TOUGH+MULTILATERAL WELL MODEL CONSTRUCTION BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE
-
摘要:
天然气水合物分布广、埋藏浅、清洁无污染、储量巨大,是极具发展潜力的清洁能源。为实现天然气水合物商业化开采,急需探索基于多分支井的高效开采技术。在使用TOUGH+HYDRATE模拟器开展数值模拟中,复杂结构井建模是研究工作的难点。为此提出了基于mVIEW的复杂结构井快速建模方法,以多分支井为例简要介绍了建模流程;此外,结合TOUGH+HYDRATE模拟器,以中国地质调查局2017年在南海北部陆坡深水区白云凹陷神狐海域SHSC-4试采井测井曲线数据为基础,建立理想水合物藏分层地质模型,开展单一水平井和多分支井在水合物Ⅱ层中部的降压开采数值模拟。模拟结果表明:该建模方法提高了模拟器在复杂建模方面的能力,对天然气水合物高效开采数值模拟具有较好效果和参考意义;相较于单一水平井降压开采,多分支井开采技术能最大限度地增加天然气水合物藏的裸露面积和深度,有效提高水合物藏储量动用程度,是值得探索的高效开采技术方法。
Abstract:Natural gas hydrates are widely distributed and shallowly buried in the ocean. It is clean, pollution-free, and huge in reserves. As a clean energy source, it has great development potential in the future. In order to conduct the commercial exploitation of natural gas hydrate, it is necessary to explore the efficient gas hydrate exploitation technology based on multilateral wells. In the process to use the TOUGH+HYDRATE simulator to make numerical simulation, the complex structure well modeling is the difficulty. In this paper, we proposed a fast modeling method for complex structure well based on mVIEW. Taking the multilateral well as an example, the modeling process is briefly introduced in this paper. In addition, combined with the TOUGH+HYDRATE simulator, based on the logging curve data from the testing well of SHSC-4 operated by the China Geological Survey in 2017 in the Shenhu area of the Baiyun Sag in the deep water area of the northern South China Sea, an ideal layered geological model is established for hydrate reservoirs. Single horizontal well and multilateral well numerical simulation for depressurized production in the central part of the Hydrate Layer II is conducted. The simulation results show that: The modeling method has improved the simulator's ability in complex modeling and has good effect and reference significance for the numerical simulation research work for highly efficient gas hydrate production; Compared with single well depressurization production, multilateral well technology can maximize the exposed area and depth of gas hydrate reservoirs, and effectively increase the degree of production of hydrate reservoirs. It is a technical method worthy to be developed for efficient production of natural gas hydrates in the future.
-
Key words:
- natural gas hydrate /
- complex structure well /
- mVIEW /
- multilateral well /
- numerical simulation /
- TOUGH+HYDRATE
-
-
图 6 SHSC-4井位置示意图[19]
Figure 6.
图 7 模型示意图[18]
Figure 7.
表 1 储层特征参数和模拟计算参数
Table 1. Reservoir characteristic parameters and simulation calculation parameters
参数
类型参数 参数值 储层
特征上覆层厚度 30 m 下伏层厚度 30 m 水合物Ⅰ层 35 m 水合物Ⅱ层 15 m 水合物Ⅲ层 27 m 上覆层、下伏层孔隙度 0.3 上覆层、下伏层渗透率k 2×10−3 μm2 水合物Ⅰ层渗透率k 2.9×10−3 μm2 水合物Ⅱ层渗透率k 1.5×10−3 μm2 水合物Ⅲ层渗透率k 7.4×10−3 μm2 水合物Ⅰ层、Ⅱ层和Ⅲ层的孔隙度、水合物饱和度、气体饱和度、水饱和度 参考SHSC4测井曲线
数据引用参考文献[18-19,21]地温梯度 43.653 ℃/km 颗粒骨架密度ρR 2 600 kg·m−3 干岩热导率kΘRD 1.0 W·m−1·K−1 湿岩热导率kΘRW 3.1 W·m−1·K−1 模型
参数毛细管力模型 Pcap = −P0[(S*)−1/λ − 1]1− λ
S* =(SA − SirA)/(SmxA − SirA)
毛细进气压力P0(Pa),1×104
最大毛细压力Pmax(Pa),1×106
孔隙分布指数m,0.45相对渗透率模型 KrA= [(SA- SirA)/(1- SirA)]n,
krG=[(SG-SirG)/(1-SirA)]nG
残余水饱和度SirA,0.6
残余气饱和度SirG,0.02
液相衰减指数n,3.75
气相衰减指数nG,2.5表 2 生产井设计、开采方式
Table 2. Production well design and exploitation method
方案 生产井设计 开采方式 Case1 单一水平井布设在水合物Ⅱ层中部(Z=−72.5 m),
水平段长300 m,半径0.1 m,裸眼完井全井筒降压,压降为7 Mpa,开采60 d Case2 多分支井布设在水合物Ⅱ层中部(Z=−72.5 m),主井眼长300 m,
分支井井眼长100 m×8,半径0.1 m,裸眼完井全井筒降压,压降为7 Mpa,开采60 d -
[1] MORIDIS G J, KOWALSKY M B, PRUESS K. TOUGH+HYDRATE v1.0 User's Manual: a code for the simulation of system behavior in hydrate-bearing geologic media[R]. Berkeley: LawrenceBerkeley National Laboratory, 2008.
[2] RUTQVIS T J,MORIDIS G J. Numerical studies on the geomechanical stability of hydrate-bearing sediments[J]. SPE Journal,2009,14(2):267-282. doi: 10.2118/126129-PA
[3] BIRKEDAL K A,FREEMAN C M,MORIDIS G J,et al. Numerical predictions of experimentally observed methane hydrate dissociation and reformation in sandstone[J]. Energy & Fuels,2014,28(9):5573-5586.
[4] FENG J C,LI X S,LI G,et al. Numerical investigation of hydrate dissociation performance in the South China Sea with different horizontal well configurations[J]. Energies,2014,7(8):4813-4834. doi: 10.3390/en7084813
[5] LI X S,YANG B,LI G,et al. Numerical simulation of gas production from natural gas hydrate using a single horizontal well by depressurization in Qilian Mountain Permafrost[J]. Industrial & Engineering Chemistry Research,2012,51(11):4424-4432.
[6] 苏正,吴能友,张可霓. 南海北部陆坡神狐天然气水合物开发潜力[J]. 海洋地质前沿,2011,27(6):16-23.
[7] 李淑霞,刘佳丽,武迪迪,等. 神狐海域水合物藏降压开采的数值模拟[J]. 科学技术与工程,2018,18(24):38-43. doi: 10.3969/j.issn.1671-1815.2018.24.006
[8] 李刚,李小森,ZHANG K N,等. 水平井开采南海神狐海域天然气水合物数值模拟[J]. 地球物理学报,2011,54(9):2325-2337. doi: 10.3969/j.issn.0001-5733.2011.09.016
[9] 李刚,李小森. 单井热吞吐开采南海神狐海域天然气水合物数值模拟[J]. 化工学报,2011,62(2):458-468.
[10] LI Y L,WAN Y Z,CHEN Q,et al. Large borehole with multi-lateral branches:A novel solution for exploitation of clayey silt hydrate[J]. China Geology,2019,2(3):333-341.
[11] 苑珊珊,刘启国,熊景明. 多分支井技术发展综述[J]. 国外油田工程,2010,26(12):42-44,47.
[12] 沈忠厚,黄洪春,高德利. 世界钻井技术新进展及发展趋势分析[J]. 中国石油大学学报(自然科学版),2009,33(4):64-70.
[13] 王光颖. 多分支井钻井技术综述与最新进展[J]. 海洋石油,2006(3):100-104. doi: 10.3969/j.issn.1008-2336.2006.03.022
[14] 张立平,纪哲峰,付广群. 多分支井的技术展望[J]. 国外油田工程,2001(11):36-37.
[15] 万庭辉, 李占钊, AVIS J, 等. 天然气水合物开采数值模拟中基于mVIEW的水平井井眼轨迹建模[J]. 海洋地质前沿,2020,36(8):74-80.
[16] WU N, YANG S, ZHANG H, et al. Gas Hydrate System of Shenhu Area, Northern South China Sea: Wire-line Logging, Geochemical Results and Preliminary Resources Estimates[C]//Proceedings of the Annual Offshore Technology Conference, 2010.
[17] 杨胜雄,梁金强,陆敬安,等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘,2017,24(4):1-14.
[18] LI J F,YE J L,QIN X W,et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology,2018,1(1):5-16. doi: 10.31035/cg2018003
[19] MA X L,SUN Y H,LIU B C,et al. Numerical study of depressurization and hot water injection for gas hydrate production in China's first offshore test site[J]. Journal of Natural Gas Science and Engineering,2020:103530.
[20] MORIDIS G J,KOWALSKY M B,PRUESS K. Depressurization-induced gas production from class-1 hydrate deposits[J]. Society of Petroleum Engineers Reservoir Evaluation Andengineering,2007,10(5):458-481.
[21] SUN Y H,MA X L,GUO W,et al. Numerical simulation of the short- and long-term production behavior of the first offshore gas hydrate production test in the South China Sea[J]. Journal of Petroleum Science and Engineering,2019,181:106196. doi: 10.1016/j.petrol.2019.106196
[22] CHEN L,FENG Y C,OKAJIMA J,et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu,South China Sea[J]. Journal of natural gas science and engineering,2018,53:55-66. doi: 10.1016/j.jngse.2018.02.029
[23] SUN J X,NING F L,LIU T L,et al. Gas production from a silty hydrate reservoir in the South China Sea using hydraulic fracturing:a numerical simulation[J]. Energy ence & Engineering,2019,7(1):1106-1122.
[24] MORIDIS G J,REAGAN M T,BOYLE K L,et al. Evaluation of the gas production potential of some particularly challenging types of oceanic hydrate deposits[J]. Transport in Porous Media,2011,90(1):269-299. doi: 10.1007/s11242-011-9762-5
[25] SUN J X,ZHANG L,NING F L,et al. Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea:a preliminary feasibility study[J]. Marine & Petroleum Geology,2017, 86:447-473.
[26] YUAN Y L,XU T F,XIN X,et al. Multiphase flow behavior of layered methane hydrate reservoir induced by gas production[J]. Geofluids,2017:1-15.
[27] SUN J X,NING F L,LI S,et al. Numerical simulation of gas production from hydrate-bearing sediments in the Shenhu area by depressurising:the effect of burden permeability[J]. Journal of Unconventional Oil and Gas Resources,2015(12):23-33.
[28] FENG Y C,CHEN L,SUZUKI A,et al. Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method[J]. Energy Conversion And Management,2019(184):194-204.
[29] MORIDIS G J,REAGAN M T,KIM S J,et al. Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea[J]. SPE Journal,2007,14(4):759-781.
[30] MORIDIS G J, REAGAN M T. Strategies for gas production from oceanic class 3 hydrate accumulations[C]//Offshore Technology Conference, Houston, 2007: OTC 18865.
[31] MORIDIS G J, REAGAN M T. Gas production from oceanic class 2 hydrate accumulations[C]//Offshore Technology Conference, Houston, 2007: OTC 18866.
[32] MORIDIS G J, KOWALSKY M. Gas production from unconfined Class 2 hydrate accumulations in the oceanic subsurface[M]//MAX M, JOHNSON A H, DILLON W P, et al. Economic Geology of Natural Gas Hydrates. Kluwer Academic/Plenum Publishers, 2006: 249-266.
[33] SU Z, MORIDIS G, ZHANG K, et al. Numerical investigation of gas production strategy for the hydrate deposits in the Shenhu Area[C]//Offshore Technology Conference, Houston, 2010: OTC 20551.
[34] LI G,MORIDIS G J,ZHANG K,et al. Evaluation of gas production potential from marine gas hydrate deposits in Shenhu Area of South China Sea[J]. Energy & Fuels,2010,24(11):6018-6033.
[35] CATHLES L M. Changes in sub-water table fluid flow at the end of the Proterozoic and its implications for gas pulsars and MVT lead-zinc deposits[J]. Geofluids. 2007, 7(2): 209-226.
-