南大港湿地表层沉积物中多环芳烃污染特征及潜在生态风险评价

吴倩, 张道来, 杨培杰, 李梅娜. 南大港湿地表层沉积物中多环芳烃污染特征及潜在生态风险评价[J]. 海洋地质前沿, 2021, 37(11): 22-29. doi: 10.16028/j.1009-2722.2020.131
引用本文: 吴倩, 张道来, 杨培杰, 李梅娜. 南大港湿地表层沉积物中多环芳烃污染特征及潜在生态风险评价[J]. 海洋地质前沿, 2021, 37(11): 22-29. doi: 10.16028/j.1009-2722.2020.131
WU Qian, ZHANG Daolai, YANG Peijie, LI Meina. CHARACTERISTICS OF PAHS IN SURFACE SEDIMENTS AND ECOLOGICAL RISK ASSESSMENT: A CASE FROM THE NANDAGANG WETLANDS[J]. Marine Geology Frontiers, 2021, 37(11): 22-29. doi: 10.16028/j.1009-2722.2020.131
Citation: WU Qian, ZHANG Daolai, YANG Peijie, LI Meina. CHARACTERISTICS OF PAHS IN SURFACE SEDIMENTS AND ECOLOGICAL RISK ASSESSMENT: A CASE FROM THE NANDAGANG WETLANDS[J]. Marine Geology Frontiers, 2021, 37(11): 22-29. doi: 10.16028/j.1009-2722.2020.131

南大港湿地表层沉积物中多环芳烃污染特征及潜在生态风险评价

  • 基金项目: 国家重点研发计划课题(2020YFC1807103);2019年度青岛市社会科学规划研究项目(QDSKL1901285);NSFC-山东联合基金人类活动对山东半岛典型海湾生态系统环境的影响及其碳储效应(U1706219)
详细信息
    作者简介: 吴倩(1979—),男,硕士,高级工程师,主要从事土壤地下水污染调查与修复方面的研究工作. E-mail:qianwu@cnpc.com.cn
  • 中图分类号: P736.21

CHARACTERISTICS OF PAHS IN SURFACE SEDIMENTS AND ECOLOGICAL RISK ASSESSMENT: A CASE FROM THE NANDAGANG WETLANDS

  • 随沿海经济发展及人类开发加剧,滨海湿地受到多环芳烃等污染侵害,值得重视。对南大港湿地19个站点表层沉积物中多环芳烃(PAHs)的含量及其分布特征进行研究,并对其来源和潜在风险进行解析与评价。研究表明,该地区表层沉积物中16种PAHs总含量为7.12~156.10 ng/g(均值63.03 ng/g),与全球空间范围湿地污染程度类比,研究区湿地表层沉积物中PAHs整体污染水平并不高。综合特征比值法、相关性分析及主成分分析法推断出本湿地沉积物中PAHs主要来源为油类的燃烧以及油类泄露的联合作用源,与周边人类活动情况相符。采用效应区间低值法(ERL)和中值法(ERM)对PAHs进行生态风险评价,零星站位中菲、二氢苊浓度位于ERL与ERM之间,其余站点不存在潜在生态危害。南大港湿地中PAHs对湿地生态的毒副作用尚属于安全范围。该研究可为环渤海海岸带污染控制和治理提供基础数据支撑,也为保护良好的海湾滨海湿地生态环境提供科学信息。

  • 加载中
  • 图 1  南大港湿地表层沉积物站位图

    Figure 1. 

    图 2  南大港湿地表层沉积物中多环芳烃分布特征

    Figure 2. 

    图 3  南大港湿地表层沉积物中多环芳烃特征分子比来源判定

    Figure 3. 

    表 1  荧光检测器工作条件

    Table 1.  Details of fluorescence detector

    t/minλ/nm
    发射波长激发波长
    0340260
    13.5420260
    29.5482250
    下载: 导出CSV

    表 2  世界各湿地表层沉积物中多环芳烃检出量

    Table 2.   Concentration of PAHs in surface sediments from global wetlands

    名称含量/(ng/g dw)数据来源
    南大港湿地7.12~156.10本研究
    白洋淀湿地324.6~1 738文献[7]
    崇明湿地38.7~136.2文献[8]
    胶州湾湿地176.1~563.3文献[10]
    红树林湿地3.16~464.05文献[11]
    辽河湿地293.4~1 937文献[13]
    青肯泡湿地36.4~68 799文献[14]
    秦皇岛湿地161.7~386.3文献[15]
    渤海湾湿地341.61~4 703文献[16]
    Chao Phraya Estuary wetland, Thailand6~8 399文献[17]
    Anzali wetland, Iran212~2 674文献[18]
    Canada River wetland, USA16~12 000文献[19]
    Shadegen wetland, Iran593~53 394文献[20]
    下载: 导出CSV

    表 3  南大港湿地表层沉积物中PAHs各化合物间的相关性分析

    Table 3.  The relationships of differient PAHs in surface sediments of the Nandagang wetlands

    二氢苊荧蒽苯并(a)蒽苯并(b)荧蒽苯并(k)荧蒽苯并(a)芘二苯并(a,h)蒽苯并(g,h,i)苝茚并(1,2,3-cd)芘
    二氢苊0.062
    0.481
    (*)
    0.629
    (**)
    −0.001−0.0260.478
    (*)
    −0.0920.1080.4210.845
    (**)
    荧蒽0.2540.3740.587
    (**)
    0.2540.159
    0.0370.3950.512
    (*)
    0.2560.4490.456
    苯并(a)蒽0.2960.2610.3420.032−0.0540.736
    (**)
    −0.035
    0.0060.0850.123−0.0180.1450.210.509
    (*)
    0.229
    苯并(b)荧蒽−0.220.3740.2130.1040.3610.292.579
    (**)
    0.1230.480
    (*)
    苯并(k)荧蒽0.0030.4190.553
    (*)
    0.4370.478
    (*)
    0.648
    (**)
    0.491
    (*)
    0.603
    (**)
    0.600
    (**)
    0.482
    (*)
    苯并(a)芘−0.24−0.244−0.0220.474
    (*)
    0.494
    (*)
    −0.1520.1−0.1910.3220.2350.304
    二苯并(a,h)蒽−0.0210.1030.4210.644
    (**)
    0.604
    (**)
    0.4260.2650.1690.1010.2120.551
    (*)
    0.399
    苯并(g,h,i)苝−0.212−0.182−0.365−0.236−0.151−0.3340.003−0.2080.574
    (*)
    0.0750.1630.2770.127
    茚并(1,2,3-cd)芘−0.2180.1940.478
    (*)
    0.857
    (**)
    0.909
    (**)
    0.3180.430.0050.0960.3870.551
    (*)
    0.492
    (*)
    0.782
    (**)
    −0.145
    总和0.2080.589
    (**)
    0.83
    7(**)
    0.628
    (**)
    0.654
    (**)
    0.712
    (**)
    0.690
    (**)
    0.4160.3770.505
    (*)
    0.817
    (**)
    0.2220.624
    (**)
    −0.1730.721
    (**)
    注:** 表示在0.01水平上显著相关,*表示在0.05水平上显著相关
    下载: 导出CSV

    表 4  南大港湿地表层沉积物中PAHs含量与生态风险限值

    Table 4.  Concentration ranges and toxicity guidelines for PAHs in surface sediments of the Nandagang wetlands

    多环芳烃种类含量/(ng/g)平均含量/(ng/g)生态风险标志水平
    ERLERM
    ND-21.975.861602 100
    二氢苊ND-50.457.1716500
    ND-6.122.4844640
    ND-64.5511.8819540
    ND-2.820.702401 500
    荧蒽ND-30.288.2985.31 100
    ND-33.666.566005 100
    苯并(a)蒽0.21~17.762.646652 600
    ND-13.954.932611 600
    苯并(b)荧蒽ND-8.473.413842 800
    苯并(k)荧蒽ND-3.481.37--
    苯并(a)芘ND-9.962.15--
    二苯并(a,h)蒽ND-10.633.424301 600
    苯并(g,h,i)苝ND-3.830.6863.4260
    茚并(1,2,3-cd)芘ND-7.691.49--
    总量7.12~156.1063.034 02244 792
    下载: 导出CSV
  • [1]

    GU Y G,LI H B,LU H B. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the largest deep plateau lake in China:Occurrence,sources and biological risk[J]. Ecological Engineering,2017,101:179-184. doi: 10.1016/j.ecoleng.2017.02.007

    [2]

    叶磊. 陕西省不同功能区表土中多环芳烃的分布特征及来源解析[D]. 西安: 西安建筑科技大学, 2013.

    [3]

    凌镇浩. 珠三角大气持久性有机污染物(POPs)的浓度及迁移规律研究[D]. 广州: 中山大学. 2009.

    [4]

    赵彩平,丁毅,叶云等. 淮河中下游干流贝类体中多环芳烃的分布及风险评价[J]. 安徽农业科学,2010,38(3):1263-1265. doi: 10.3969/j.issn.0517-6611.2010.03.075

    [5]

    刘强. 辽东半岛东岸泥质区多环芳烃的分布、来源及其对环境变化响应[D]. 南京: 南京大学, 2019.

    [6]

    薛荔栋,郎印海,刘爱霞,等. 黄海近岸表层沉积物中多环芳烃来源解析[J]. 生态环境学报,2008,17(4):1369-1375. doi: 10.3969/j.issn.1674-5906.2008.04.009

    [7]

    胡国成,郭建阳,罗孝俊,等. 白洋淀表层沉积物中多环芳烃的含量、分布、来源及生态风险评价[J]. 环境科学研究,2009,22(3):336-347.

    [8]

    WANG Z,LIU Z,YANG Y,et al. Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland,Shanghai,China[J]. Chemosphere,2012,89(3):221-227. doi: 10.1016/j.chemosphere.2012.04.019

    [9]

    袁红明,叶思源,高茂生,等. 黄河三角洲南部湿地表层土壤中多环芳烃的分布特征及生态风险评价[J]. 海洋地质前沿,2011,19(2):336-347.

    [10]

    LANG Y,LI G,WANG X,et al. Combination of Unmix and PMF receptor model to apportion the potential sources and contributions of PAHs in wetland soils from Jiaozhou Bay,China[J]. Marine Pollution Bulletin,2015,90(1/2):129-134.

    [11]

    ZHANG D L,LIU N,YIN P,et al. Characterization,sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from the mangroves of China[J]. Wetlands Ecology and Management,2017,25(1):105-117. doi: 10.1007/s11273-016-9505-z

    [12]

    王建华,王艳霞,张义文,等. 南大港湿地及其保护研究[J]. 河北师范大学学报(自然科学版),2003,27(3):309-312.

    [13]

    廖书林,郎印海,王延松. 辽河口湿地土壤多环芳烃的分布及来源研究[J]. 环境科学,2011,32(4):1094-1100.

    [14]

    ZHANG Y,LIU M,CHEN H,et al. Source identification of polycyclic aromatic hydrocarbons in different ecological wetland components of the Qinkenpao Wetland in Northeast China[J]. Ecotoxicology & Environmental Safety,2014,102(4):160-167.

    [15]

    LIN F,HAN B,DING Y,et al. Distribution characteristics,sources,and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from the Qinhuangdao coastal wetland,China[J]. Marine Pollution Bulletin,2018,127:788-793. doi: 10.1016/j.marpolbul.2017.09.054

    [16]

    XU Y,LIU T,ZHU X,et al. Quantitative analysis of genetic associations in the biodegradative pathway of PAHs in wetland sediments of the Bohai coast region[J]. Chemosphere,2019,218:282-291.

    [17]

    BOONYATUMANOND R,WATTAYAKORN G,TOGO A,et al. Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine,estuarine,and marine sediments in Thailand[J]. Marine Pollution Bulletin,2006,52(8):942-956. doi: 10.1016/j.marpolbul.2005.12.015

    [18]

    YANCHESHMEH R A,BAKHTIARI A R,MORTAZAVI S,et al. Sediment PAH:contrasting levels in the Caspian Sea and Anzali Wetland[J]. Marine Pollution Bulletin,2014,84(1/2):391-400.

    [19]

    SARTORI F,WADE T L,SERICANO J L,et al. Polycyclic aromatic hydrocarbons in soil of the Canadian river floodplain in Oklahoma[J]. Journal of Environmental Quality,2010,39(2):568-579. doi: 10.2134/jeq2009.0270

    [20]

    BEMANIKHARANAGH A,BAKHTIARI A R,MOHAMMADI J,et al. Characterization and ecological risk of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in sediments of Shadegan international wetland,the Persian Gulf[J]. Marine Pollution Bulletin,2017,124(1):155-170. doi: 10.1016/j.marpolbul.2017.07.015

    [21]

    国文,薛文,姚文君,等. 渤海表层沉积物中多环芳烃赋存特征及来源分析[J]. 海洋环境科学,2015,34(3):330-336.

    [22]

    HUI Y M,ZHENG M H,LIU Z T,et al. Distribution of polycyclic aromatic hydrocarbons in sediments from Yellow River Estuary and Yangtze River Estuary,China[J]. Journal of Environment Science,2009,21:1625-1631. doi: 10.1016/S1001-0742(08)62465-1

    [23]

    YUNKER M B,MACDONALD R W,VINGARZAN R,et al. PAHs in the Fraser River basin:a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry,2002,33(4):489-515. doi: 10.1016/S0146-6380(02)00002-5

    [24]

    KAVOURAS I G,KOUTRAKIS P,TSAPAKIS M,et al. Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods[J]. Environmental Science & Technology,2001,35(11):2288-2294.

    [25]

    KHALILI N R,SCHEFF P A,HOLSEN T M. PAH source fingerprints for coke ovens,diesel and,gasoline engines,highway tunnels,and wood combustion emissions[J]. Atmospheric Environment,1995,29(4):533-542. doi: 10.1016/1352-2310(94)00275-P

    [26]

    GOCHT T,BARTH J A C,EPP M,et al. Indications for pedogenic formation of perylene in a terrestrial soil profile:depth distribution and first results from stable carbon isotope ratios[J]. Applied Geochemistry,2007,22(12):2652-2663. doi: 10.1016/j.apgeochem.2007.06.004

    [27]

    马子惠,梁成华,孟庆欢,等. 基于PSR模型的大港油田土地生态安全评价研究[J]. 环境污染与防治,2015,37(1):41-51.

  • 加载中

(3)

(4)

计量
  • 文章访问数:  1734
  • PDF下载数:  98
  • 施引文献:  0
出版历程
收稿日期:  2020-09-17
刊出日期:  2021-11-27

目录