APPLICATION OF NONLINEAR QUANTITATIVE RESERVOIR PREDICTION TECHNIQUE TO DELTAIC FRONTSANDBODIESIN BONAN SUBSAG
-
摘要:
针对渤南洼陷中深层扇三角洲前缘致密储层地震资料分辨率低、砂泥岩速度差异小、纵向含油层系多层薄、横向储层变化快、储层展布认识不清的难点,在地质沉积模式指导下,运用多体联合解释技术,建立地层等时格架,进行优势属性提取和分析。运用进化型神经网络技术,建立地震属性和砂地比的非线性关系,实现了对薄互层砂体的定量预测,预测结果既保证了与井点的吻合度,也保持了地震资料对沉积特征的反映能力。该方法可以为中深层薄互层储层预测提供借鉴,并指导了该块油藏开发。
Abstract:The thin interbedded tight sandstone in the Bonan oilfield is a special kind of reservoirs. Multi-phase fans stacked each other with large reserves, but the utilization of reserve remains low in efficiency. Fine description is difficult to achieve since the large buried depth, low vertical resolution and fast lateral variations. To solve the problems mentioned above, joint interpretation technology for multi-sandbodies is used by the authors to establish the fine isochronous stratigraphic framework, and extract and analyze seismic attributes under the guidance of geological sedimentary model. Artificial neural network technology was adopted to establish the non-linear relationship between seismic attributes and reservoir thickness, and to carry out the quantitative prediction of thin interbedded sand body. The research results have successfully applied to the prediction of the thin interbedded tight reservoir in the 176 Block of the Bonan Oil field for well positioning.
-
-
表 1 义176块沉积微相及地震响应特征
Table 1. Sedimentary microfacies and seismic response characteristics of Block Y176
亚相 微相 自然伽马(API) 砂体形态及厚度 地震响应特征 扇三角洲前缘 水下分流河道 40~80 顶平底凸,3~10 m 中弱振幅,复波 水下分流河道间 70~110 指状,0.2~2 m 中强振幅 河口坝 45~95 底平顶凸,0.5~10 m 中弱振幅 席状砂 70~105 指状,0.1~2 m 中强振幅 -
[1] 刘鹏, 宋国奇, 刘雅利.渤南洼陷沙四段亚段多类型沉积体系形成机制[J].中南大学学报(自然科学版), 2014, 45(9):2334-2343. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD201409040.htm
[2] 孙夕平, 张研, 张永清.地震拓频技术在薄层油藏开发动态分析中的应用[J].石油地球物理勘探, 2010, 45(5):696-699. http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt201005012
[3] 胡玮, 韩立国, 尚帅.频散属性在致密薄储层识别中的应用[J].石油物探, 2014, 53(3):367-372. doi: 10.3969/j.issn.1000-1441.2014.03.016
[4] 彭达, 尹成.扇三角洲前缘薄互层叠置砂体的敏感属性分析[J].石油地球物理勘探[J].2015, 50(4):714-722. http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt201504020
[5] 张军华, 刘培金, 朱博华.滩坝砂储层地震解释存在的问题及对策[J].2014, 49(1):167-175.
[6] 李莉.江陵凹陷南斜坡新沟嘴组下段薄互层滩坝砂储层预测技术[J].海洋地质前沿, 2016, 32(12):46-53. http://www.cqvip.com/QK/98440A/201612/670943239.html
[7] 刁新东, 李映涛, 顾伟欣.三角洲水下分流河道砂体地震预测方法研究-以塔河油田三叠系河道砂岩为例[J].物探与化探, 2018, 42(3):569-575. http://www.cnki.com.cn/Article/CJFDTotal-WTYH201803018.htm
[8] 王红, 李红梅.基于正演模型的砂泥岩薄互层地震属性特征分析[J].油气藏评价与开发, 2015, 5(3):15-21. doi: 10.3969/j.issn.2095-1426.2015.03.004
[9] 刘力辉, 李建海, 孙莹频.时频属性法薄互层预测[J].石油地球物理勘探, 2017, 52(6):1261-1268. http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt201706017
[10] 于茜, 边立恩, 沈洪涛.渤海锦州A构造古近系地震储层预测研究[J].物探化探计算技术, 2017, 39(6):808-815. doi: 10.3969/j.issn.1001-1749.2017.06.14
[11] 刘志伟.遗传进化型神经网络体系结构研究[D].合肥: 合肥工业大学, 2007.
[12] 何明慧.基于进化算法的神经网络研究与优化[D].合肥: 安徽大学, 2018.
-