PORE WATER GEOCHEMISTRY IN SHALLOW SEDIMENTS FROM SOUTHEASTERN SHENHU AREA OF NORTHERN SOUTH CHINA SEA AND THEIR IMPLICATIONS FOR GAS HYDRATE OCCURRENCE
-
摘要:
SH-CL13、SH-CL16与SH-CL17站位位于南海北部神狐东南海域BSR发育区内。地球化学分析结果显示,SH-CL16与SH-CL17柱状样孔隙水中的氯离子(Cl-)浓度及氢同位素(δD)值分别随深度明显降低和升高,指示下伏沉积物可能发育水合物。3个站位的浅表层沉积物甲烷通量很低,甲烷通量的大小控制了SMI的深浅和硫酸盐通量。孔隙水SO42-浓度变化趋势及δ13CDIC值表明,在浅表层沉积物中硫酸盐消耗均由有机质硫酸盐还原作用(OSR)所控制,甲烷缺氧氧化作用(AOM)发生在较深的层位。综合地球化学和地球物理研究成果,3个站位位于水合物有利发育区内,由此推测神狐东南海域可能发育扩散型水合物,具有良好的水合物勘探前景。
Abstract:Proper conditions occur in the southeastern Shenhu area of northern South China Sea for gas hydrate accumulation.The geophysical signature of gas hydrate, i.e.the bottom simulating reflector (BSR), has been discovered.Site SH-CL13, SH-CL16 and SH-CL17 are within the area of BSR.Cl-concentrations and δD values of pore water samples from gravity-piston cores of SH-CL16 and SH-CL17 significantly decrease and increase with depth, respectively, which suggests gas hydrate accumulation underneath.The contents of methane in headspace gas samples from the three sites vary between 10.0 and 37.7 μL/kg, indicating very low methane fluxes in shallow sediments.The depths of sulfate-methane interface (SMI) are between 28.5 and 39.5 m, and sulfate (or methane) fluxes change between 3.6 and 5.9 mmol·m-2·a-1.As we know, the depth of SMI and sulfate fluxes are constrained by methane fluxes.The trend of SO42- variations and δ13CDIC values of pore water indicates that consumption of sulfate is dominated by organoclastic sulfate reduction (OSR) in shallow sediments and anaerobic oxidation of methane (AOM) occurs in relatively deep layers.In summary, the three sites are within the potential areas of gas hydrate occurrence.
-
Key words:
- pore water /
- geochemistry /
- gas hydrate /
- southeastern Shenhu area /
- northern South China Sea
-
-
表 1 SH-CL13、SH-CL16与SH-CL17站位孔隙水阴阳离子、微量元素浓度及碳、氢、氧同位素值分布特征
Table 1. Anion and cation concentrations, trace elements and δ13CDIC, δD, δ18O values of pore water from site SH-CL13, SH-CL16 and SH-CL17
深度/mbsf Cl- /(mmol/L) SO42- /(mmol/L) Na+ /(mmol/L) K+ /(mmol/L) Ca2+ /(mmol/L) Mg2+ /(mmol/L) Sr2+ /(μmol/L) Mo /(nmol/L) PO43- /(μmol/L) NH4+ /(μmol/L) DIC /(mmol/L) δ13CDIC /‰ δD /‰ δ18O /‰ CH4 /(μL/kg) SH-CL13 0.55 545 27.5 479 12.4 12.2 53.2 86.4 179.2 16.8 81.6 3.7 -5.1 2.3 0.6 10.2 1.15 535 26.8 473 12.3 10.2 53.4 92.6 333.3 26.2 129.4 4.0 -6.6 2.2 0.7 17.5 1.75 534 26.5 506 12.9 10.6 56.5 91.5 122.9 27.2 169.2 4.8 -7.9 1.4 0.2 18.0 2.35 553 26.1 497 12.8 10.7 55.3 86.8 87.1 27.6 224.9 5.1 -8.9 3.5 0.2 19.1 2.95 535 25.0 491 12.7 9.8 54.3 90.5 101.5 29.3 359.2 5.9 -9.6 5 0.1 18.4 3.55 541 24.8 492 12.7 10.0 55.0 89.3 122.9 29.5 265.7 6.3 -10.1 2 0.3 19.1 4.15 536 24.6 488 12.5 9.5 54.3 89.9 75.6 31.2 408.9 7.8 -10.4 1.7 0.3 18.7 4.75 538 24.0 465 11.6 9.0 50.5 92.9 75.1 32.1 361.2 7.0 -10.7 1.3 0.2 17.8 5.35 521 22.9 461 11.9 8.6 50.4 91.7 64.2 30.7 375.1 7.5 -11.0 2 0.5 20.2 5.95 543 23.3 462 11.9 8.3 49.7 92.6 78.8 33.8 449.7 7.3 -11.6 2.8 0.2 18.2 6.55 532 21.1 454 12.2 7.6 48.5 89.9 55.4 35.0 467.7 8.2 -12.2 1.7 0.3 20.8 SH-CL16 0.55 541 27.7 512 13.7 11.5 56.3 91.9 322.9 14.3 67.7 2.3 -10.1 -2.6 0.5 13.4 1.15 546 27.5 495 13.1 10.5 54.3 92.1 155.2 21.3 106.5 3.0 -10.8 -2.1 0.2 20.2 1.75 540 27.2 504 13.0 11.0 56.3 98.2 129.2 25.6 128.4 3.1 -4.4 1.3 0.1 15.5 2.35 538 26.9 495 12.9 10.5 54.9 95.3 140.6 27.0 154.2 5.0 -5.9 -1 0.1 18.3 2.95 537 27.4 486 12.8 10.2 53.8 96.2 109.4 27.3 177.1 3.6 -6.5 -1.6 0.1 22.4 3.55 513 25.5 483 12.8 10.3 53.7 91.0 105.2 27.5 202.0 3.8 -7.2 -0.3 -0.1 34.2 4.15 523 26.3 502 13.3 10.3 54.7 92.5 117.7 27.9 242.8 3.7 -8.1 0.2 0.3 16.0 4.75 500 24.8 485 12.9 10.0 53.5 91.9 102.9 27.9 266.7 4.2 -8.8 -0.1 0.2 30.5 5.35 519 25.8 500 13.1 10.1 54.8 91.0 114.6 25.1 289.6 4.5 -9.5 -1.2 0.3 27.8 5.95 488 24.9 479 12.7 9.7 53.2 94.3 86.6 22.8 333.3 5.4 -9.8 -0.1 0.2 13.8 6.55 533 25.3 467 12.4 9.1 50.8 88.7 87.1 25.1 216.9 5.1 -10.0 1.7 0.3 13.7 7.15 494 22.6 486 12.8 9.6 53.4 94.4 80.6 25.1 293.5 6.5 -10.3 1.1 0.3 18.3 7.75 488 23.0 494 12.9 10.5 54.1 94.4 71.4 32.2 406.0 5.3 -10.7 1.4 0.3 13.2 8.35 526 24.6 493 13.3 9.5 54.4 96.4 74.7 30.3 401.0 6.8 -11.1 2.5 0.3 37.7 SH-CL17 0.55 536 27.5 500 13.5 10.5 55.3 90.9 179.2 19.5 157.2 3.1 -4.4 0.9 0.1 13.6 1.15 535 26.7 489 13.1 10.3 54.0 94.0 155.2 24.2 170.2 3.4 -5.7 2.1 0.2 21.0 1.75 522 26.3 476 12.6 10.1 52.6 92.1 130.2 20.9 208.0 3.8 -6.6 0.8 0.1 14.1 2.35 515 25.9 467 12.1 9.8 51.4 91.8 121.9 23.7 259.7 4.0 -7.1 2.3 0.3 17.8 2.95 530 25.9 490 12.9 10.2 53.7 97.0 131.3 22.3 255.7 4.2 -7.6 0.9 0.1 10.0 3.55 503 24.8 480 12.8 9.9 52.7 93.0 114.6 22.8 297.5 4.5 -8.3 3.9 0.1 18.2 4.15 534 25.2 476 12.2 9.7 52.5 97.2 129.2 22.3 304.5 4.7 -9.2 0.9 0.2 11.0 4.75 521 24.1 492 12.6 9.8 53.8 95.6 89.6 22.3 352.2 5.5 -9.7 1.3 0.1 15.0 5.35 512 24.2 474 12.5 9.4 52.0 94.8 89.7 22.8 362.2 5.4 -10.0 1.4 0.1 13.5 5.95 512 23.4 466 12.0 9.2 51.3 93.9 60.6 23.2 379.1 5.5 -10.3 -0.9 0.2 14.9 6.55 515 23.0 485 12.7 9.3 52.6 95.9 73.4 30.8 382.1 5.6 -10.9 0.8 0.1 23.1 7.15 515 22.8 478 12.4 8.9 50.3 97.5 84.6 31.2 410.9 5.9 -11.2 3.7 0.2 10.8 7.75 502 22.0 453 11.7 8.3 47.8 94.1 94.9 40.2 405.0 6.2 -11.6 5.6 0.1 14.0 -
[1] Zatsepina O Y, Buffett B A.Phase equilibrium of gas hydrate:implications for the formation of hydrate in the deep sea floor[J].Geophysical Research Letters, 1997, 24(13):1567-1570. doi: 10.1029/97GL01599
[2] Buffett B A, Zatsepina O Y.Formation of gas hydrate from dissolved gas in natural porous media[J].Marine Geology, 2000, 164(1):69-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f563cd36fdcc8d12ad946dfb121583c3
[3] Kvenvolden K A.A review of the geochemistry of methane in natural gas hydrate[J].Organic Geochemistry, 1995, 23(11):997-1008. http://cn.bing.com/academic/profile?id=260fecd62a3a9d941dfd12c7931a3a5d&encoded=0&v=paper_preview&mkt=zh-cn
[4] Makogon Y F, Holditch S A, Makogon T Y.Natural gas-hydrates:A potential energy source for the 21st Century[J].J Pet Sci Eng, 2007, 56:14-31. doi: 10.1016/j.petrol.2005.10.009
[5] 徐文世, 于兴河, 刘妮娜, 等.天然气水合物开发前景和环境问题[J].天然气地球科学, 2005, 16(5):680-683. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx200505029
[6] Hyndman R D, Davis E E.A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion[J].Journal of Geophysical Research:Solid Earth, 1992, 97(B5):7025-7041. doi: 10.1029/91JB03061
[7] Borowski W S, Paull C K, Ussler Ⅲ W.Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J].Geology, 1996, 24:655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
[8] Davie M K, Buffett B A.A numerical model for the formation of gas hydrate below the seafloor[J].Journal of Geophysical Research:Solid Earth, 2001, 106(B1):497-514. doi: 10.1029/2000JB900363
[9] Charlou J L, Donval J P, Zitter T.Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea[J].Deep-Sea Research I, 2003, 50:94l-958. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a50f543ee8be4e99ad1ad09a84584f4a
[10] Chen D F, Su Z, Cathles L M.Types of gas hydrates in marine environments and their thermodynamic characteristics[J].Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4):723. doi: 10.3319/TAO.2006.17.4.723(GH)
[11] Zhang G, Liang J, Lu J, et al.Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J].Marine and Petroleum Geology, 2015, 67:356-367. doi: 10.1016/j.marpetgeo.2015.05.021
[12] 梁金强, 王宏斌, 苏新, 等.南海北部陆坡天然气水合物成藏条件及其控制因素[J].天然气工业, 2014, 34(7):128-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201407022
[13] 梁金强, 张光学, 陆敬安, 等.南海东北部陆坡天然气水合物富集特征及成因模式[J].天然气工业, 2016, 36(10):157-162. doi: 10.3787/j.issn.1000-0976.2016.10.020
[14] Sha Z B, Liang J Q, Zhang G X, et al.A seepage gas hydrate system in northern South China Sea:Seismic and well log interpretations[J].Marine Geology, 2015, 366:69-78. doi: 10.1016/j.margeo.2015.04.006
[15] 龚跃华, 张光学, 郭依群, 等.南海北部神狐西南海域天然气水合物成矿远景[J].海洋地质与第四纪地质, 2013, 33(2):97-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201302012
[16] 吴庐山, 杨胜雄, 梁金强, 等.南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义[J].中国科学:地球科学, 2013, 43(3):339-350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201303002
[17] 李家彪.中国边缘海形成演化与资源效应[M].北京:地质出版社, 2008:377-384.
[18] 王存武, 陈红汉, 陈长民, 等.珠江口盆地白云深水扇特征及油气成藏主控因素[J].地球科学:中国地质大学学报, 2007, 32(2):247-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200702014
[19] Shipboard Scientific Party.Site 1146[R]//Wang P X, Prell W L, Blum P, et al.Proceedings of the Ocean Drilling Program, Initial Reports Volume 184.College Station, Texas:Texas A & M University (Ocean Drilling Program), 2000:1-101.
[20] 吴能友, 杨胜雄, 王宏斌, 等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J].地球物理学报, 2009, 52(6):1641-1650. doi: 10.3969/j.issn.0001-5733.2009.06.027
[21] 龚跃华, 杨胜雄, 王宏斌, 等.南海北部神狐海域天然气水合物成藏特征[J].现代地质, 2009, 23(2):210-216. doi: 10.3969/j.issn.1000-8527.2009.02.003
[22] 王家豪, 庞雄, 王存武, 等.珠江口盆地白云凹陷中央底辟带的发现及识别[J].地球科学:中国地质大学学报, 2006, 31(2):209-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200602010
[23] 匡增桂, 郭依群.南海北部神狐海域新近系以来沉积相及水合物成藏模式[J].地球科学:中国地质大学学报, 2011, 36(5):914-920. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201105017
[24] Zhang H Q, Yang S X, Wu N Y, et al.Successful and surprising results for China's first gas hydrate drilling expedition[J].Fire in the Ice.Methane Hydrate Newsletter, National Energy Technology Laboratory, US Department of Energy, Fall Issue 1, 2007, 7(3):6-9. http://hydz.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=70925b5d-a78f-41b7-9e86-b52118927150
[25] Yang S X, Zhang M, Liang J Q, et al.Preliminary results of China's third gas hydrate drilling expedition:A critical step from discovery to development in the South China Sea[J].Fire in the Ice.Methane Hydrate Newsletter, National Energy Technology Laboratory, US Department of Energy, 2015, 15(2):1-5. http://hydz.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=70925b5d-a78f-41b7-9e86-b52118927150
[26] 马俊明, 薛林福, 付少英, 等.南海神狐海域地震-沉积相分析与沉积环境演化[J].世界地质, 2013, 32(2):359-365. doi: 10.3969/j.issn.1004-5589.2013.02.021
[27] Berner R A.Early diagenesis:A theoretical approach[M].Princeton: Princeton University Press, 1980.
[28] Iversen N, J rgensen B B.Diffusion coefficients of sulfate and methane in marine sediments:Influence of porosity[J].Geochimica et Cosmochimica Acta, 1993, 57(3):571-578. doi: 10.1016/0016-7037(93)90368-7
[29] Schulz H D.Quantification of early diagenesis:Dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M.Marine Geochemistry.Berlin: Springer, 2006:73-124.
[30] Li Y H, Gregory S.Diffusion of ions in sea water and in deep-sea sediments[J].Geochimica et Cosmochimica Acta, 1974, 38:703-714. doi: 10.1016/0016-7037(74)90145-8
[31] Hesse R, Harrison W E.Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins[J].Earth and Planetary Science Letters, 1981, 55(3):453-462. http://cn.bing.com/academic/profile?id=c05d68dbcd1ab794d141e18e67997963&encoded=0&v=paper_preview&mkt=zh-cn
[32] Ussler W, Paull C K.Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition[J].Geo-Marine Letters, 1995, 15(1):37-44. doi: 10.1007/BF01204496
[33] Hesse R.Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface:What have we learned in the past decade?[J].Earth-Science Reviews, 2003, 61(1):149-179. http://cn.bing.com/academic/profile?id=19830302018f23d61521ee01e0f428cf&encoded=0&v=paper_preview&mkt=zh-cn
[34] Zhu Y H, Huang Y Y, Matsumoto R, et al.Geochemical and stable isotopic compositions of pore fluids and authigenic siderite concretions from site 1146, ODP Leg 184:implication for gas hydrate[C]//Prell W L, Wang P, Rea D K, et al.Proceedings of the ODP, Scientific Results, 2002, 184:1-15.
[35] 邓希光, 付少英, 黄永样, 等.南海北部东沙群岛HD196站位地球化学特征及其对水合物的指示[J].现代地质, 2006, 20(1):92-102. doi: 10.3969/j.issn.1000-8527.2006.01.011
[36] 杨涛, 蒋少涌, 葛璐, 等.南海北部陆坡西沙海槽XS-01站位沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J].第四纪研究, 2006, 26(3):442-448. doi: 10.3321/j.issn:1001-7410.2006.03.017
[37] 吴能友, 张海啟, 杨胜雄, 等.南海神狐海域天然气水合物成藏系统初探.天然气工业, 2007, 27(9):1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001
[38] Luo M, Chen L, Tong H, et al.Gas Hydrate Occurrence Inferred from Dissolved Cl-Concentrations and δ18O Values of Pore Water and Dissolved Sulfate in the Shallow Sediments of the Pockmark Field in Southwestern Xisha Uplift, Northern South China Sea[J].Energies, 2014, 7(6):3886-3899. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=energies-07-03886
[39] Hesse R, Frape S, Egeberg P K, et al.Stable isotope studies (Cl, O, and H) of interstitial waters from Site 997, Blake Ridge gas hydrate field, West Atlantic[C]//Paull C K, Matsumoto R, Wallace P J, et al.Gas Hydrate Sampling on the Blake Ridge and Carolina Rise.Proc.Ocean Drill.Program Sci.Results.2000, 164:129-137.
[40] D hlmann A, De Lange G J.Fluid-sediment interactions at Eastern Mediterranean mud volcanoes:A stable isotope study from ODP Leg 160[J].Earth and Planetary Science Letters, 2003, 212(3):377-391. http://cn.bing.com/academic/profile?id=850f8ef98dbda2df55019d60c71d5a63&encoded=0&v=paper_preview&mkt=zh-cn
[41] Gilg H A, Sheppard S M F.Hydrogen isotope fractionation between kaolinite and water revisited[J].Geochimica et Cosmochimica Acta, 1996, 60(3):529-533. doi: 10.1016/0016-7037(95)00417-3
[42] Aloisi G, Drews M, Wallmann K, et al.Fluid expulsion from the Dvurechenskii mud volcano (Black Sea):Part I.Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles[J].Earth and Planetary Science Letters, 2004, 225(3):347-363. http://cn.bing.com/academic/profile?id=138b8db2cec5ac9b67c0c3e146fab310&encoded=0&v=paper_preview&mkt=zh-cn
[43] Godon A, Jendrzejewski N, Castrec-Rouelle M, et al.Origin and evolution of fluids from mud volcanoes in the Barbados accretionary complex[J].Geochimica et Cosmochimica Acta, 2004, 68(9):2153-2165. doi: 10.1016/j.gca.2003.08.021
[44] Martin J B, Kastner M, Henry P, et al.Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge[J].Journal of Geophysical Research:Solid Earth, 1996, 101(B9):20325-20345. doi: 10.1029/96JB00140
[45] Claypool G, Kaplan I R.The Origin and Distribution of Methane in Marine Sediments[M]//Kaplan I.Natural Gases in Marine Sediments.New York:Plenum Press, 1974:99-139.
[46] Boetius A, Ravenschlag K, Schubert C J, et al.A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature, 2000, 407(6804):623-626. doi: 10.1038/35036572
[47] Borowski W S, Paull C K, Ussler W.Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments:Sensitivity to underlying methane and gas hydrates[J].Marine Geology, 1999, 159(1):131-154. http://cn.bing.com/academic/profile?id=3e226503839467ec7fd048f12f0ffc01&encoded=0&v=paper_preview&mkt=zh-cn
[48] Borowski W S, Hoehler T M, Alperin M J, et al.Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates[C]//Proceedings of the ocean drilling program, scientific results.2000, 164:87-99.
[49] 陆红锋, 刘坚, 陈芳, 等.南海东北部硫酸盐还原-甲烷厌氧氧化界面[J].海洋地质与第四纪地质, 2012, 32(1):93-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201201013
[50] 邬黛黛, 吴能友, 张美, 等.东沙海域SMI与甲烷通量的关系及对水合物的指示[J].地球科学:中国地质大学学报, 2013, 38(6):1309-1320. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201306017.htm
[51] Chen Y, Ussler W, Haflidason H, et al.Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway[J].Chemical Geology, 2010, 275(3):127-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87ebc6b6c8007864d87ebf7d8765ce20
[52] 陈法锦, 陈建芳, 金海燕, 等.南海表层沉积物与沉降颗粒物中有机碳的δ13C对比研究及其古环境再造意义[J].沉积学报, 2012, 30(2):340-345. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201202015
[53] Schrag D P, Higgins J A, Macdonald F A, et al.Authigenic carbonate and the history of the global carbon cycle[J].Science, 2013, 339(6119):540-543. doi: 10.1126/science.1229578
[54] Sun X, Turchyn A V.Significant contribution of authigenic carbonate to marine carbon burial[J].Nature Geoscience, 2014, 7(3):201-204. doi: 10.1038/ngeo2070
[55] Jiang S Y, Yang T, Ge L, et al.Geochemistry of pore waters from the Xisha Trough, northern South China Sea and their implications for gas hydrates[J].Journal of Oceanography, 2008, 64(3):459-470. doi: 10.1007/s10872-008-0039-8
[56] Yang T, Jiang S Y, Ge L, et al.Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J].Chinese Science Bulletin, 2010, 55(8):752-760. doi: 10.1007/s11434-009-0312-2
[57] Tribovillard N, Algeo T J, Lyons T, et al.Trace metals as paleoredox and paleoproductivity proxies:an update[J].Chemical Geology, 2006, 232(1):12-32. http://cn.bing.com/academic/profile?id=6fc9d263314bdb8c0318cbc2ab305e94&encoded=0&v=paper_preview&mkt=zh-cn
[58] Helz G R, Bura-Nakic E, Mikac N, et al.New model for molybdenum behavior in euxinic waters[J].Chemical Geology, 2011, 284(3):323-332. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=199d9e771ba874a1ce970603f14eeca7
[59] Zheng Y, Anderson R F, van Geen A, et al.Authigenic molybdenum formation in marine sediments:a link to pore water sulfide in the Santa Barbara Basin[J].Geochimica et Cosmochimica Acta, 2000, 64(24):4165-4178. doi: 10.1016/S0016-7037(00)00495-6
[60] Hu Y, Feng D, Liang Q, et al.Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea[J].Deep-Sea Research Part II:Topical Studies in Oceanography, 2015, 122:84-94. doi: 10.1016/j.dsr2.2015.06.012
[61] 杨涛, 蒋少涌, 杨竞红, 等.孔隙水中NH4+和HPO42-浓度异常:一种潜在的天然气水合物地球化学勘查新指标[J].现代地质, 2005, 19(1):55-60. doi: 10.3969/j.issn.1000-8527.2005.01.008
[62] 吴庐山, 杨胜雄, 梁金强, 等.南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J].现代地质, 2010, 24(3):534-544. doi: 10.3969/j.issn.1000-8527.2010.03.018
[63] Malinverno A, Pohlman J W.Modeling sulfate reduction in methane hydrate-bearing continental margin sediments:Does a sulfate-methane transition require anaerobic oxidation of methane?[J].Geochemistry, Geophysics, Geosystems, 2011, 12(7). http://cn.bing.com/academic/profile?id=7ec1f7d7f0de8a089d3be9290471a645&encoded=0&v=paper_preview&mkt=zh-cn
[64] Wu L S, Yang S X, Liang J Q, et al.Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu Area, the South China Sea[J].Science China:Earth Sciences, 2013, 56:530-540. doi: 10.1007/s11430-012-4545-6
[65] Coffin R, Hamdan L, Plummer R, et al.Analysis of methane and sulfate flux in methane-charged sediments from the Mississippi Canyon, Gulf of Mexico[J].Marine and Petroleum Geology, 2008, 25(9):977-987. doi: 10.1016/j.marpetgeo.2008.01.014
[66] 吴庐山, 杨胜雄, 梁金强, 等.南海北部神狐海域沉积物中烃类气体的地球化学特征[J].海洋地质前沿, 2011, 27(6):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201106001
[67] 苏正, 曹运诚, 杨睿, 等.南海北部神狐海域天然气水合物成藏演化分析研究[J].地球物理学报, 2012 (5):1764-1774. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201205034
[68] 苏正, 曹运诚, 杨睿, 等.南海北部神狐海域天然气水合物成藏模式研究[J].地球物理学报, 2014, 57(5):1664-1674. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7857676
-