Cyclical stratigraphic analysis and establishment of astronomical chronograph of Hanjiang Formation in Lufeng Sag
-
摘要:
珠江口盆地为新生代典型的海相盆地,也是我国重要的海上油气生产基地。前期已有很多学者对珠江口盆地的地层划分与对比开展了研究,但研究的精度不够。为了提高珠江口盆地陆丰凹陷韩江组地层划分与对比的精度,选择珠江口盆地陆丰凹陷A、B井韩江组的自然伽马数据序列作为古气候替代性指标,使用频谱分析、滤波等方法进行旋回地层学分析。通过深度域频谱分析和小波分析认为,该套地层中保存了米兰科维奇旋回信号,且主要受405 ka长偏心率周期的影响。利用稳定的405 ka长偏心率周期进行天文调谐,结合古生物地层年代框架,建立起陆丰凹陷“绝对”天文年代标尺;结合碳氧同位素变化曲线,估算出2次碳同位素负漂移和1次碳同位素正向偏移事件的持续时间;利用天文旋回周期计算出陆丰凹陷韩江组的沉积速率,发现沉积速率的变化与海平面变化具有相关性。
Abstract:As a typical Cenozoic Marine basin, the Pearl River Mouth Basin is also an important offshore oil and gas production base in China. Many scholars have studied the stratigraphic division and correlation of the Pearl River Mouth Basin, but the research accuracy is not enough. In order to improve the accuracy of stratigraphic division and correlation of Hanjiang Formation in Lufeng Sag, Pearl River Mouth Basin, the natural gamma ray data series of Hanjiang Formation in Well A and Well B in Lufeng Sag were selected as paleoclimate surrogate indexes, and the cyclic stratigraphy was analyzed by spectral analysis and filtering methods. Through depth domain spectral analysis and wavelet analysis, it is identified that Milankovich cycle is preserved in the formation, and it is mainly affected by the 405 ka long eccentricity period. Using the stable 405 ka long eccentricity period for astronomical tuning, combined with the paleontological stratigraphic dating frame, the absolute astronomical dating scale of Lufeng Depression was established. Combined with the carbon and oxygen isotope change curves, the duration of two carbon isotope negative shift events and one positive shift event was estimated. Using the sedimentation rate calculated by astronomical cycle, it is found that the change of sedimentation rate is correlated with the change of sea level.
-
-
[1] 秦国权. 珠江口盆地新生代晚期层序地层划分和海平面变化[J]. 中国海上油气(地质),2002,16(1):2-11.
[2] 李珊珊,彭松,邓勇,等. 珠江口盆地西部渐新世以来钙质超微化石年代地层研究[J]. 微体古生物学报,2015,32(3):308-316.
[3] 贾东力,田景春,林小兵,等. 塔里木盆地顺托果勒地区志留系柯坪塔格组米兰科维奇旋回沉积记录[J]. 石油与天然气地质,2018,39(4):749-758. doi: 10.11743/ogg20180412
[4] 吴怀春,房强. 旋回地层学和天文时间带[J]. 地层学杂志,2020,44(3):227-238.
[5] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报,2011,36(3):409-428.
[6] 徐伟,解习农. 基于米兰科维奇周期的沉积速率计算新方法:以东营凹陷牛38井沙三中为例[J]. 石油实验地质,2012,34(2):207-214. doi: 10.3969/j.issn.1001-6112.2012.02.019
[7] 黄春菊, 张杨, 李明松, 等. 晚渐新世—早中新世气候变化在赤道大西洋的天文响应[J]. 2016, 46(9): 1231-1240.
[8] 伊海生. 测井曲线旋回分析在碳酸盐岩层序地层研究中的应用[J]. 古地理学报,2011,13(4):456-466. doi: 10.7605/gdlxb.2011.04.009
[9] 马雪莹,邓胜徽,卢远征,等. 华南上奥陶统宝塔组天文年代格架及其地质意义[J]. 地学前缘,2019,26(2):281-291.
[10] 刘洋,吴怀春,张世红,等. 珠江口盆地珠一坳陷韩江组-万山组旋回地层学[J]. 地球科学:中国地质大学学报,2012,37(3):411-423.
[11] 耿威. 珠江口盆地惠州凹陷古近系储层沉积学特征[D]. 成都: 成都理工大学, 2009.
[12] 王思琦,张忠涛,林畅松,等. 白云凹陷东南部晚渐新世陆架边缘三角洲沉积特征及沉积地貌演化[J]. 东北石油大学学报,2017,41(1):33-42. doi: 10.3969/j.issn.2095-4107.2017.01.004
[13] 田世峰,陈中强,查明. 珠江口盆地中中新世韩江组天文调谐地质年代表[J]. 中国石油大学学报(自然科学版),2012,36(1):27-32. doi: 10.3969/j.issn.1673-5005.2012.01.005
[14] 马雪莹,卢远征,樊茹,等. 新疆柯坪大湾沟中、上奥陶统旋回地层学研究及其地质意义[J]. 地层学杂志,2021,45(1):29-37.
[15] 尹青,伊海生,夏国清,等. 基于测井曲线频谱分析在伦坡拉盆地古近系米氏旋回层序及可容空间变化趋势中的研究[J]. 地球物理学进展,2015,30(3):1288-1297. doi: 10.6038/pg20150339
[16] 李堃宇,伊海生,夏国清. 基于测井曲线频谱分析柴达木盆地西部七个泉地区上、下油砂山组米兰科维奇旋回特征[J]. 地质科技情报,2018,37(3):87-91.
[17] 徐健,德勒恰提·加娜塔依. 米兰科维奇旋回识别与天文标尺的建立:以莫索湾地区莫21井三工河组一段为例[J]. 地质科技通报,2021,40(2):197-207.
[18] WANG M,CHEN H H,HUANG C J,et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters,2020,535:116116. doi: 10.1016/j.jpgl.2020.116116
[19] LIU Z H,HUANG C J,ALGEO T J,et al. High-resolution astrochronological record for the Paleocene-Oligocene (66–23 Ma) from the rapidly subsiding Bohai Bay Basin,northeastern China[J]. Palaeogeography Palaeoclimatology Palaeoecology,2018,510:78-92.
[20] 刘杰,孙美静,苏明,等. 神狐海域水合物钻探区第四纪米氏旋回高频层序地层划分[J]. 海洋地质与第四纪地质,2016,36(2):11-18.
[21] LI M S,HINNOV L,KUMP L. Acycle:time-series analysis software for paleoclimate research and education[J]. Computers and Geosciences,2019,127:12-22. doi: 10.1016/j.cageo.2019.02.011
[22] 杨彦峰,符超峰,徐新文,等. 青藏高原东北缘尖扎盆地晚中新世地层绝对天文年代标尺的建立[J]. 地球科学与环境学报,2021,43(4):710-723.
[23] 张若琳,金思丁. 渤海湾盆地沾化凹陷罗69井沙三下亚段旋回地层学研究[J]. 中南大学学报(自然科学版),2021,52(5):1516-1531.
[24] 张喜,张廷山,赵晓明,等. 天文轨道周期及火山活动对中上扬子区晚奥陶世—早志留世有机碳聚集的影响[J]. 石油勘探与开发,2021,48(4):732-744.
[25] 袁学旭. 基于主成分分析的米兰科维奇旋回识别和应用研究[J]. 华北科技学院学报,2019,16(4):48-56. doi: 10.3969/j.issn.1672-7169.2019.04.009
[26] BERGER A,LOUTRE M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews,1991,10(4):297-317. doi: 10.1016/0277-3791(91)90033-Q
[27] BERGER A,LOUTRE M F,LASKAR J. Stability of the astronomical frequencies over the earth’s history for paleoclimate studies[J]. Science New Series,1992,255(5044):560-566.
[28] LASKAR J,ROBUTEL P,JOUTEL F,et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics,2004,428(1):265-285.
[29] LASKAR J,FIENGA A,GASTINEAU M,et al. La2010:a new orbital solution for the long-term motion of the Earth[J]. Astronomy and Astrophysics,2011,532:89-104. doi: 10.1051/0004-6361/201116836
[30] HOLBOURN A,KUHNT W,CLEMENS S,et al. Middle to late Miocene stepwise climate cooling:evidence from a high‐resolution deep water isotope curve spanning 8 million years[J]. Paleoceanography,2013,28(4):688-699. doi: 10.1002/2013PA002538
[31] 秦国权. 微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用[J]. 海洋地质与第四纪地质,1996,16(4):1-18.
-