-
摘要:
海底冷泉从发现到现在已经近40年,主要发生在大陆边缘及边缘海盆地。海底冷泉的地球物理探测、地球化学研究、地质现象等提供了冷泉的寻找标志。在研究海底冷泉的过程中,一般从地球物理探测、海洋原位探测、生物地球化学和生物标志化合物等角度去研究冷泉的形成过程及环境,这些研究巩固并扩展了冷泉的寻找标志。对于沉积物中的元素,采用主成分因子分析法判断物质来源和分布,为分析冷泉的产物时提供了一个宏观背景。重点比较了我国近海的7个冷泉区域,并从冷泉碳酸盐岩和生物群落两方面对全球3种代表性的地质背景下的冷泉区域做了比较。通过比较指出了冷泉研究存在的问题和未来的研究方向。
Abstract:It is almost 40 years since the first seabed cold seep was discovered. Cold seeps mainly occur on the edge of continental margins and marginal-sea basins. The geophysical, geochemical and geological characteristics of submarine cold seeps are of great significance to the understanding of cold seeps. Geophysical and biogeochemical indicators, biomarker compounds and in-situ monitoring are important to the study of the forming mechanism and environments of cold seeps. As far as the elements of sediments are concerned, major component may contribute to the discrimination of source materials and provide a background for study of cold seeps. A total of 7 cold seep areas from China and 3 areas abroad are selected for comparison of authigenic carbonates and their biocenosis. Discussion is made on future tasks in cold seep studies.
-
Key words:
- cold seep /
- methane /
- biocenosis /
- authigenic carbonates /
- in-situ monitoring
-
-
表 1 海底冷泉主要特征简表
Table 1. The main characteristics of seabed seeps
类别 特征 地质现象 冷泉碳酸盐岩:冷泉渗漏的产物,通常结壳状、结核状、烟囱状、角砾状、块状等, 主要主要为镁方解石、白云石和文石,但常是以单一矿物为主; 泥底辟:深部气源向上运移的良好通道,使气体能在合适的温压下成矿,例如天然气水合物; 泥火山:泥底辟顶部直接挤出海底,流体沿底辟体向上运移形成的地质体,在冷泉区域较常见; 麻坑:流体排放形成的海底凹陷,往往与深部气体逸散有关; 生物礁:与浅层气或冷泉存在有关的似珊瑚的岩群[2] 海底滑坡:一些是因为冷泉渗漏或天然气水合物分解造成陆坡失稳,进而滑坡,造成较大的空间; 深水珊瑚礁:石化冷泉口, 经常与碳酸盐丘共存[2] 水合物脊:冷泉渗漏区,在该区域广泛发育天然气水合物。 地球物理 BSR:判断天然气水合物的重要标志,但是可以作为冷泉的气源的一个参考; 空白带:数字地震数据反映的大幅度负相带; 声学噪音 指示气体存在的不规则地震反射结构; 地球物理测井:气测异常、电阻率增高、低自然电位、密度降低、声波时差降低、中字孔隙度增大、介电常差异、自然伽马曲线降低或者无明显变化、地层微电阻率扫描所反映的一些地质异常等都可以作为参考; 多波束回声探测深度和背散射数据:指示冷泉区动物群[27]。 地球化学 冷泉碳酸盐岩:δ13C一般在-60‰~-5‰之间,而δ18O范围是-2‰~7‰,但通常表现为正值; 孔隙水中Cl-、SO42-的浓度异常低,孔隙水中δ18O异常和沉积物CH4异常,可以作为辅助判断; 自生黄铁矿、菱铁矿、石膏、重晶石等都是冷泉碳酸盐岩常见矿物;其中黄铁矿常以长管状和草莓状集合体出现,具有极低δ13C值,重晶石呈多孔或烟囱状产出。 冷泉生物 初级生产者:甲烷氧化菌、硫酸盐还原菌和共生的甲烷氧化菌、硫酸盐还原菌; 一级消费者:主要包括菌席(橘黄色,生活在富氧水体沉积物界面附近)和深海双壳类(贻贝类和蛤类)及蠕虫(管状群蠕虫和冰蠕虫)多毛类动物以及海星、海胆、海虾等,其中管状蠕虫只出现在冷泉流速较低的环境; 二级消费者:鱼、螃蟹、扁形虫、冷水珊瑚等; 底栖有孔虫:其碳酸盐壳体碳同位素可作为指示冷泉甲烷通量变化的潜在指标[28]。 表 2 我国海底冷泉区域特征
Table 2. The regional characteristics of seabed cold seep in China
分布
海域冷泉碳酸盐岩 生物
特征其他描述 区域代表性岩石和矿物 资料来源 神狐海域 灰色烟囱状、锥柱状或富含生物屑的块状,自生矿物主要为铁白云石、高镁方解石、文石少量菱铁矿,δ13C值-40.4‰~-38.7‰,δ18O值3.8‰~4.3‰ 双壳类、珊瑚、管状蠕虫 浅层具备较厚的水合物稳定域,深部发育较厚的优质烃源岩;神狐海区同时存在甲烷缺氧氧化古细菌相关和硫酸盐还原细菌相关的两大类生物标志化合物,化合物具有强烈亏损的δ13C值和冷泉碳酸盐中极负的δ13C值表明其碳源为甲烷的生物成因以及该区曾发生过强烈持续的富甲烷流体释放活动;冷泉具有多期多次活动特征 葛璐等[59]
陆红锋等[60]
佟宏鹏等[61]西沙海槽 碳酸盐结壳具有多孔结构,冷泉矿物为文石和重晶石,文石呈针状,重晶石呈矮柱状;δ13C值为-13.30 ‰~-29.59‰, δ18 O值为2. 32‰~3.74‰。 菌席、双壳类 冷泉碳酸盐岩的δ13C值表明其碳源主要为甲烷的热解成因,但也存在少量浅部生物成因;沉积物烃类气体(甲烷和乙烷)来源比南沙丰富;SMI界面相对较浅 佟宏鹏等[61]
孙春岩
等[62, 63]南沙海槽 冷泉碳酸盐岩主要伴生矿物为草莓状的黄铁矿,多孔状石膏; 无资料 海底下数米内甲烷浓度增加上千倍;沉积物中的甲烷含量异常;陡的SO42-梯度、SM I较浅和甲烷含量快速增加 陈忠等[64]
陈忠等[65]冲绳
海槽矿物主要是文石、白云石和高镁方解石.大多数样品只含单一碳酸盐矿物。主要发现自生黄铁矿,其硫同位素呈现正异常。δ13C值为-36.19 ‰~-53.74‰, δ18O值为0.63‰~3.41‰ 无资料 发育泥火山、泥底辟,为地层中超高压气体及低密度流体向上迁移的有效通道,随着深度增加急剧亏损的硫酸盐浓度、强烈增加的甲烷浓度、显著增加的TA浓度和硫化氢浓度,以及孔隙水异常所指示的甲烷渗漏 栾锡武等[66]
李清等[67]
王蒙等[68]
朱志敏等[69]
Sun等[70]台西南海域 烟囱,结壳状,灰白色—灰黑色,主要由方解石、文石,黄铁矿,少量白云石,δ13C值-57.6‰~-35.7‰,δ18O值2.4‰~7. 5‰ 菌席、贻贝类、蛤类、管状虫、多毛蟹和虾等 泥火山、泥底辟、麻坑较发育,已在5个站位发现冷泉碳酸盐岩,主要是高镁方解石,其碳源主要为甲烷的生物成因,并且流体富含18O,沉积物中烃类气体以甲烷为主,个别出现少量乙烷 陈忠等[2]
佟宏鹏等[61]东沙群岛东北海域 半固结的不规则结壳状、多孔状、烟囱状,主要以高镁方解石,文石为主,少量铁白云石、白云石、菱铁矿;δ13C均值-61.4‰~-33‰,δ18O值1.4‰~5.3‰ 菌席、管状蠕虫、双壳类腹足、珊瑚 已在19个站位采集到冷泉碳酸盐岩样品分布在九龙甲烷礁及其附近海域、深水区和一些零散分布的站位;发育巨大面积的冷泉碳酸盐岩,泥底辟发育;含有碳酸盐岩中含丰富的AOM生物标志化合物和强烈的13C亏损;碳酸盐岩发育区曾发生过强烈、持续的CH4流体活动,碳酸盐岩的碳源主要为甲烷的生物成因 于晓果等[11]
陆红锋等[60]
佟宏鹏等[61]
Han等[71]东沙群岛西南海域 角砾状、球状、椭球状、烟囱状、胶结块。含铁白云石、菱铁矿,少量文石、方解石等, δ13C均值-36.1‰~-18.2‰,δ18O值0.4‰~3.6‰ 冷水珊瑚,管状蠕虫 冷泉碳酸盐岩大致在水深470~650 m海底表层,附生底栖有孔虫D.semiungulata在东沙西南区域大量出现,并且其活体底栖有孔虫的碳同位素与相同水深控制站位相比明显负偏,指示该地区可能存在冷泉活动;冷泉碳酸盐岩进一步研究表明其碳源为甲烷的生物成因的可能性大,但也有部分是热解成因的,该海域存在至少3次较大的冷泉流体活动, 形成了不同期次的碳酸盐沉积;∑REE值高于其他海域 Wang等[72]
向荣等[55]
Tryon等
佟宏鹏等[61]
陈忠等[73]表 3 典型地质背景下冷泉区域的特征
Table 3. The regional characteristics of cold seep from typical geological background
分布区域 地址背景 沉积产物 其他特征 区域代表性岩石和矿物 资料来源 墨西哥湾布什海山 被动大陆边缘 冷泉碳酸盐岩呈固结或半固结的结壳,几乎全部由文石组成,仅含少量的方解石和白云石;草莓状黄铁矿 生物碎屑主要由双壳类、管状蠕虫和有孔虫组成,生物碎屑保存较好,表明其为原地生长;Ce负异常或正异常,无异常表明其形成为氧化或还原环境;碳酸盐岩碳的来源主要是非甲烷的碳烃化合物 邸鹏飞等[79] 中国南海 边缘海盆地 冷泉碳酸盐岩普遍发育烟囱状、结壳状,还会出现球状、多孔状;以文石、方解石为主,主要伴生矿物有黄铁矿、菱铁矿 冷泉生物有菌席、贻贝类、蛤类、双壳类,冷水珊瑚等;碳酸盐岩碳的来源主要是甲烷的生物成因;部分地区是热解成因或者混合成因 于晓果[11]
陆红锋[60]
佟宏鹏等[61]
Han等[71] -
[1] 陈多福, 陈先沛, 陈光谦.冷泉流体沉积碳酸盐岩的地质地球化学特征[J].沉积学报, 2002, 20(1):34-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200201007
[2] 陈忠, 杨华平, 黄奇瑜.海底甲烷冷泉特征与冷泉生态系统的群落结构[J].热带海洋学报, 2007, 26(6):73-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy200706013
[3] 陶军, 陈宗恒. "海马"号无人遥控潜水器的研制与应用[J].工程研究-跨学科视野中的工程, 2016, 8(2):185-191. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcyj201602007
[4] Aloisi G, Wallmann K, Haese R R, et al. Chemical, biological and hydrological controls on the 14C content of cold seep carbonate crusts: numerical modeling and implications for convection at cold seeps[J]. Chemical Geology, 2004, 213(4):359-383. doi: 10.1016/j.chemgeo.2004.07.008
[5] Torres M E, Wallmann K, Tréhu A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226:225-241. doi: 10.1016/j.epsl.2004.07.029
[6] Klaucke I, Sahling H, Weinrebe W, et al. Acoustic investigation of cold seeps offshore Georgia, eastern Black Sea[J]. Marine Geology, 2006, 231(1-4):51-67. doi: 10.1016/j.margeo.2006.05.011
[7] Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments[J]. Marine Geology, 2007, 241(1-4):93-109. doi: 10.1016/j.margeo.2007.03.007
[8] Duperron S, Sibuet M, MacGregor B J, et al. Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico[J]. Environmental microbiology, 2007, 9(6):1423-1438. doi: 10.1111/j.1462-2920.2007.01259.x
[9] Han X, Suess E, Huang Y, et al. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249(3-4):243-256. doi: 10.1016/j.margeo.2007.11.012
[10] Niemann H E M. Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate[J]. Org Geochem, 2008, 39:1668-1677. doi: 10.1016/j.orggeochem.2007.11.003
[11] 邸鹏飞, 冯东, 高立宝.海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J].地球物理学进展, 2008, 23(5):1592-1602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200805036
[12] 于晓果, 韩喜球, 李宏亮.南海东沙东北部甲烷缺氧氧化作用的生物标志化合物及其碳同位素组成[J].海洋学报. 2008, 30(3):77-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyxb200803010
[13] Bayon G, Henderson G M, Bohn M. U-Th stratigraphy of a cold seep carbonate crust[J]. Chemical Geology, 2009, 260(1-2):47-56. doi: 10.1016/j.chemgeo.2008.11.020
[14] Yang T, Jiang S, Ge L, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J]. Chinese Science Bulletin, 2009, 55(8):752-760. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXTW201008014.htm
[15] Carlier A, Ritt B, Rodrigues C F, et al. Heterogeneous energetic pathways and carbon sources on deep eastern Mediterranean cold seep communities[J]. Marine Biology, 2010, 157(11):2545-2565. doi: 10.1007/s00227-010-1518-1
[16] Kiel S.On the potential generality of depth-related ecologic structure in cold-seep communities: Evidence from Cenozoic and Mesozoic examples[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295(1-2):245-257. doi: 10.1016/j.palaeo.2010.05.042
[17] Law C S, Nodder S D, Mountjoy J J, et al. Geological, hydrodynamic and biogeochemical variability of a New Zealand deep-water methane cold seep during an integrated three-year time-series study[J]. Marine Geology, 2010, 272(1-4):189-208. doi: 10.1016/j.margeo.2009.06.018
[18] Klaucke I, Weinrebe W, Linke P, et al. Sidescan sonar imagery of widespread fossil and active cold seeps along the central Chilean continental margin[J]. Geo-Marine Letters, 2012, 32(5-6):489-499. doi: 10.1007/s00367-012-0283-1
[19] Li C, Liu X, Gou L, et al. Numerical simulation of bubble plumes in overlying water of gas hydrate in the cold seepage active region[J]. Science China Earth Sciences, 2012, 56(4):579-587. https://www.scientific.net/AMR.1010-1012.1719
[20] Brown G Jr, Sleeper K, Johnson M W, et al. Mercury concentrations, speciation, and isotopic composition in sediment from a cold seep in the northern Gulf of Mexico[J]. Marine Pollution Bulletin, 2013, 77(1-2):308-314. doi: 10.1016/j.marpolbul.2013.09.030
[21] Krabbenhoeft A, Bialas J, Klaucke I, et al. Patterns of subsurface fluid-flow at cold seeps: The Hikurangi Margin, offshore New Zealand[J]. Marine and Petroleum Geology, 2013, 39(1):59-73. doi: 10.1016/j.marpetgeo.2012.09.008
[22] Dumke I, Klaucke I, Berndt C, et al. Sidescan backscatter variations of cold seeps on the Hikurangi Margin (New Zealand): indications for different stages in seep development[J]. Geo-Marine Letters, 2014, 34(2-3):169-184. doi: 10.1007/s00367-014-0361-7
[23] Lemaitre N, Bayon G, Ondréas H, et al. Trace element behaviour at cold seeps and the potential export of dissolved iron to the ocean[J]. Earth and Planetary Science Letters, 2014, 404:376-388. doi: 10.1016/j.epsl.2014.08.014
[24] Rubin-Blum M, Shemesh E, Goodman-Tchernov B, et al. Cold seep biogenic carbonate crust in the Levantine basin is inhabited by burrowing Phascolosoma aff. turnerae, a sipunculan worm hosting a distinctive microbiota[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 90:17-26. doi: 10.1016/j.dsr.2014.04.014
[25] 卞友艳, 陈多福.海底冷泉环境中的白云石(岩)研究现状[J].矿物岩石地球化学通报, 2014, 33(2):238-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201402014
[26] 樊栓狮, 关进安, 梁德青.天然气水合物动态成藏理论[J].天然气科学, 2007, 18(6):819-826. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx200706009
[27] Arunima Sen, Hélène Ondréas. The use of multibeam backscatter and bathymetry as a means of identifying faunal assemblages in a deep-sea cold seep[J]. Deep-Sea Research I, 2016 (110) : 33-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ccb5e55a4790cb25dc968549bba7ac5a
[28] 向荣, 刘芳, 陈忠, 等.冷泉区底栖有孔虫研究进展[J].地球科学进展. 2010, 25(2):193-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201002009
[29] 宋海斌刘伯然.利用地震海洋学方法探测海底冷泉[J].中国地球物理学会第二十八届年会论文集, 2012, 26:730.
[30] 刘伯然, 宋海斌, 关永贤.南海东北部陆坡冷泉系统的浅地层剖面特征与分析[J].地球物理学报, 2015, 58(1):247-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201501022
[31] 徐翠玲.南海冷泉区甲烷渗漏过程的原位观测研究[D].青岛: 中国海洋大学, 2013: 1-70.
[32] Greinert J, Nützel B. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps[J]. Geo-Marine Letters, 2004, 24(2):75-85. doi: 10.1007/s00367-003-0165-7
[33] Leifer I B J. Turbine tent measurements of marine hydrocarbon seeps on subhourly timescales[J]. Journal of Geophysical Research: Oceans, 2005, 110(C1):1978-2012. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2003JC002207
[34] Roberts H A P. Hydrocarbon-derived carbonate buildups of the northern GulfofMexico continental slope: a review of submersible investigations[J]. Geo-Marine Letters, 1994(14):135-149. https://link.springer.com/article/10.1007%2FBF01203725
[35] Leifer I. Characteristics and scaling of bubble plumes from marine hydrocarbon seepage in the Coal Oil Point seep field[J]. Journal of Geophysical Research: Oceans, 2010, 115(C11):1978-2012. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2009JC005844
[36] Salmi M S JHP, Leifer I, et al. Behavior of methane seep bubbles over a pockmark on the Cascadia continental margin[J]. Geosphere, 2011, 7(6):1273-1283. doi: 10.1130/GES00648.1
[37] 张鑫.深海环境及深海沉积物拉曼光谱原位定量探测技术研究[D].青岛: 中国海洋大学, 2009: 86-88.
[38] 张鑫.海洋环境观测技术的一些最新研究进展和思考[C]//第一届海底观测科学大会会议及摘要集.2012: 46.
[39] 赵广涛, 于新生, 李欣, 等.一个深海海底边界层原位监测技术[C]//第一届海底观测科学大会会议及摘要集.2012: 60-61.
[40] 梁康康, 童怀, 徐明亚.深海机器人专用热流探针设计[J].传感器与微系统, 2014, 33(9):62-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cgqjs201409019
[41] 龙建军, 黄为, 邹大鹏.海底天然气渗漏流量声学测量方法及初步实验研究[J].热带海洋学报, 2012, 31(5):100-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy201205017
[42] 杨涛, 蒋少涌, 葛璐.南海北部陆坡西沙海槽XS-01站位沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J].第四纪研究, 2006, 26(3):442-448. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200603017
[43] 王淑红, 颜文, 陈忠.海底冷泉系统中的钙同位素示踪研究进展[J].现代地质, 2010, 24(3):589-597. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201003025
[44] 卞友艳, 林治家, 冯东.冷泉碳酸盐岩的稀土元素地球化学特征及氧化还原条件示踪[J].热带海洋学报, 2012, 31(5):37-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy201205008
[45] Feng D, Chen D F. Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity[J]. Deep-Sea Research II, 2015, 2(3):1-11. https://www.sciencedirect.com/science/article/abs/pii/S0967064515000314
[46] Han X Q, Suess E, Huang Y Y, et al. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249: 243-256. doi: 10.1016/j.margeo.2007.11.012
[47] 冯东, 陈多福, 苏正.海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征[J].现代地质, 2005, 19(1):26-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200501004
[48] 陆红峰, 孙晓明, 张美.南海天然气水合物沉积物矿物学和地球化学[M].科学出版社.2011:178-179.
[49] 陆红峰, 孙晓明, 张美.南海天然气水合物沉积物矿物学和地球化学[M].科学出版社.2011:35-47.
[50] Hoehler T M, Alperlin M J, Albert D B, et al. Martens, Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen- sulfate reducer consortium[J]. Global Biogeochem Cycles, 1994, 8:451-454. doi: 10.1029/94GB01800 https://agupubs.onlinelibrary.wiley.com/doi/10.1029/94GB01800
[51] Michaelis W S R, Nauhaus K. Mi-crobial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297:1013-1016. doi: 10.1126/science.1072502
[52] Gibson R N, Atkinson R J A, Gordon J D M, et al. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes[J]. Oceanography and Marine Biology Annual Review, 2005, 43:1-46. http://levin.ucsd.edu/publications/Levin%20OMBAR%2005.pdf
[53] Tryon M D, Brown K M. Complex flow patterns through Hydrate Ridge and their impact on seep biota[J]. Geophysical Research Letters, 2001, 28(14):2863-2866. doi: 10.1029/2000GL012566
[54] 张茜.南海北部陆坡地区晚更新世深海冷泉双壳类动物群落及其生态环境的讨论[D].中国地质大学(北京), 2007.
[55] 向荣, 方力, 陈忠.东沙西南海域表层底栖有孔虫碳同位素对冷泉活动的指示[J].海洋地质与第四纪地质, 2012, 32(4):17-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201204003
[56] 丁玲, 赵美训.生物标志物及其碳同位素在冷泉区生物地球化研究中的应用[J].海洋地质与第四纪地质, 2010, 30(2):133-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201002017
[57] Niemann H, Duarte J, Hensen C, et al. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz[J]. Geochimica et Cosmochimica Acta, 2006, 70(21):5336-5355. doi: 10.1016/j.gca.2006.08.010
[58] Niemann H, Elvert M. Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate[J]. Organic Geochemistry, 2008, 39(12):1668-1677. doi: 10.1016/j.orggeochem.2007.11.003
[59] 葛璐, 蒋少涌, 杨涛.南海北部神狐海域冷泉碳酸盐烟囱的甘油醚类生物标志化合物及其碳同位素组成[J].中国科学, 2011, 56(14):1124-1131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201114009
[60] 陆红锋, 陈芳, 刘坚.南海北部神狐海区的自生碳酸盐岩烟囱—海底富烃流体活动的记录[J].地质论评, 2006, 52(3):352-357. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200603016
[61] 佟宏鹏, 冯东, 陈多福.南海北部冷泉碳酸盐岩的矿物、岩石及地球化学研究进展[J].热带海洋学报, 2012, 31(5):45-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy201205009
[62] 孙春岩, 王宏语, 牛滨华, 等.西沙海槽研究区天然气水合物地球化学勘探[J].地球科学-中国地质大学学报, 2004, 29(2):135-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200402002
[63] 孙春岩, 牛滨华, 王宏语.西沙海槽研究区天然气水合物地球化勘探及成藏模式研究[J].地球科学, 2005, 12(1):243-251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200501033
[64] 陈忠, 颜文, 黄奇瑜.南沙海槽潜在天然气水合物的地质环境及其指标特征[J].地学前缘, 2007, 14(6):299-308. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200706037
[65] 陈忠, 颜文, 陈木宏.南沙海槽表层沉积自生石膏-黄铁矿组合的成因及其对天然气渗漏的指示意义[J].海洋地质与第四纪地质, 2007, 27(2):91-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200702013
[66] 栾锡武, 秦蕴珊.冲绳海槽宫古段西部槽底海底气泉的发现[J].科学通报, 2005, 50(8):802-810. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200508014
[67] 李清, 蔡峰, 梁杰, 等.东海冲绳海槽西部陆坡甲烷渗漏发育的孔隙水地球化学证据[J].中国科学:地球科学, 2015(5). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201505012
[68] Wang M, Cai F, Li Q, et al. Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at Core A, Site 79 of the middle Okinawa Trough[J]. Science China Earth Sciences, 2015, 58(12):2145-2153. doi: 10.1007/s11430-015-5196-1
[69] 朱志敏, 杨克红.冲绳海槽北部冷泉碳酸盐岩对海底天然气渗漏活动的指示[J].矿物学报, 2015(s1). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9132434
[70] Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea[J]. Deep-Sea Research I, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005
[71] Han X, Yang K, Huang Y. Origin and nature of cold seep in northeastern Dongsha area, South China Sea: Evidence from chimney-like seep carbonates[J]. Chinese Science Bulletin, 2013, 58(30):3689-3697. doi: 10.1007/s11434-013-5819-x
[72] Wang S, Yan W, Chen Z, et al. Rare earth elements in cold seep carbonates from the southwestern Dongsha area, northern South China Sea[J]. Marine and Petroleum Geology, 2014, 57:482-493. doi: 10.1016/j.marpetgeo.2014.06.017
[73] 陈忠, 杨华平, 黄奇瑜.南海东沙西南海域冷泉碳酸盐岩特征及其意义[J].现代地质, 2008, 22(3):382-389. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200803006
[74] 王影, 龚定康.东海冲绳海槽天然气水合物地震资料处理方法研究[J].海洋石油, 2007, 27(1):14-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hysy200701003
[75] 栾锡武, 赵孙.鄂霍次克海天然气水合物成藏条件分析[J].海洋地质与第四纪地质, 2006, 26(6):92-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200606012
[76] 栾锡武, 赵克斌, Obzhirov A, 等.鄂霍次克海浅表层天然气水合物的勘查识别和基本特征[J].中国科学:地球科学, 2008(1):99-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200801011
[77] 栾锡武, 岳保静, AOzibhrv.浅表层天然气水合物区的海底地形特征-以鄂霍次克海为例[J].现代地质, 2008, 22(3):420-429.
[78] Batang Z B, Papathanassiou E, Al-Suwailem A, et al. First discovery of a cold seep on the continental margin of the central Red Sea[M]//Europe and the Recognition of New States in Yugoslavia. Cambridge: Cambridge University Press, 2007: 247-253.
[79] 邸鹏飞, 冯东, 陈多福.墨西哥湾布什山冷泉碳酸盐岩沉积岩石学及地球化学[J].海洋地质与第四纪地质, 2009, 29(2):48-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200902007
[80] Yu X G, Li J, GONG J M. Stable carbon and nitrogen isotopic composition of gas hydrate-bearing sediment from Hydrate Ridge, Cascadia Margin[J]. Science in China: Series D Earth Sciences, 2006, 49(8):872-880. doi: 10.1007/s11430-006-0872-9
[81] Bohrmann G, Greinert J, Suess E, et al. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability [J]. Geology, 1998, 26(7): 647-650. doi: 10.1130/0091-7613(1998)026<0647:ACFTCS>2.3.CO;2
-