天然气水合物数值模拟中基于mVIEW的多分支井建模

万庭辉, 王静丽, 沙志彬, 贺会策, 李占钊, 于彦江, 梁前勇, 黄宁. 天然气水合物数值模拟中基于mVIEW的多分支井建模[J]. 海洋地质前沿, 2021, 37(11): 60-69. doi: 10.16028/j.1009-2722.2020.166
引用本文: 万庭辉, 王静丽, 沙志彬, 贺会策, 李占钊, 于彦江, 梁前勇, 黄宁. 天然气水合物数值模拟中基于mVIEW的多分支井建模[J]. 海洋地质前沿, 2021, 37(11): 60-69. doi: 10.16028/j.1009-2722.2020.166
WAN Tinghui, WANG Jingli, SHA Zhibin, HE Huice, LI Zhanzhao, YU Yanjiang, LIANG Qianyong, HUANG Ning. TOUGH+MULTILATERAL WELL MODEL CONSTRUCTION BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE[J]. Marine Geology Frontiers, 2021, 37(11): 60-69. doi: 10.16028/j.1009-2722.2020.166
Citation: WAN Tinghui, WANG Jingli, SHA Zhibin, HE Huice, LI Zhanzhao, YU Yanjiang, LIANG Qianyong, HUANG Ning. TOUGH+MULTILATERAL WELL MODEL CONSTRUCTION BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE[J]. Marine Geology Frontiers, 2021, 37(11): 60-69. doi: 10.16028/j.1009-2722.2020.166

天然气水合物数值模拟中基于mVIEW的多分支井建模

  • 基金项目: 广东省促进经济高质量发展专项资金“海洋经济发展项目”(GDOE(2019)A39);自然资源部海底矿产资源重点实验室开放基金(KLMMR-2018-A-05);广东省海洋经济发展专项资金项目“海洋天然气水合物开采一体化实时环境监测网关键节点建设”(GDNRC [2020] 043)
详细信息
    作者简介: 万庭辉(1990—),男,在读硕士,工程师,主要从事天然气水合物数值模拟方面的研究工作. E-mail:825848651@qq.com
    通讯作者: 王静丽(1987—),女,硕士,工程师,主要从事天然气水合物勘察开发方面的研究工作. E-mail:345856883@qq.com
  • 中图分类号: P744.4

TOUGH+MULTILATERAL WELL MODEL CONSTRUCTION BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE

More Information
  • 天然气水合物分布广、埋藏浅、清洁无污染、储量巨大,是极具发展潜力的清洁能源。为实现天然气水合物商业化开采,急需探索基于多分支井的高效开采技术。在使用TOUGH+HYDRATE模拟器开展数值模拟中,复杂结构井建模是研究工作的难点。为此提出了基于mVIEW的复杂结构井快速建模方法,以多分支井为例简要介绍了建模流程;此外,结合TOUGH+HYDRATE模拟器,以中国地质调查局2017年在南海北部陆坡深水区白云凹陷神狐海域SHSC-4试采井测井曲线数据为基础,建立理想水合物藏分层地质模型,开展单一水平井和多分支井在水合物Ⅱ层中部的降压开采数值模拟。模拟结果表明:该建模方法提高了模拟器在复杂建模方面的能力,对天然气水合物高效开采数值模拟具有较好效果和参考意义;相较于单一水平井降压开采,多分支井开采技术能最大限度地增加天然气水合物藏的裸露面积和深度,有效提高水合物藏储量动用程度,是值得探索的高效开采技术方法。

  • 加载中
  • 图 1  多分支井类型示意图

    Figure 1. 

    图 2  地质体网格

    Figure 2. 

    图 3  多分支井在地质体的空间位置

    Figure 3. 

    图 4  多分支井的主井和分支井的轨迹坐标

    Figure 4. 

    图 5  多分支井网格

    Figure 5. 

    图 6  SHSC-4井位置示意图[19]

    Figure 6. 

    图 7  模型示意图[18]

    Figure 7. 

    图 8  生产井设计示意图

    Figure 8. 

    图 9  产气产水量随时间的变化关系

    Figure 9. 

    图 10  开采60 d后温压等参数分布场

    Figure 10. 

    表 1  储层特征参数和模拟计算参数

    Table 1.  Reservoir characteristic parameters and simulation calculation parameters

    参数
    类型
    参数参数值
    储层
    特征
    上覆层厚度30 m
    下伏层厚度30 m
    水合物Ⅰ层35 m
    水合物Ⅱ层15 m
    水合物Ⅲ层27 m
    上覆层、下伏层孔隙度0.3
    上覆层、下伏层渗透率k2×10−3 μm2
    水合物Ⅰ层渗透率k2.9×10−3 μm2
    水合物Ⅱ层渗透率k1.5×10−3 μm2
    水合物Ⅲ层渗透率k7.4×10−3 μm2
    水合物Ⅰ层、Ⅱ层和Ⅲ层的孔隙度、水合物饱和度、气体饱和度、水饱和度参考SHSC4测井曲线
    数据引用参考文献[18-19,21]
    地温梯度43.653 ℃/km
    颗粒骨架密度ρR2 600 kg·m−3
    干岩热导率kΘRD1.0 W·m−1·K−1
    湿岩热导率kΘRW3.1 W·m−1·K−1
    模型
    参数
    毛细管力模型Pcap = −P0[(S*−1/λ − 1]1− λ
    S* =(SASirA)/(SmxASirA
    毛细进气压力P0(Pa),1×104
    最大毛细压力Pmax(Pa),1×106
    孔隙分布指数m,0.45
    相对渗透率模型KrA= [(SA- SirA)/(1- SirA)]n
    krG=[(SG-SirG)/(1-SirA)]nG
    残余水饱和度SirA,0.6
    残余气饱和度SirG,0.02
    液相衰减指数n,3.75
    气相衰减指数nG,2.5
    下载: 导出CSV

    表 2  生产井设计、开采方式

    Table 2.  Production well design and exploitation method

    方案生产井设计开采方式
    Case1单一水平井布设在水合物Ⅱ层中部(Z=−72.5 m),
    水平段长300 m,半径0.1 m,裸眼完井
    全井筒降压,压降为7 Mpa,开采60 d
    Case2多分支井布设在水合物Ⅱ层中部(Z=−72.5 m),主井眼长300 m,
    分支井井眼长100 m×8,半径0.1 m,裸眼完井
    全井筒降压,压降为7 Mpa,开采60 d
    下载: 导出CSV
  • [1]

    MORIDIS G J, KOWALSKY M B, PRUESS K. TOUGH+HYDRATE v1.0 User's Manual: a code for the simulation of system behavior in hydrate-bearing geologic media[R]. Berkeley: LawrenceBerkeley National Laboratory, 2008.

    [2]

    RUTQVIS T J,MORIDIS G J. Numerical studies on the geomechanical stability of hydrate-bearing sediments[J]. SPE Journal,2009,14(2):267-282. doi: 10.2118/126129-PA

    [3]

    BIRKEDAL K A,FREEMAN C M,MORIDIS G J,et al. Numerical predictions of experimentally observed methane hydrate dissociation and reformation in sandstone[J]. Energy & Fuels,2014,28(9):5573-5586.

    [4]

    FENG J C,LI X S,LI G,et al. Numerical investigation of hydrate dissociation performance in the South China Sea with different horizontal well configurations[J]. Energies,2014,7(8):4813-4834. doi: 10.3390/en7084813

    [5]

    LI X S,YANG B,LI G,et al. Numerical simulation of gas production from natural gas hydrate using a single horizontal well by depressurization in Qilian Mountain Permafrost[J]. Industrial & Engineering Chemistry Research,2012,51(11):4424-4432.

    [6]

    苏正,吴能友,张可霓. 南海北部陆坡神狐天然气水合物开发潜力[J]. 海洋地质前沿,2011,27(6):16-23.

    [7]

    李淑霞,刘佳丽,武迪迪,等. 神狐海域水合物藏降压开采的数值模拟[J]. 科学技术与工程,2018,18(24):38-43. doi: 10.3969/j.issn.1671-1815.2018.24.006

    [8]

    李刚,李小森,ZHANG K N,等. 水平井开采南海神狐海域天然气水合物数值模拟[J]. 地球物理学报,2011,54(9):2325-2337. doi: 10.3969/j.issn.0001-5733.2011.09.016

    [9]

    李刚,李小森. 单井热吞吐开采南海神狐海域天然气水合物数值模拟[J]. 化工学报,2011,62(2):458-468.

    [10]

    LI Y L,WAN Y Z,CHEN Q,et al. Large borehole with multi-lateral branches:A novel solution for exploitation of clayey silt hydrate[J]. China Geology,2019,2(3):333-341.

    [11]

    苑珊珊,刘启国,熊景明. 多分支井技术发展综述[J]. 国外油田工程,2010,26(12):42-44,47.

    [12]

    沈忠厚,黄洪春,高德利. 世界钻井技术新进展及发展趋势分析[J]. 中国石油大学学报(自然科学版),2009,33(4):64-70.

    [13]

    王光颖. 多分支井钻井技术综述与最新进展[J]. 海洋石油,2006(3):100-104. doi: 10.3969/j.issn.1008-2336.2006.03.022

    [14]

    张立平,纪哲峰,付广群. 多分支井的技术展望[J]. 国外油田工程,2001(11):36-37.

    [15]

    万庭辉, 李占钊, AVIS J, 等. 天然气水合物开采数值模拟中基于mVIEW的水平井井眼轨迹建模[J]. 海洋地质前沿,2020,36(8):74-80.

    [16]

    WU N, YANG S, ZHANG H, et al. Gas Hydrate System of Shenhu Area, Northern South China Sea: Wire-line Logging, Geochemical Results and Preliminary Resources Estimates[C]//Proceedings of the Annual Offshore Technology Conference, 2010.

    [17]

    杨胜雄,梁金强,陆敬安,等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘,2017,24(4):1-14.

    [18]

    LI J F,YE J L,QIN X W,et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology,2018,1(1):5-16. doi: 10.31035/cg2018003

    [19]

    MA X L,SUN Y H,LIU B C,et al. Numerical study of depressurization and hot water injection for gas hydrate production in China's first offshore test site[J]. Journal of Natural Gas Science and Engineering,2020:103530.

    [20]

    MORIDIS G J,KOWALSKY M B,PRUESS K. Depressurization-induced gas production from class-1 hydrate deposits[J]. Society of Petroleum Engineers Reservoir Evaluation Andengineering,2007,10(5):458-481.

    [21]

    SUN Y H,MA X L,GUO W,et al. Numerical simulation of the short- and long-term production behavior of the first offshore gas hydrate production test in the South China Sea[J]. Journal of Petroleum Science and Engineering,2019,181:106196. doi: 10.1016/j.petrol.2019.106196

    [22]

    CHEN L,FENG Y C,OKAJIMA J,et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu,South China Sea[J]. Journal of natural gas science and engineering,2018,53:55-66. doi: 10.1016/j.jngse.2018.02.029

    [23]

    SUN J X,NING F L,LIU T L,et al. Gas production from a silty hydrate reservoir in the South China Sea using hydraulic fracturing:a numerical simulation[J]. Energy ence & Engineering,2019,7(1):1106-1122.

    [24]

    MORIDIS G J,REAGAN M T,BOYLE K L,et al. Evaluation of the gas production potential of some particularly challenging types of oceanic hydrate deposits[J]. Transport in Porous Media,2011,90(1):269-299. doi: 10.1007/s11242-011-9762-5

    [25]

    SUN J X,ZHANG L,NING F L,et al. Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea:a preliminary feasibility study[J]. Marine & Petroleum Geology,2017, 86:447-473.

    [26]

    YUAN Y L,XU T F,XIN X,et al. Multiphase flow behavior of layered methane hydrate reservoir induced by gas production[J]. Geofluids,2017:1-15.

    [27]

    SUN J X,NING F L,LI S,et al. Numerical simulation of gas production from hydrate-bearing sediments in the Shenhu area by depressurising:the effect of burden permeability[J]. Journal of Unconventional Oil and Gas Resources,2015(12):23-33.

    [28]

    FENG Y C,CHEN L,SUZUKI A,et al. Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method[J]. Energy Conversion And Management,2019(184):194-204.

    [29]

    MORIDIS G J,REAGAN M T,KIM S J,et al. Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea[J]. SPE Journal,2007,14(4):759-781.

    [30]

    MORIDIS G J, REAGAN M T. Strategies for gas production from oceanic class 3 hydrate accumulations[C]//Offshore Technology Conference, Houston, 2007: OTC 18865.

    [31]

    MORIDIS G J, REAGAN M T. Gas production from oceanic class 2 hydrate accumulations[C]//Offshore Technology Conference, Houston, 2007: OTC 18866.

    [32]

    MORIDIS G J, KOWALSKY M. Gas production from unconfined Class 2 hydrate accumulations in the oceanic subsurface[M]//MAX M, JOHNSON A H, DILLON W P, et al. Economic Geology of Natural Gas Hydrates. Kluwer Academic/Plenum Publishers, 2006: 249-266.

    [33]

    SU Z, MORIDIS G, ZHANG K, et al. Numerical investigation of gas production strategy for the hydrate deposits in the Shenhu Area[C]//Offshore Technology Conference, Houston, 2010: OTC 20551.

    [34]

    LI G,MORIDIS G J,ZHANG K,et al. Evaluation of gas production potential from marine gas hydrate deposits in Shenhu Area of South China Sea[J]. Energy & Fuels,2010,24(11):6018-6033.

    [35]

    CATHLES L M. Changes in sub-water table fluid flow at the end of the Proterozoic and its implications for gas pulsars and MVT lead-zinc deposits[J]. Geofluids. 2007, 7(2): 209-226.

  • 加载中

(10)

(2)

计量
  • 文章访问数:  2390
  • PDF下载数:  106
  • 施引文献:  0
出版历程
收稿日期:  2020-10-22
刊出日期:  2021-11-27

目录