下扬子皖南地区下寒武统荷塘组页岩地球化学特征及地质意义

姚红生, 何希鹏, 汪凯明. 下扬子皖南地区下寒武统荷塘组页岩地球化学特征及地质意义[J]. 海洋地质前沿, 2022, 38(4): 32-41. doi: 10.16028/j.1009-2722.2021.123
引用本文: 姚红生, 何希鹏, 汪凯明. 下扬子皖南地区下寒武统荷塘组页岩地球化学特征及地质意义[J]. 海洋地质前沿, 2022, 38(4): 32-41. doi: 10.16028/j.1009-2722.2021.123
YAO Hongsheng, HE Xipeng, WANG Kaiming. Geochemical characteristics and significance of the shale of Lower Cambrian Hetang Formation in the southern Anhui Province of Lower Yangtze area[J]. Marine Geology Frontiers, 2022, 38(4): 32-41. doi: 10.16028/j.1009-2722.2021.123
Citation: YAO Hongsheng, HE Xipeng, WANG Kaiming. Geochemical characteristics and significance of the shale of Lower Cambrian Hetang Formation in the southern Anhui Province of Lower Yangtze area[J]. Marine Geology Frontiers, 2022, 38(4): 32-41. doi: 10.16028/j.1009-2722.2021.123

下扬子皖南地区下寒武统荷塘组页岩地球化学特征及地质意义

  • 基金项目: “十三五”国家科技重大专项(2017ZX05036-003-009)
详细信息
    作者简介: 姚红生(1968—),男,正高级工程师,主要从事油气资源勘探开发方面的研究工作. E-mail:yaohs.hdsj@sinopec.com
  • 中图分类号: P736.4;P618.13

Geochemical characteristics and significance of the shale of Lower Cambrian Hetang Formation in the southern Anhui Province of Lower Yangtze area

  • 中国南方下寒武统富有机质黑色页岩发育,具有分布面积广、沉积厚度大、有机碳含量高等有利条件,蕴藏着丰富的页岩气资源潜力,有望成为页岩气“增储上产”的重要区域。以下扬子地区下寒武统荷塘组页岩气首口参数井−XY1井为研究对象,利用岩芯资料和地球化学分析测试数据,探讨了研究区元素地球化学特征与古环境意义。研究结果表明:主量元素SiO2、K2O相对富集,其他元素均不同程度地相对亏损;微量元素Sr、Rb亏损,Ni、Co、Ba元素明显富集。荷塘组黑色页岩属大陆边缘沉积,硅质主要来源于硅质生物,为生物成因,沉积时期气候温暖潮湿,为咸水-高盐水体环境,有利于有机质的形成,沉积期具有较高的古生产力,水体环境以贫氧-厌氧为主,有利于有机质保存。

  • 加载中
  • 图 1  下扬子地区构造区划及地层柱状图

    Figure 1. 

    图 2  XY1井荷塘组页岩主量元素构造环境判别图解

    Figure 2. 

    图 3  荷塘组页岩Al-Fe-Mn三角图解

    Figure 3. 

    图 4  XY1井页岩中硅质生物化石照片

    Figure 4. 

    图 5  荷塘组页岩及Barnett页岩Si-Al相关图

    Figure 5. 

    图 6  XY1井荷塘组页岩Al2O3、TiO2和SiO2含量相关性

    Figure 6. 

    图 7  XY1井荷塘组页岩古氧相判别图

    Figure 7. 

    表 1  XY1井荷塘组样品常量元素分析结果表

    Table 1.  Results of major elements analysis of Hetang Formation shale of Well XY 1

    %
    样品号SiO2Al2O3K2OFe2O3CaOMgOTiO2P2O5Na2OMnO烧失量Fe2O3/TiO2过量硅P/Ti
    S-1371.848.985.334.220.800.530.090.050.050.007.6946.8943.911.39
    S-1271.189.815.572.071.671.020.230.070.080.017.929.0040.670.76
    S-1169.046.293.192.444.962.590.240.060.030.0411.4410.1749.480.63
    S-1065.077.054.0610.880.290.530.240.070.030.0012.1545.3343.140.73
    S-971.4610.075.632.331.430.920.380.070.030.017.366.1340.140.46
    S-870.459.715.512.602.270.850.360.060.040.027.787.2240.250.42
    S-775.308.214.391.482.250.990.310.060.030.016.844.7749.770.48
    S-674.7110.545.521.900.760.800.370.060.040.014.995.1441.930.41
    S-574.3310.685.571.980.760.760.370.070.040.015.065.3541.120.47
    S-471.7812.426.491.960.410.840.430.070.040.005.174.5633.150.41
    S-368.7613.086.332.470.241.000.470.080.060.007.175.2628.080.43
    S-275.017.944.452.462.210.420.120.060.110.006.8720.5050.321.25
    S-171.9811.265.492.240.620.880.410.080.060.016.575.4636.960.49
    平均值71.619.705.193.001.440.930.310.070.050.017.469.6841.460.64
    上地壳(UCC)66.6015.402.805.043.592.480.640.153.270.10
    注:上地壳(UCC)值引自文献[28]。
    下载: 导出CSV

    表 2  XY1井荷塘组样品微量元素分析结果表

    Table 2.  Results of trace elements analysis of Hetang Formation shale of Well XY 1

    μg/g
    样品号CoCrCuNiRbSrThUVBa生物BaSr/CuRb/Sr
    S-13 32.20 49.70 80.70 85.90 95.61 25.30 8.90 7.87 197 11188 10822 0.31 3.78
    S-12 21.30 47.70 36.80 47.70 100.92 42.50 8.80 8.30 147 6626 6227 1.15 2.38
    S-11 31.30 32.20 18.10 33.20 57.98 130.00 5.68 6.89 78.4 1891 1635 7.19 0.45
    S-10 51.30 29.90 260.00 229.00 68.24 14.50 6.57 11.00 99.9 2323 2036 0.06 4.70
    S-9 21.00 49.70 46.30 40.70 101.07 30.90 9.52 7.59 79.2 2247 1836 0.67 3.27
    S-8 19.70 45.90 73.50 65.50 95.97 38.90 9.66 6.66 92.9 2196 1800 0.53 2.47
    S-7 29.70 43.20 23.50 43.30 81.33 33.30 7.90 7.37 193 1719 1384 1.42 2.44
    S-6 21.50 59.60 32.70 76.90 110.34 24.20 9.53 8.06 360 1922 1492 0.74 4.56
    S-5 25.90 57.00 31.80 79.30 108.42 24.60 9.18 7.11 291 1929 1494 0.77 4.40
    S-4 22.20 70.40 31.50 70.50 128.42 24.10 11.30 7.50 290 2333 1826 0.77 5.32
    S-3 19.70 84.90 32.20 109.00 124.69 22.50 11.80 14.60 719 3632 3099 0.70 5.54
    S-2 39.30 46.90 86.10 78.80 69.16 69.50 6.87 8.21 222 8858 8534 0.81 0.99
    S-1 20.30 72.00 44.40 93.20 105.40 30.40 10.20 11.00 451 3431 2972 0.68 3.47
    平均值 27.34 53.01 61.35 81.00 95.97 39.28 8.92 8.63 248 3869 3474 1.22 3.37
    上地壳(UCC) 4.2 18 7.4 140 320 10.4 2.4 97 620
    注:上地壳(UCC)值引自文献[28]。
    下载: 导出CSV
  • [1]

    邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.

    [2]

    郭彤楼,张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发,2014,41(1):28-36. doi: 10.11698/PED.2014.01.03

    [3]

    王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质,2015,36(1):1-6. doi: 10.11743/ogg20150101

    [4]

    郭旭升,胡东风,魏志红,等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探,2016,21(3):24-37. doi: 10.3969/j.issn.1672-7703.2016.03.003

    [5]

    梁兴,王高成,张介辉,等. 昭通国家级示范区页岩气一体化高效开发模式及实践启示[J]. 中国石油勘探,2017,22(1):29-37. doi: 10.3969/j.issn.1672-7703.2017.01.005

    [6]

    马永生,蔡勋育,赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发,2018,45(4):705-713.

    [7]

    何希鹏,王运海,王彦祺,等. 渝东南盆缘转换带常压页岩气勘探实践[J]. 中国石油勘探,2020,25(1):126-136. doi: 10.3969/j.issn.1672-7703.2020.01.012

    [8]

    马新华,谢军,雍锐,等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发,2020,47(5):841-855.

    [9]

    赵文智,贾爱林,位云生,等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探,2020,25(1):31-44. doi: 10.3969/j.issn.1672-7703.2020.01.004

    [10]

    邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1-14.

    [11]

    翟刚毅,包书景,王玉芳,等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报,2017,38(4):441-447. doi: 10.3975/cagsb.2017.04.01

    [12]

    陈孝红,危凯,张保民,等. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J]. 中国地质,2018,45(2):207-226. doi: 10.12029/gc20180201

    [13]

    吴跃东. 皖南东至地区寒武纪沉积相及其时空演化[J]. 安徽地质,1997,7(3):34-39.

    [14]

    CHEN Z, HU J, ZHOU C M, et al. Sponge assemblage from early Cambrian Hetang Formation, southern Anhui[J]. Chinese Science Bulletin, 2004, 49(15): 1625-1628.

    [15]

    路琳琳,纪友亮. 下扬子地区寒武纪层序格架及古地理演化[J]. 古地理学报,2013,15(6):765-776. doi: 10.7605/gdlxb.2013.06.063

    [16]

    刘占红. 下扬子地区下寒武统荷塘组泥页岩层序演化及其对气源潜力的控制:以杨树岭剖面为例[J]. 地质科技情报,2013,32(6):95-102,115.

    [17]

    卢炳雄,郑荣才,文华国,等. 皖南地区下寒武统页岩气成藏地质条件[J]. 石油与天然气地质,2014,35(5):712-719. doi: 10.11743/ogg20140517

    [18]

    张明扬,李贤庆,董泽亮,等. 皖南地区下寒武统荷塘组页岩矿物组成及脆度分析[J]. 矿物岩石地球化学通报,2015,34(1):177-183. doi: 10.3969/j.issn.1007-2802.2015.01.020

    [19]

    刘计勇,张飞燕,印燕铃. 下扬子下寒武统岩相古地理及烃源岩条件研究[J]. 海洋地质与第四纪地质,2018,38(3):85-95.

    [20]

    闫德宇,黄文辉,王婷灏,等. 中、下扬子地区下寒武统黑色页岩微量元素富集特征[J]. 地学前缘,2016,23(3):42-50.

    [21]

    张玉玺,陈建文,周江羽. 苏北地区早寒武世黑色页岩地球化学特征与有机质富集模式[J]. 石油与天然气地质,2020,41(4):838-851. doi: 10.11743/ogg20200416

    [22]

    任纪舜, 陈延愚, 牛宝贵, 等. 中国东部及邻区大陆岩石圈的构造演化与成矿[M]. 北京: 科学出版社, 1990: 5-16, 50-61.

    [23]

    陈沪生. 下扬子地区重建型海相烃源岩油气领域评价及勘探对策[J]. 海相石油地质,2002,7(2):33-41.

    [24]

    万天丰. 中国大地构造学纲要[M]. 北京: 地质出版社, 2004: 216-288.

    [25]

    郭念发. 下扬子盆地与区域地质构造演化特征及油气成藏分析[J]. 浙江地质,1996,12(2):19-27.

    [26]

    陈安定,刘东鹰,刘子满. 江苏下扬子区海相中、古生界烃源岩晚期生烃的论证与定量研究[J]. 海相油气地质,2001,6(4):27-34.

    [27]

    安徽省地质矿产局区域地质调查队. 安徽省地层志寒武系分层[M]. 安徽: 科学技术出版社, 1988: 5-9.

    [28]

    TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 1-312.

    [29]

    ROSER B P,KORSCH R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology,1988,67(1/2):119-139.

    [30]

    MURRAY R W. Chemical criteria to identify the depositional environment of chert:general principles and applications[J]. Sedimentary Geology,1994,90:213-232. doi: 10.1016/0037-0738(94)90039-6

    [31]

    BHATIA M R,CROOK K A W. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basin[J]. Contribution to Mineralogy and Petrology,1986,92:181-193. doi: 10.1007/BF00375292

    [32]

    BOSTROM K,KRAMEMER T,GANTNER S. Provenance and accumulation rates of opaline silica, Al, Fe, Ti, Mn, Ni, and Co in Pacific Pelagic sediment[J]. Chemical Geology,1973,11(1/2):123-148.

    [33]

    ADACHI M,YAMAMOTO K,SΜGISAKI R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology,1986,47(1/2):125-148. doi: 10.1016/0037-0738(86)90075-8

    [34]

    YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terranes[J]. Sedimentary Geology,1987,52(1/2):65-108.

    [35]

    HOLDAWAY H K,CLAYTON C J. Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington sands of Devon[J]. Geological Magazine,1982,119:371-382. doi: 10.1017/S0016756800026285

    [36]

    LERMAN A. Lake: chemistry, geology, physics[M]. Berlin: Springer, 1978: 79-83.

    [37]

    陈骏,汪永进,陈旸,等. 中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J]. 地质学报,2001,75(2):259-266. doi: 10.3321/j.issn:0001-5717.2001.02.016

    [38]

    叶荷,张克信,季军良,等. 青海循化盆地23.1~5.0 Ma沉积地层中常量、微量元素组成特征及其古气候演变[J]. 地球科学:中国地质大学学报,2010,35(5):811-820.

    [39]

    张文防,戴霜,刘海娇,等. 六盘山地区下白垩统红色绿色泥岩地球化学特征及气候环境[J]. 地球科学进展,2012,27(11):1236-1244.

    [40]

    TAYLOR S R,MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics,1995,33(2):241-265. doi: 10.1029/95RG00262

    [41]

    杨振宇,沈渭洲,郑连弟. 广西来宾蓬莱滩二叠纪瓜德鲁普统—乐平统界线剖面元素和同位素地球化学研究及地质意义[J]. 地质学报,2009,83(1):1-15. doi: 10.3321/j.issn:0001-5717.2009.01.001

    [42]

    ZHANG W W. Identification of sedimentary environment of fine-grained sedimentary rock based on major(trace)elements analysis:taking the lower fourth Member of Shahejie Formation in the well of Shen 352 of Anfutun area of Damintun Depression for example[J]. Journal of Northeast Petroleum University,2017,41(4):99-106.

    [43]

    XIONG Z F,LI T G,ALGEO T,et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific[J]. Chemical Geology,2012,334:77-91. doi: 10.1016/j.chemgeo.2012.09.044

    [44]

    DYMOND J,SUESS E,LYLE M. Barium in deep-sea sediment:a geochemical proxy for paleoproductivity[J]. Paleoceanography,1992,7(2):163-181. doi: 10.1029/92PA00181

    [45]

    PI D H,LIU C Q,SHIELDS-ZHOU G A,et al. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province,South China:constraints for redox environments and origin of metal enrichments[J]. Precambrian Research,2013,225:218-229. doi: 10.1016/j.precamres.2011.07.004

    [46]

    ALGEO T J,KUWAHARA K,SANO H,et al. Spatial variation in sediment fluxes,redox conditions,and productivity in the Permian-Triassic Panthalassic Ocean[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2011,308(1/2):65-83.

    [47]

    李艳芳,邵德勇,吕海刚,等. 四川盆地五峰组-龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报,2015,36(12):1470-1483. doi: 10.7623/syxb201512002

    [48]

    ALGEO T J,INGALL E. Sedimentary Corg:P ratios,paleoceanventilation,and Phanerozoic atmospheric PO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,256(3/4):130-155.

    [49]

    KIMURA H,WATANABE Y. Ocean anoxia at the Precambrian-Cambrian boundary[J]. Geology,2001,29(11):995-998. doi: 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2

    [50]

    TRIBOVILLARD N,ALGEO T J,LYONS T et al. Tracemetal as paleoredox and paleopro-ductivity proxies:an up-date[J]. Chemical Geology,2006,232(1):12-32.

    [51]

    JONES B,MANNING D A. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1/4):111-129. doi: 10.1016/0009-2541(94)90085-X

  • 加载中

(7)

(2)

计量
  • 文章访问数:  920
  • PDF下载数:  114
  • 施引文献:  0
出版历程
收稿日期:  2021-04-25
录用日期:  2022-02-17
刊出日期:  2022-04-28

目录