APPLICATION OF PERMEABILITY PREDICTION METHOD TO LOW-RESISTIVITY AND LOW-PERMEABILITY RESERVOIRS IN PEARL RIVER ESTUARY BASIN
-
摘要:
为了解决南海西部海域珠江口盆地低阻低渗油藏渗透率评价的难题,详实调研了国内外低阻低渗储层的成因,在此基础上深入分析了珠江口盆地低阻低渗储层渗透率的影响因素。研究表明,孔喉半径是导致渗透率差异大的主要原因。基于岩心资料,采用FZI法将研究区储层划分为6类流动单元,通过建立每一类流动单元的精细渗透率模型求取低阻低渗储层渗透率参数。结果表明,使用流动单元渗透率模型能够有效提高渗透率计算的精度,目前该方法已在南海西部海域各区域推广应用。
Abstract:In order to solve the problem of permeability evaluation for low-resistivity and low-permeability reservoirs in the Pearl River Estuary Basin in the western South China Sea, this paper made a detailed investigation on the origin of the low-resistivity and low-permeability reservoirs both at home and abroad, and deeply analyzed the influencing factors on reservoir permeability. The results show that the radius of pore throat is the main reason for the great difference in permeability from reservoir to reservoir. Based on core data, reservoirs are divided into six types by FZI method in this case. The permeability of low-resistivity and low-permeability reservoirs is calculated by establishing fine permeability models for each type of flow units. The results prove that the flow unit permeability model can effectively improve the accuracy of permeability calculation, and this method has been widely used in the Western South China Sea.
-
-
表 1 相同孔隙、不同孔喉半径两块岩心物性参数对比
Table 1. Comparison of two cores with the same porosity and different pore throat radius
井名 深度/m 孔隙度/% 渗透率/mD 孔喉均值/μm X1P1 1 387.32 27.8 23.2 1.556 X3P1 1 490.55 27.7 209 5.862 -
[1] 雍世和,张超谟.测井数据处理与综合解释[M].东营:石油大学出版社,1996.
[2] 欧阳健.石油测井解释与储层描述[M].北京:石油工业出版社,1994.
[3] 吴健,胡向阳,梁玉楠,等.珠江口盆地低阻油层饱和度评价方法[J].吉林大学学报(地球科学版),2015,45(1):312-319. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201501032
[4] 胡向阳,吴健,梁玉楠,等.珠江口盆地低阻油层测井综合识别方法研究[J].科学通报,2016,32(2):77-81. http://d.old.wanfangdata.com.cn/Periodical/kjtb201602015
[5] 陈嵘,李奎,何胜林,等.珠江口盆地文昌地区珠江组一段低阻成因分析与饱和度评价[J].岩性油气藏,2014,26(5):97-101. doi: 10.3969/j.issn.1673-8926.2014.05.018
[6] 居字龙,唐辉,刘伟新,等.珠江口盆地高束缚水饱和度成因低阻油层地质控制因素及分布规律差异[J].中国海上油气,2016,28(1):60-68. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201601009
[7] 王允诚.油层物理[M].北京:石油工业出版社,1993.
[8] Hearn C L, Ebanks W J, Ranganath V. Geological Factors Influencing Reservoir Performance of the Hartzog Draw Field, Wyoming[J]. Journal of Petroleum Technology, 1984, 36(8):1335-1344. doi: 10.2118/12016-PA
[9] Hamlin H S, Dutton S P, Seggie R J, et al. Depositional controls on reservoir properties in a braid-delta sandstone, Tirrawarra Oil Field, South Australia[J]. Aapg Bulletin American Association of Petroleum Geologists, 1996, 80(2): 139-156.
[10] 王瑞飞,宋子齐,尤小健,等.流动单元划分及在地质中的应用[J].测井技术.2003,27(6):481-485. doi: 10.3969/j.issn.1004-1338.2003.06.010
[11] 杨爱东,单立群,刘彦昌,等.基于WT与LSSVM的储层流动单元划分方法[J].测井技术,2017,41(2):237-242. http://d.old.wanfangdata.com.cn/Periodical/cjjs201702022
[12] 陈志强,吴思源,白蓉,等.基于流动单元的致密砂岩气储层渗透率测井评价——以川中广安地区须家河组为例[J].岩性油气藏,2017,29(6):76-83. doi: 10.3969/j.issn.1673-8926.2017.06.010
[13] 熊琦华,吴胜和.储层地质学[M].东营:石油大学出版社,1994.
[14] 窦之林.储层流动单元研究[M].北京:石油工业出版社,2000.
-