浪控三角洲发育特征:以莺歌海盆地东方1-1气田上新统莺二段为例

高雨, 屈红军, 陈硕, 周伟, 莫冯阳. 浪控三角洲发育特征:以莺歌海盆地东方1-1气田上新统莺二段为例[J]. 海洋地质前沿, 2021, 37(11): 42-52. doi: 10.16028/j.1009-2722.2020.183
引用本文: 高雨, 屈红军, 陈硕, 周伟, 莫冯阳. 浪控三角洲发育特征:以莺歌海盆地东方1-1气田上新统莺二段为例[J]. 海洋地质前沿, 2021, 37(11): 42-52. doi: 10.16028/j.1009-2722.2020.183
GAO Yu, QU Hongjun, CHEN Shuo, ZHOU Wei, MO Fengyang. GENETIC CHARACTERISTICS OF WAVE-DOMINATED DELTA: A CASE STUDY ON PLIOCENE YING Ⅱ MEMBER IN THE DONGFANG1-1 GAS FIELD,YINGGEHAI BASIN[J]. Marine Geology Frontiers, 2021, 37(11): 42-52. doi: 10.16028/j.1009-2722.2020.183
Citation: GAO Yu, QU Hongjun, CHEN Shuo, ZHOU Wei, MO Fengyang. GENETIC CHARACTERISTICS OF WAVE-DOMINATED DELTA: A CASE STUDY ON PLIOCENE YING Ⅱ MEMBER IN THE DONGFANG1-1 GAS FIELD,YINGGEHAI BASIN[J]. Marine Geology Frontiers, 2021, 37(11): 42-52. doi: 10.16028/j.1009-2722.2020.183

浪控三角洲发育特征:以莺歌海盆地东方1-1气田上新统莺二段为例

  • 基金项目: “十三五”国家科技重大专项“南海深水区油气资源潜力与大中型油气田勘探方向”(2016ZX05026-007)
详细信息
    作者简介: 高雨(1998—),女,在读硕士,主要从事储层沉积学方面的研究工作. E-mail:1837634479@qq.com
    通讯作者: 屈红军(1967—),男,博士,教授,博士生导师,主要从事储层沉积学方面的研究工作. E-mail:hongjun@nwu.edu.cn
  • 中图分类号: P744.4; P618.13

GENETIC CHARACTERISTICS OF WAVE-DOMINATED DELTA: A CASE STUDY ON PLIOCENE YING Ⅱ MEMBER IN THE DONGFANG1-1 GAS FIELD,YINGGEHAI BASIN

More Information
  • 浪控三角洲又可称为鸟嘴状弓形浪控三角洲,目前学术界对其沉积特征的研究较少。以莺歌海盆地莺二段为例,以测井相、地震相以及岩芯相的详细分析为基础,结合研究区沉积背景,揭示了浪控三角洲砂坝的发育特征。岩芯相上,浪控三角洲砂坝主要发育槽状交错层理,还含有少量生物遗迹构造;测井相上主要表现为连续多个反旋回漏斗型沉积层序;地震相上呈现条带状或弓形分布的低角度前积地震相。通过研究莺歌海组二段剖面相和平面相可知,浪控三角洲砂坝平面形态呈弓形,由西向东被泥流水道依次切割为3期沉积,且随着向海方向推进,砂体厚度逐渐增大。浪控三角洲为破坏性三角洲沉积,其形成机理是由于波浪作用大于河流作用,因而沉积模式受波浪改造作用影响较大。

  • 加载中
  • 图 1  东方1-1气田、井位及对比剖面位置[23]

    Figure 1. 

    图 2  地层综合柱状图

    Figure 2. 

    图 3  东方1-1气田岩芯岩性构造特征

    Figure 3. 

    图 4  莺歌海盆地东方1-1气田莺二段岩芯沉积构造与概率粒度曲线图

    Figure 4. 

    图 5  东方气田莺二段DF1-1-5井典型测井曲线特征

    Figure 5. 

    图 6  过DF1-1-5—DF1-1-3井东西向地震剖面显示由西向东的前积反射

    Figure 6. 

    图 7  东方1-1气田莺二段DF1-1-9—DF1-1-5—DF1-1-11—DF1-1-3井连井沉积相对比剖面

    Figure 7. 

    图 8  莺歌海盆地东方1-1气田莺二段平面展布图

    Figure 8. 

    图 9  莺歌海盆地东方1-1气田岩芯构造特征

    Figure 9. 

    图 10  莺歌海盆地东方1-1气田上新统莺二段综合沉积模式

    Figure 10. 

  • [1]

    VEEKEN P C H, VAN MOERKERKEN B. Seismic stratigraphy and depositional facies models[M]. Houten: EAGE Publications, 2013: 1-100.

    [2]

    EL-SOROGY A,AL-KAHTANY K,ALMADANI S,et al. Depositional architecture and sequence stratigraphy of the upper Jurassic Hanifa formation,central Saudi Arabia[J]. Journal of African Earth Sciences,2018,139:367-378. doi: 10.1016/j.jafrearsci.2017.12.025

    [3]

    LIN C S,JIANG J,SHI H S,et al. Sequence architecture and depositional evolution of the northern continental slope of the south China sea:Responses to tectonic processes and changes in sea level[J]. Basin Research,2018,30(1):568-595.

    [4]

    朱筱敏,钟大康,袁选俊,等. 中国含油气盆地沉积地质学进展[J]. 石油勘探与开发,2016,43(5):820-829.

    [5]

    朱筱敏,董艳蕾,曾洪流,等. 沉积地质学发展新航程:地震沉积学[J]. 古地理学报,2019,21(2):189-201. doi: 10.7605/gdlxb.2019.02.011

    [6]

    CATUNEANU O. Scale in sequence stratigraphy[J]. Marine and Petroleum Geology,2019,106:128-159. doi: 10.1016/j.marpetgeo.2019.04.026

    [7]

    SCRUTON P C. Delta building and the deltaic sequence[J]. Recent Sediments Northwest Gulf of Mexico, 1960.

    [8]

    FISHER W,MCGOWEN J. Depositional systems in Wilcox Group (Eocene) of Texas and their relation to occurrence of oil and gas[J]. AAPG Bulletin,1969,53(1):30-54.

    [9]

    GALLOWAY W E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems[M]//Broussard M (Ed.), Deltas: models for exploration. Houston Geological Society, 1975: 87-98.

    [10]

    薛良清,Galloway W E. 扇三角洲、辫状河三角洲与三角洲体系的分类[J]. 地质学报,1991,65(2):141-153.

    [11]

    BHATTACHARYA J P,GIOSAN L. Wave-influenced deltas:geomorphological implications for facies reconstruction[J]. Sedimentology,2010,50(1):187-210.

    [12]

    KUBO,SUMIKO,NAGAKUMAR,et al. Palaeogeography and evolution of the Godavari delta,east coast of India during the Holocene:an example of wave-dominated and fan-delta settings[J]. Palaeogeography,Palaeoclimatology,Palaeoecology: An International Journal for the Geo-Sciences,2015,440:213-233.

    [13]

    于水,程涛,陈莹. 尼日尔三角洲盆地深水沉积体系特征[J]. 地球科学(中国地质大学学报),2012,37(4):763-770.

    [14]

    谢启红,邵先杰,乔雨朋,等. 尼罗河现代三角洲沉积特征解剖[J]. 重庆科技学院学报(自然科学版),2016,18(2):31-35.

    [15]

    赵霞飞,李宗飞,刘立. 辽河盆地宋家洼陷上侏罗统扇三角洲和浪控三角洲[J]. 成都理工大学学报(自然科学版),2002,29(6):591-599.

    [16]

    储呈林,林畅松,朱永峰,等. 塔北隆起东河砂岩层序地层和沉积体系研究[J]. 西南石油大学学报(自然科学版),2011,33(1):15-20.

    [17]

    李维禄,徐怀民,高思宇,等. 三角洲改造背景的浪控滨岸砂体成因类型及展布特征:以塔里木盆地东河塘地区“东河砂岩”为例[J]. 中国海洋大学学报(自然科学版),2017,47(9):86-95.

    [18]

    任建业,雷超. 莺歌海-琼东南盆地构造-地层格架及南海动力变形分区[J]. 地球物理学报,2011,54(12):3303-3314. doi: 10.3969/j.issn.0001-5733.2011.12.028

    [19]

    HAO F,LI S T,SUN Y C,et al. Characteristics and origin of the gas and condensate in the Yinggehai Basin,offshore South China Sea:evidence for effects of overpressure on petroleum generation and migration[J]. Organic Geochemistry,1996,24(3):363-375. doi: 10.1016/0146-6380(96)00009-5

    [20]

    LI S T,LIN C S,ZHANG Q M,et al. Episodic rifting of continental marginal basins and tectonic events since 10 Ma in the South China Sea[J]. Chinese Science Bulletin,1999,44(1):10-23. doi: 10.1007/BF03182877

    [21]

    HUANG B J,XIAO X M,HU Z L,et al. Geochemistry and episodic accumulation of natural gases from the Ledong gas field in the Yinggehai Basin,offshore South China Sea[J]. Organic Geochemistry,2005,36(12):1689-1702. doi: 10.1016/j.orggeochem.2005.08.011

    [22]

    XIE X N,MÜLLER R D,LI S T,et al. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology,2006,23(7):745-765. doi: 10.1016/j.marpetgeo.2006.03.004

    [23]

    岳绍飞,张辉,杨朝强,等. 东方A气田浅海背景下莺歌海组“侧积”复合体成因机制分析[J]. 油气地质与采收率,2018,25(6):32-37.

    [24]

    SUN Z,ZHOU D,ZHONG Z,et al. Experimental evidence for the dynamics of the formation of the Yinggehai basin,NW South China Sea[J]. Tectonophysics,2003,372(1):41-58.

    [25]

    何家雄,昝立声,陈龙操,等. 莺歌海盆地泥丘发育特征与油气远景[J]. 石油与天然气地质,1990(04):436-445.

    [26]

    HUANG B J,XIAO X M,DONG W L. Multiphase natural gas migration and accumulation and its relationship to diapir structures in the DF1-1 Gas Field,South China Sea[J]. Marine and Petroleum Geology,2002,19(7):861-872. doi: 10.1016/S0264-8172(02)00109-5

    [27]

    郝芳,董伟良,邹华耀,等. 莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏[J]. 石油学报,2003,24(6):7-12. doi: 10.3321/j.issn:0253-2697.2003.06.002

    [28]

    姜平,于兴河,黄月银,等. 储层精细描述在东方1-1气田中的应用[J]. 地学前缘,2012,19(2):87-94.

    [29]

    吕明. 莺-琼盆地低位沉积模式的新探讨[J]. 中国海上油气(地质),2002,16(4):4-13.

    [30]

    李胜利,于兴河,谢玉洪,等. 滨浅海泥流沟谷识别标志、类型及沉积模式:以莺歌海盆地东方1-1气田为例[J]. 沉积学报,2010,28(6):1076-1080.

    [31]

    岳绍飞,张辉,覃利娟,等. 莺歌海盆地东方区黄流组一段砂质碎屑流沉积模式[J]. 大庆石油地质与开发,2020,39(4):9-18.

    [32]

    于兴河,李胜利,李顺利. 三角洲沉积的结构—成因分类与编图方法[J]. 沉积学报,2013,31(5):782-797.

    [33]

    李小平,柳保军,丁琳,等. 海相三角洲沉积单元划分及其对勘探砂体对比的意义:基于现代珠江三角洲沉积水动力综合研究[J]. 沉积学报,2016,34(3):555-562.

  • 加载中

(10)

计量
  • 文章访问数:  1329
  • PDF下载数:  126
  • 施引文献:  0
出版历程
收稿日期:  2020-11-24
刊出日期:  2021-11-27

目录