RESEARCH ON AUTOMATIC THRESHOLD GENERATION METHOD FOR SHALE SLICE HOLE SEGMENTATION
-
摘要:
随着页岩气勘探开发领域的快速发展,页岩储层的微观结构表征及分析技术显得愈发重要。其中基于阈值分割法获取页岩孔隙结构参数是目前页岩微观结构表征的一种重要手段。现有的阈值分割方法主要有最大类间方差法、最大熵阈值分割法等,它们在各种图像分割任务上都取得了不错的成绩。然而,在页岩孔隙分割问题上,它们均存在耗时较长且不能有效分离薄片扫描电镜图像中的孔隙和基质等元素的问题。页岩薄片孔缝分割的自动阈值生成方法能根据页岩薄片的不同特点,自适应地快速生成对应图像的最佳灰度阈值,自动识别页岩孔隙和基质等地质元素。在足206井的页岩扫描电镜图像上进行了实验,与传统方法进行对比,实验结果表明,页岩薄片孔缝分割的自动阈值生成方法能准确实现孔隙和基质等元素的分离,在各类图像上都能高效地自动生成最佳灰度阈值,为页岩微观图像孔隙结构定量分析提供可靠基础。
Abstract:With the rapid progress of shale gas exploration and exploitation, microstructural characteristics and their analysis techniques have become more and more important. Among them, to acquire the shale pore structure parameters based on the threshold segmentation method is an key mean for shale microstructural characterization. The existing methods mainly include the maximum between-class variance method and the maximum entropy threshold segmentation method. They have gained good results in various image segmentation. However, they are all quite time-consuming and cannot effectively separate the pores from matrix in the SEM images of thin slices sometimes. In this paper, an automatic threshold generation method for shale slices and fissures segmentation is proposed, which can adaptively and quickly generate the optimal grayscale threshold for the related image according to different characteristics of shale slices, and automatically recognize shale pores and matrix as well as other geological elements. In this paper, experiments were conducted for the shale scanning electron microscopy images from the Well 206, and comparison is made with the results from traditional methods. The experimental results show that the algorithm of this paper can automatically generate the optimal grayscale threshold on various images, and accurately identify such elements as pores and matrix. Therefore, the automatic threshold generation method for shale slice hole segmentation introduced in this paper can efficiently generate the optimal gray threshold of shale slice scanning electron microscope image and provide a reliable basis for quantitative analysis of pore structure on shale microscopic images.
-
-
[1] SONDERGELD C H, AMBROSE R J, RAI C S, et al. Micro-structural studies of gas shales[C]//Society of Petroleum Engineers,2010.
[2] CLARKSON C R,SOLANO N,BUSTIN R M,et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS,gas adsorption,and mercury intrusion[J]. Fuel,2013,103:606-616. doi: 10.1016/j.fuel.2012.06.119
[3] AL HINAI A,REZAEE R,ESTEBAN L,et al. Comparisons of pore size distribution:a case from the Western Australian gas shale formations[J]. Journal of Unconventional Oil and Gas Resources,2014,8:1-13. doi: 10.1016/j.juogr.2014.06.002
[4] 李俊乾,卢双舫,张婕,等. 页岩油吸附与游离定量评价模型及微观赋存机制[J]. 石油与天然气地质,2019,40(3):583-592.
[5] 孙寅森,郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展,2016,31(7):751-763.
[6] 王羽,金婵,汪丽华,等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试,2015,34(3):278-285.
[7] 白名岗,夏响华,张聪,等. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用[J]. 岩矿测试,2018,37(3):225-234.
[8] 武瑾,梁峰,吝文,等. 渝东北地区龙马溪组页岩储层微观孔隙结构特征[J]. 成都理工大学学报(自然科学版),2016,43(3):308-319.
[9] 王欣,齐梅,李武广,等. 基于分形理论的页岩储层微观孔隙结构评价[J]. 天然气地球科学,2015,26(4):754-759.
[10] 焦淑静,张慧,薛东川,等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报,2018,37(2):137-144. doi: 10.3969/j.issn.1000-6281.2018.02.006
[11] 姜振学,唐相路,李卓,等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘,2016,23(2):126-134.
[12] LIU Y,ZHU Y M. Comparison of pore characteristics in the coal and shale reservoirs of Taiyuan Formation,Qinshui Basin,China[J]. International Journal of Coal Science & Technology,2016,3(3):330-338.
[13] CURTIS M E,SONDERGELD C H,AMBROSE R J,et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin,2012,96(4):665-677. doi: 10.1306/08151110188
[14] 傅志强,贺翠翠,刘锡贝,等. 扫描电镜测量纳米尺度的影响因素[J]. 电子显微学报,2012,31(3):226-229. doi: 10.3969/j.issn.1000-6281.2012.03.006
[15] 吴一全,孟天亮,吴诗婳. 图像阈值分割方法研究进展20年(1994—2014)[J]. 数据采集与处理,2015,30(1):1-23.
[16] 俞雨溪,王宗秀,程明,等. 页岩微观结构灰度图像的标准化方法[J]. 煤炭学报,2019,44(7):2178-2187.
[17] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66. doi: 10.1109/TSMC.1979.4310076
[18] KAPUR J N,SAHOO P K,WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision,Graphics,and Image Processing,1985,29(3):273-285. doi: 10.1016/0734-189X(85)90125-2
[19] 章毓晋. 图像分析[ M]. 北京: 清华大学出版社, 2005.
[20] 章毓晋. 图像分割[ M]. 北京: 科学出版社, 2001.
[21] 史春奇,施智平,刘曦,等. 基于自组织动态神经网络的图像分割[J]. 计算机研究与发展,2009,46(1):23-30.
-