Distribution of planktonic foraminifera in surface sediments and its environmental implication in the Zhongsha waters, South China Sea
-
摘要:
对南海中部中沙海域海底采集的93个表层沉积物样样品进行浮游有孔虫的鉴定分析,获得13属28种浮游有孔虫,依据其中20个主要浮游有孔虫属种的Q型因子分析结果及其抗溶性和生活的气候地带特征,共划分出3个浮游有孔虫组合(占解释总方差的92.3%),包括抗溶性不同的2个热带组合和1个温带-亚热带组合。易溶性的热带组合以Trilobatus sacculifer-Globigerinoides ruber为代表,主要分布于碳酸盐岩台地斜坡区和海岭区。抗溶性热带组合主要以Globorotalia menardii-Pulleniatina obliquiloculata为主,主要分布在中沙海槽和南海深水海盆区。温带-亚热带组合以Globigerina rubescens为代表,主要分布在中沙碳酸盐岩台地北部斜坡区。研究发现,本区浮游有孔虫的分布主要受海水深度控制,而不同温盐性质水团的入侵影响也不容忽视,其中,Globigerina rubescens在中沙碳酸盐岩台地北部斜坡区的富集就是响应研究区以北低温高盐水团的佐证之一。同时,浮游有孔虫的相关分布特征(丰度、简单分异度、碎壳率和易溶种/抗溶种)进一步指示研究区的碳酸钙溶跃面约为2 750 m,碳酸钙补偿深度约为3 400~3 700 m。
Abstract:To understand the planktonic foraminifera distribution and the environmental factors around Zhongsa Islands, South China Sea, 93 surface sediment samples in the area were collected and analyzed. A total of 28 foraminiferal species were identified. Statistical clusters (Q-mode factor analysis) performed to identify three assemblages (92.3% variance) related to modern water masses: two tropical assemblages different in relative dissolution and one assemblage was mainly influenced by subtropical cold water input. The tropical dissolution-susceptible assemblage is dominated by Trilobatus sacculifer and Globigerinoides ruber and mainly buried in the ridge or carbonate slope sediments. The tropical dissolution-resistant assemblage is dominated by Globorotalia menardii and Pulleniatina obliquiloculata, occurring mainly in the deep-water basin or the Zhongsha trough. The subtropical assemblage is dominated by Globigerina rubescens, depositing mainly in the northern slope of the Zhongsha atoll. The distribution of planktonic foraminifera is controlled by the water depth. Moreover, the impact of invasion of water masses with different temperature and salinity is another factor that should not be ignored, as witnessed by the enrichment of Globigerina rubescens in the northern slope sediment of the Zhongsha carbonate platform, which is induced by the northern cold and high-salinity water invasion. Considering the abundance, diversity, and fragmentation of planktonic foraminifera and the variation with water depth, the carbonate lysocline depth and carbonate compensation depth (CCD) are believed to be 2 750 m and 3 400~3 700 m, respectively.
-
-
表 1 研究区浮游有孔虫常见属种分布特征统计表
Table 1. Distribution characteristics of modern major planktonic foraminifera species in the study area
/% 常见属种 百分比范围 平均值 与水深关系 不同分布区的百分含量平均值 盆地 海槽 海岭 台地斜坡 Globorotalia menardii 5.80~37.65 15.41 ↑ 26.30 18.78 15.67 11.08 Trilobatus sacculifer 2.21~21.71 15.17 ↓ 12.71 13.25 15.37 16.42 Globigerinoides ruber 3.50~28.00 12.94 ↓ 7.45 10.56 14.26 15.74 Pulleniatina obliquiloculata 2.77~30.13 11.01 ↑ 16.82 11.61 11.65 9.79 Neogloboquadrina dutertrei 0.00~20.34 9.06 ↓ 10.93 8.72 9.14 8.29 Globigerinella aequilateralis 0~12.28 5.07 ↓ 5.28 5.25 4.39 5.02 Globigerina rubescens 0~30.00 4.94 ↓ 1.47 4.52 4.90 6.93 Orbulina universa 0~10.46 4.40 ↓ 1.89 4.20 4.35 4.59 Globigerinoides conglobatus 0~11.89 4.24 ↓ 2.71 3.93 3.25 5.36 Globorotalia tumida 0.48~18.04 3.17 ↑ 4.87 5.00 2.40 1.95 注:↑代表正相关;↓代表负相关。 表 2 浮游有孔虫因子分析属种的最大方差因子得分
Table 2. Scores of maximum variance factors in factor analysis of planktonic foraminifera in the study area
属种 主因子1 主因子2 主因子3 Globorotalia menardii -0.332 27 3.550 39 0.261 12 Trilobatus sacculifer 2.718 1 -0.075 74 -0.119 17 Globigerinoides ruber 2.144 81 -0.659 51 0.961 96 Pulleniatina obliquiloculata 0.360 21 1.428 31 -0.294 12 Neogloboquadrina dutertrei 0.923 67 0.526 54 -0.165 94 Globigerinella aequilateralis 0.378 64 -0.085 62 -0.182 37 Globigerina rubescens -0.830 83 -0.433 42 3.889 42 Orbulina universa 0.405 99 -0.458 52 -0.409 4 Globigerinoides conglobatus 0.337 36 -0.411 2 -0.247 65 Globorotalia tumida -0.875 81 0.571 3 -0.035 47 Globigerinoidestenellus -0.580 78 -0.439 81 -0.399 98 Globoquadrina conglomerata -0.580 35 -0.438 35 -0.406 09 Sphaeroidinella dehiscens -0.581 23 -0.439 08 -0.405 4 Globigerina calida -0.580 2 -0.440 07 -0.406 71 Globorotalia menardii gibberula -0.581 82 -0.437 64 -0.407 98 Globigerinella adamsi -0.580 24 -0.439 71 -0.408 89 Globorotalia crassaformis -0.581 48 -0.439 52 -0.407 85 Globorotalia truncatulinoides -0.581 92 -0.439 -0.407 81 注:加粗数值代表因子分析得分较高的属种。 表 3 南海不同海区的碳酸钙溶跃面和CCD深度
Table 3. The calcite lysocline depth and calcite compensation depth in different regions of the South China Sea
-
[1] SCHIEBEL R. Planktic foraminiferal sedimentation and the marine calcite budget[J]. Global Biogeochemical Cycles,2002,16(4):3-1-3-21.
[2] 王佳,常凤鸣,李铁刚,等. 上新世5 Ma以来黑潮演变过程:浮游有孔虫群落证据[J]. 中国科学:地球科学,2020,50(11):1655-1670.
[3] THOMPSON P R. Planktonic foraminifera in the Western North Pacific during the past 150 000 years:comparison of modern and fossil assemblages[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,1981,35:241-279.
[4] CHEN M T,HUANG C C,PFLAUMANN U,et al. Estimating glacial western Pacific sea-surface temperature:methodological overview and data compilation of surface sediment planktic foraminifer faunas[J]. Quaternary Science Reviews,2005,24(7/9):1049-1062.
[5] PFLAUMANN U,JIAN Z M. Modern distribution patterns of planktonic foraminifera in the South China Sea and western Pacific:a new transfer technique to estimate regional sea-surface temperatures[J]. Marine Geology,1999,156(1/4):41-83.
[6] WU F,XIE X N,BETZLER Z,et al. The impact of eustatic sea-level fluctuations,temperature variations and nutrient-level changes since the Pliocene on tropical carbonate platform (Xisha Islands,South China Sea)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,514:373-385.
[7] SATTLER U,IMMENHAUSER A,SCHLAGER W,et al. Drowning history of a Miocene carbonate platform (Zhujiang Formation,South China Sea)[J]. Sedimentary Geology,2009,219(1/4):318-331.
[8] DAVIS C V,FUQUA L,PRIDE C,et al. Seasonal and interannual changes in planktic foraminiferal fluxes and species composition in Guaymas Basin,Gulf of California[J]. Marine Micropaleontology,2019,149:75-88. doi: 10.1016/j.marmicro.2019.05.001
[9] DARLING K F,WADE C M,SICCHA M ET AL. Genetic diversity and ecology of the planktonic foraminifers Globigerina bulloides,Turborotalita quinqueloba and Neogloboquadrina pachyderma off the Oman margin during the late SW Monsoon[J]. Marine Micropaleontology,2017,137:64-77. doi: 10.1016/j.marmicro.2017.10.006
[10] 张茂恒,王建. 盐城上岗全新世有孔虫组合的环境意义[J]. 海洋地质前沿,2003,19(9):5-8.
[11] 李顺,张江勇,钟和贤,等. 南海北部陆坡ZSQD196PC柱状样末次间冰期以来的古海洋学记录:氧同位素,有孔虫和硅藻[J]. 海洋地质前沿,2013,29(11):32-38.
[12] 郭建卿,陈荣华,赵庆英,等. 南海北部表层沉积物中浮游有孔虫分布特征与环境意义[J]. 海洋学研究,2006,24(1):19-27. doi: 10.3969/j.issn.1001-909X.2006.01.003
[13] LI B H,JIAN Z M,WANG P X. Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa Trough during the last 20,000 years[J]. Marine Micropaleontology,1997,32(1):59-69.
[14] 涂霞,郑范,向荣,等. 末次冰期以来西太平洋暖池变化的浮游有孔虫记录[J]. 热带海洋学报,2005,24(1):1-7. doi: 10.3969/j.issn.1009-5470.2005.01.001
[15] KUCERA M. Planktonic foraminifera as tracers of past oceanic environments[J]. Developments in Marine Geology,2007,1(4):213-262.
[16] RIDGWELL A,ZEEBE R E. The role of the global carbonate cycle in the regulation and evolution of the earth system[J]. Earth and Planetary Science Letters,2005,234(3):299-315.
[17] 涂霞. 南海中部海区浮游有孔虫的溶解:碳酸盐溶解作用初探[J]. 热带海洋学报,1984,3(4):20-25.
[18] SIJINKUMAR A V,NATH B N,CLEMENS S,et al. North Atlantic climatic changes reflected in the Late Quaternary foraminiferal abundance record of the Andaman Sea,north-eastern Indian Ocean[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2016,446:11-18.
[19] HUANG,X X,BETZLER C,WU S G,et al. First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank),South China Sea[J]. Marine and Petroleum Geology,2020,117:104349. doi: 10.1016/j.marpetgeo.2020.104349
[20] 田永青,黄洪辉,巩秀玉,等. 2014年春季南海中沙群岛北部海域的低温高盐水及其形成机制[J]. 热带海洋学报,2016,35(2):4-12.
[21] LI L Q,TU X,LUO Y L,et al. Quantitative Analysis of Planktonic Foraminifera in Surface Sediments From the South China Sea[J]. Science in China,Series B,1993,36(8):1011-1018.
[22] 王晓燕,李保华,黄宝琦. 晚更新世南海不同海区的浮游有孔虫群落特征差异及环境控制因素[J]. 微体古生物学报,2021,38(1):9.
[23] 汪品先. 南海深部过程的探索[J]. 科技导报,2020,38(18):6-20. doi: 10.3981/j.issn.1000-7857.2020.18.001
[24] FANG G H,FANG G H,FANG Y,et al. A survey of studies on the South China Sea upper ocean circulation[J]. Acta Oceanogr. Taiwan,1998,37(1):1-16.
[25] LIU Z,ZHAO Y,COLIN C,et al. Source-to-sink transport processes of uvial sediments in the South China Sea[J]. Earth-Science Reviews,2016,153:238-273. doi: 10.1016/j.earscirev.2015.08.005
[26] LADIGBOLU I A,LI B H,LI H L,et al. Fluxes and isotopic composition of planktonic foraminifera off Hainan Island,northern South China Sea:implications for paleoceanographic studies[J]. Palaeoworld,2020,29(3):636-647. doi: 10.1016/j.palwor.2019.07.006
[27] 李保华,赵泉鸿,陈民本,等,. 南沙海区晚第四纪浮游有孔虫演化及其古海洋学意义[J]. 微体古生物学报,2001,18(1):1-9. doi: 10.3969/j.issn.1000-0674.2001.01.001
[28] 俞宙菲,李保华,李宏亮,等. 现代浮游有孔虫对南海西南部上升流的响应[J]. 第四纪研究,2020,40(3):801-810. doi: 10.11928/j.issn.1001-7410.2020.03.17
[29] 黄宝琦,翦知湣,林慧玲. 南海东北部晚第四纪古生产力变化[J]. 海洋地质与第四纪地质,2000,20(2):65-68.
[30] BERGER W H. Planktonic Foraminifera:selective solution and paleoclimatic interpretation[J]. Deep Sea Research and Oceanographic Abstracts,1968,15(1):31-43. doi: 10.1016/0011-7471(68)90027-2
[31] 陈荣华,徐建,孟翊,等. 南海东北部表层沉积中微体化石与碳酸盐溶跃面和补偿深度[J]. 海洋学报(中文版),2003,25(2):48-56. doi: 10.3321/j.issn:0253-4193.2003.02.006
[32] MIAO Q M,THUNELL R V,ANDERSON D M. Glacial-Holocene carbonate dissolution and sea surface temperatures in the South China Sea and Sulu Sea[J]. Paleoceanography,1994,9(2):269-290. doi: 10.1029/93PA02830
[33] 张江勇,彭学超,张玉兰,等. 南海中沙群岛以北至陆坡表层沉积物碳酸钙含量的分布[J]. 热带地理,2011,31(2):125-132. doi: 10.3969/j.issn.1001-5221.2011.02.002
[34] WANG P X,WANG L. BIAN Y,et al. Late Quaternary paleoceanography of the South China Sea:surface circulation and carbonate cycles[J]. Marine Geology,1995,127(1):145-165.
[35] 罗又郎,劳焕年,王渌漪. 南海东北部表层沉积物类型与粒度特征的初步研究[J]. 热带海洋,1985,4(1):33-41.
[36] 陈木宏,陈绍谋. 南海碳酸盐溶解与深海沉积物类型[J]. 热带海洋,1989(3):20-26.
[37] 韩舞鹰,马克美. 南海东北部海区碳酸钙的饱和面、溶跃面和补偿深度[J]. 热带海洋,1988,7(3):84-89.
[38] 李学杰,陈芳,刘坚,等. 南海西部表层沉积物碳酸盐分布特征及其溶解作用[J]. 地球化学,2004,33(3):254-260. doi: 10.3321/j.issn:0379-1726.2004.03.004
[39] 李粹中. 南海深水碳酸盐沉积作用[J]. 沉积学报,1989,7(2):35-43. doi: 10.14027/j.cnki.cjxb.1989.02.006
-