the three methods could be used to effectively eliminate the matrix interference of high concentration sulfate. The correlation coefficient of method IC-CDⅠ was 0.9993. The RSD of method IC-CDⅡ was 0.42%−0.76% and the recovery rate was 94.5%−102.7%. The RSD of method IC-ICP-MS was 0.31%−0.48% and the recovery rate was 95.9%−97.7%. Moreover, the quantitative limits of method IC-CDⅡ and method IC-ICP-MS were lower than the China National Standard. When the concentration of bromate in water was lower than 10.0μg/L, method IC-CDⅡ and method IC-ICP-MS were preferred. When the concentration was higher than 10.0μg/L, the three methods could be optionally used. The three methods provide ideas and basis for the determination of trace-level bromate in natural mineral water with high concentration sulfate matrix interference.
-
-
表 1 用于消除高浓度硫酸盐基质干扰的三种检测方法
Table 1. Three detection methods for eliminating the matrix interference of sulfate with high concentration.
检测方法 检测器 溴酸盐定性、
定量方法样品前处理
方法方法适用范围 方法优缺点 离子色谱-电导检测器法Ⅰ (IC-CDⅠ) 电导检测器 标准加入法 无 受高浓度硫酸盐基质干扰且
溴酸盐浓度高于10.0μg/L的
水样仪器简便、普及性高,标准加入法能有效地增强溴酸盐信号响应并实现准确定性,但流程较繁琐,不利于大批量及低浓度溴酸盐检测 离子色谱-电导检测器法Ⅱ (IC-CDⅡ) 电导检测器 外标法 样品通过
Ba柱受高浓度硫酸盐基质干扰且
溴酸盐浓度低于10.0μg/L的
水样仪器简便、普及性高,前处理操作简单,有利于大批量样品的快速准确检测,但灵敏度不如IC-ICP-MS 离子色谱-电感耦合等离子体质谱法
(IC-ICP-MS)质谱检测器 外标法 无 受高浓度硫酸盐基质干扰且
溴酸盐浓度低于10.0μg/L的
水样选择性及灵敏度极高,适用于更低浓度
溴酸盐的科研分析,但仪器成本高、运行
维护复杂,普及性不如IC-CD表 2 贵州岩溶区天然矿泉水样(TXTZ-001)部分水质参数
Table 2. Partial water quality parameters of Guizhou karst area mineral water sample (No. TXTZ-001).
检测项目 质量浓度
(mg/L)检测项目 质量浓度
(mg/L)F− 0.59 K+ 2.27 Cl− 5.19 Ca2+ 145 $\mathrm{NO}_3^{-} $ -N1.28 Mg2+ 49.6 $\mathrm{SO}_4{ }^{2-} $ 243 $\mathrm{HCO}_3^{-} $ 331 表 3 外标法测定贵州岩溶区天然矿泉水样(TXTZ-001)和标准物质中溴酸盐
Table 3. The determination of bromate in Guizhou karst area mineral water sample (No. TXTZ-001) and standard substances by external standard method.
序号 TXTZ-001 BY1 BY2 保留时间
(min)测定浓度
(μg/L)加标回收率
(%)保留时间
(min)测定浓度
(μg/L)保留时间
(min)测定浓度
(μg/L)1 5.028 7.72 102.7 5.027 9.71 5.030 15.65 2 5.021 7.84 98.7 5.031 9.86 5.029 15.77 3 5.026 7.85 96.1 5.029 9.76 5.026 15.71 4 5.025 7.78 95.8 5.035 9.75 5.034 15.79 5 5.023 7.76 101.4 5.034 9.81 5.033 15.72 6 5.029 7.88 94.5 5.026 9.84 5.037 15.64 7 5.033 7.75 99.2 5.031 9.74 5.026 15.62 平均值 5.026 7.80 98.3 5.030 9.78 5.031 15.70 标准偏差 0.004 0.060 / 0.003 0.056 0.004 0.066 RSD(%) 0.08 0.76 / 0.07 0.57 0.08 0.42 标准参考值 / / / / 9.80 / 15.7 最大相对误差
(%)/ / / / 0.61 / 0.57 表 4 离子色谱-电感耦合等离子体质谱法测定贵州岩溶区天然矿泉水样(TXTZ-001)和标准物质中溴酸盐
Table 4. The determination of bromate in Guizhou karst area mineral water sample (No. TXTZ-001) and standard substances by IC-ICP-MS.
序号 溴酸盐质量浓度(μg/L) TXTZ-001 TXTZ-001
(过Ba柱)BY1 BY2 1 7.83 7.85 9.82 15.71 2 7.89 7.86 9.84 15.63 3 7.82 7.90 9.80 15.72 4 7.77 7.80 9.77 15.76 5 7.84 7.88 9.75 15.69 6 7.86 7.83 9.75 15.65 7 7.85 7.88 9.86 15.75 平均值 7.84 7.86 9.80 15.70 标准偏差 0.037 0.034 0.044 0.048 RSD(%) 0.48 0.43 0.45 0.31 标准参考值 / / 9.80 15.7 最大相对误差(%) / / 0.61 0.45 加标回收率(%) 97.7 95.9 / / 表 5 三种方法用于贵州岩溶区天然矿泉水样品中溴酸盐检测的对比
Table 5. Comparison of bromate detection in Guizhou karst area mineral water with three methods.
样品编号 硫酸盐
浓度
(mg/L)溴酸盐质量浓度(μg/L) 离子色谱-
电导检测器
(IC-CD)
法Ⅰ离子色谱-
电导检测器
(IC-CD)
法Ⅱ离子色谱-
电感耦合
等离子体
质谱法平均值 TXTZ-001 243 7.60 7.81 7.84 7.75 TXTZ-002 203 5.69 5.88 5.93 5.83 TXTZ-003 187 3.02 3.31 3.35 3.23 TXTZ-004 225 5.16 5.33 5.37 5.29 TXTZ-005 257 9.69 9.72 9.76 9.72 TXTZ-006 214 14.7 14.5 14.7 14.6 TXTZ-007 201 7.03 7.21 7.20 7.15 TXTZ-008 199 4.11 4.39 4.42 4.31 TXTZ-009 196 2.42 3.11 3.20 2.91 TXTZ-010 192 3.15 3.60 3.63 3.46 TXTZ-011 221 4.39 4.53 4.53 4.48 TXTZ-012 244 5.62 5.82 5.85 5.76 TXTZ-013 205 5.09 5.24 5.23 5.19 TXTZ-014 189 16.4 16.3 16.5 16.4 TXTZ-015 241 11.3 11.4 11.4 11.4 TXTZ-016 213 6.21 6.48 6.46 6.38 TXTZ-017 204 6.37 6.57 6.59 6.51 TXTZ-018 193 4.73 5.01 5.00 4.91 TXTZ-019 246 11.5 11.5 11.4 11.5 TXTZ-020 231 4.92 5.28 5.31 5.17 表 6 三种检测方法与国家标准方法的对比
Table 6. Comparison of three detection methods and national standard method.
样品检测方法 淋洗液体系 相关系数 定性及定量方法 定量限
(μg/L)《食品安全国家标准 饮用天然矿泉水检验方法》(GB 8538—2022) 氢氧根系统淋洗液 / 外标法 5.00 《食品安全国家标准 饮用天然矿泉水检验方法》(GB 8538—2022) 碳酸盐系统淋洗液 / 外标法 5.00 IC-CDⅠ 氢氧根系统淋洗液 0.9993 标准加入法 / IC-CDⅡ 氢氧根系统淋洗液 0.9997 外标法 3.00 IC-ICP-MS 氢氧根系统淋洗液 0.9998 外标法 2.00 -
[1] Morrison C M, Hogard S, Pearce R, et al. Critical review on bromate formation during ozonation and control options for its minimization[J]. Environmental Science & Technology, 2023, 57: 18393−18409. doi: 10.1021/acs.est.3c00538
[2] Zhang J, Li J J, Tang W J, et al. Highly efficient reduction of bromate by vacuum UV/sulfite system[J]. Chemosphere, 2024, 349: 140875. doi: 10.1016/j.chemosphere.2023.140875
[3] Phan K A, Lohwacharin J, Oguma K, et al. Bromate in drinking water: Occurrence and removal by ultraviolet/sulfite advanced reduction processes[J]. Chemical Engineering Journal, 2024, 490: 151759. doi: 10.1016/j.cej.2024.151759
[4] Joshi R, Ratpukdi T, et al. Bromate formation control by enhanced ozonation: A critical review[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(7): 1154−1198. doi: 10.1080/10643389.2020.1850169
[5] Liu L Y. Assessment of water resource security in karst area of Guizhou Province, China[J]. Scientific Reports, 2021, 11(1): 1−12. doi: 10.1038/s41598-021-87066-5
[6] 邹银先, 褚学伟, 刘埔, 等. 贵州喀斯特山区地下水化学特征分析[J]. 地质与资源, 2024, 33(6): 846−854, 860. doi: 10.13686/j.cnki.dzyzy.2024.06.013
Zou Y X, Chu X W, Liu P, et al. Hydrochemical characteristics of groundwater in karst mountainous areas of Guizhou Province[J]. Geology and Resources, 2024, 33(6): 846−854, 860. doi: 10.13686/j.cnki.dzyzy.2024.06.013
[7] 宋小庆, 彭钦, 王伟, 等. 贵州岩溶区浅层地下水氯化物及硫酸盐环境背景值[J]. 地球科学, 2019, 44(11): 3926−3938. doi: 10.3799/dqkx.2019.166
Song X Q, Peng Q, Wang W, et al. Analysis of environmental background values of chloride and sulfate in shallow groundwater in karst area of Guizhou[J]. Earth Science, 2019, 44(11): 3926−3938. doi: 10.3799/dqkx.2019.166
[8] 李晓波, 李明毅, 张学明, 等. 山东泰安市岩溶地下水系统硫酸盐溯源研究[J]. 岩矿测试, 2025, 44(3): 1−13. doi: 10.15898/j.ykcs.202409110187
Li X B, Li M Y, Zhang X M, et al. Study on sulfate traceability of karst groundwater system in Tai’an City, Shandong Province[J]. Rock and Mineral Analysis, 2025, 44(3): 1−13. doi: 10.15898/j.ykcs.202409110187
[9] 何守阳, 雷琨, 吴攀, 等. 贵州岩溶山区城镇化进程中地下水的资源功能评价[J]. 地球科学, 2019, 44(9): 2839−2850. doi: 10.3799/dqkx.2019.981
He S Y, Lei K, Wu P, et al. Evaluation on resources function of groundwater during urbanization in karst region of Guizhou Province[J]. Earth Science, 2019, 44(9): 2839−2850. doi: 10.3799/dqkx.2019.981
[10] 江峰, 吉勤克补子, 曹建文, 等. 黔中岩溶区地下水水化学来源特征及其影响因素[J]. 中国岩溶, 2024, 43(4): 889−899. doi: 10.11932/karst2024y028
Jiang F, Ji Q K B Z, Cao J W, et al. Source characteristics and influencing factors of groundwater hydrochemistry in the karst areas of central Guizhou[J]. Carsologica Sinica, 2024, 43(4): 889−899. doi: 10.11932/karst2024y028
[11] 薛智凤, 王高红, 尚卫, 等. 抑制型电导-离子色谱法测定地下水中碘化物[J]. 岩矿测试, 2023, 42(2): 338−345. doi: 10.15898/j.cnki.11-2131/td.202202240033
Xue Z F, Wang G H, Shang W, et al. Determination of iodide in groundwater by suppressed conductance-ion chromatography[J]. Rock and Mineral Analysis, 2023, 42(2): 338−345. doi: 10.15898/j.cnki.11-2131/td.202202240033
[12] Rybakova E V. Origins and formation of ion chromatography[J]. Journal of Analytical Chemistry, 2023, 78(8): 1105−1114. doi: 10.1134/S1061934823080130
[13] Zhu H B, Ruan Z, Wang H, et al. Trace determination of disinfection by-products in drinking water by cyclic ion chromatography with large-volume direct injection[J]. RSC Advances, 2023, 13: 21550−21557. doi: 10.1039/d3ra02471g
[14] Kim J, Sul H, Song J M, et al. Determination of trace bromate in various water samples by direct-injection ion chromatography and UV/Visible detection using post-column reaction with triiodide[J]. Analytical Science and Technology, 2020, 33(1): 42−48. doi: 10.5806/AST.2020.33.1.42
[15] Ye M L, Nesterenko P N, Lu Y, et al. Determination of trace bromate in drinking water with high chloride matrix by cyclic ion chromatography[J]. Journal of Chromatographic Science, 2021, 59(3): 217−222. doi: 10.1093/chromsci/bmaa095
[16] 宋辛祎, 许春雪, 安子怡, 等. 天然水样品中碘化物分析方法探讨[J]. 岩矿测试, 2023, 42(3): 587−597. doi: 10.15898/j.ykcs.202211230224
Song X Y, Xu C X, An Z Y, et al. Discussion on the analysis method of iodide in natural water samples[J]. Rock and Mineral Analysis, 2023, 42(3): 587−597. doi: 10.15898/j.ykcs.202211230224
[17] Aleksei S, Yannick P S, Winter M, et al. Determination of polysulfide anions and molecular sulfur via coupling HPLC with ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2024, 39(10): 2480−2487. doi: 10.1039/d4ja00231h
[18] Zhang X, Saini C, Pohl C, et al. Fast determination of nine haloacetic acids, bromate and dalapon in drinking water samples using ion chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2020, 1621: 461052. doi: 10.1016/j.chroma.2020.461052
[19] Cheng S, Liu H L, Zuo Y T, et al. Rapid bromate determination using short-column ion chromatography-mass spectrometry: Application to bromate quanti-fication during ozonation[J]. Journal of Environmental Chemical Engineering, 2024, 12(6): 114361. doi: 10.1016/j.jece.2024.114361
[20] Otto S, May B, Schweiggert R. Comparison of ion chromatography conductivity detection (IC-CD) and ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS) for the determination of phosphonic acid in grapevine plant parts, wine, and soil[J]. Journal of Agricultural and Food Chemistry, 2022, 70(33): 10349−10358. doi: 10.1021/acs.jafc.2c02782
[21] 易雨欣, 金米聪. 离子色谱-质谱联用技术在生命健康领域中的应用进展[J]. 色谱, 2024, 42(10): 923−934. doi: 10.3724/SP.J.1123.2023.11001
Yi Y X, Jing M C. Advances in the application of ion chromatography-mass spectrometry in the fields of life and health[J]. Chinese Journal of Chromatography, 2024, 42(10): 923−934. doi: 10.3724/SP.J.1123.2023.11001
[22] Zatirakha A V, Smolenkov A D, Shpigun O A. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review[J]. Analytica Chimica Acta, 2016, 904: 33−50. doi: 10.1016/j.aca.2015.11.012
[23] Liu X, Wang Y, Cong H, et al. A review of the design of packing materials for ion chromatography[J]. Journal of Chromatography A, 2021, 1653: 462313. doi: 10.1016/j.chroma.2021.462313
[24] Yu X R, Lei X J, Zhu Y, et al. Dendrimer-functionalized hydrothermal nanosized carbonaceous spheres as superior anion exchangers for ion chromatographic separation[J]. Microchimica Acta, 2022, 189(6): 1−11. doi: 10.1007/s00604-022-05324-3
-