南海中沙海域表层沉积物浮游有孔虫的分布特征及其指示意义

刘时桥, 陈万利, 张木辉, 陈靓, 张经纬, 陈俊锦, 秦永鹏, 吴时国. 南海中沙海域表层沉积物浮游有孔虫的分布特征及其指示意义[J]. 海洋地质前沿, 2022, 38(9): 13-25. doi: 10.16028/j.1009-2722.2021.312
引用本文: 刘时桥, 陈万利, 张木辉, 陈靓, 张经纬, 陈俊锦, 秦永鹏, 吴时国. 南海中沙海域表层沉积物浮游有孔虫的分布特征及其指示意义[J]. 海洋地质前沿, 2022, 38(9): 13-25. doi: 10.16028/j.1009-2722.2021.312
LIU Shiqiao, CHEN Wanli, ZHANG Muhui, CHEN Liang, ZHANG Jingwei, CHEN Junjin, QIN Yongpeng, WU Shiguo. Distribution of planktonic foraminifera in surface sediments and its environmental implication in the Zhongsha waters, South China Sea[J]. Marine Geology Frontiers, 2022, 38(9): 13-25. doi: 10.16028/j.1009-2722.2021.312
Citation: LIU Shiqiao, CHEN Wanli, ZHANG Muhui, CHEN Liang, ZHANG Jingwei, CHEN Junjin, QIN Yongpeng, WU Shiguo. Distribution of planktonic foraminifera in surface sediments and its environmental implication in the Zhongsha waters, South China Sea[J]. Marine Geology Frontiers, 2022, 38(9): 13-25. doi: 10.16028/j.1009-2722.2021.312

南海中沙海域表层沉积物浮游有孔虫的分布特征及其指示意义

  • 基金项目: 海南省海洋地质资源与环境重点实验室开放课题(HNHYDZZYHJKF017);中国地质调查局项目(DD20191027);海南省自然科学基金联合项目(2021JJLH0047,420LH021);中国石油天然气股份有限公司科技项目“塔西南坳陷及麦盖提斜坡石油地质条件研究与目标评价”(kt2021-02-02);海南省自然科学基金项目(422QN353)
详细信息
    作者简介: 刘时桥(1990—),男,工程师,主要从事海洋区域地质调查研究工作. E-mail:823810405@qq.com
    通讯作者: 陈万利(1990—),男,博士,主要从事岛礁碳酸盐岩台地沉积学及声学结构探测研究工作. E-mail:chenwl@idsse.ac.cn
  • 中图分类号: P736;Q915

Distribution of planktonic foraminifera in surface sediments and its environmental implication in the Zhongsha waters, South China Sea

More Information
  • 对南海中部中沙海域海底采集的93个表层沉积物样样品进行浮游有孔虫的鉴定分析,获得13属28种浮游有孔虫,依据其中20个主要浮游有孔虫属种的Q型因子分析结果及其抗溶性和生活的气候地带特征,共划分出3个浮游有孔虫组合(占解释总方差的92.3%),包括抗溶性不同的2个热带组合和1个温带-亚热带组合。易溶性的热带组合以Trilobatus sacculifer-Globigerinoides ruber为代表,主要分布于碳酸盐岩台地斜坡区和海岭区。抗溶性热带组合主要以Globorotalia menardii-Pulleniatina obliquiloculata为主,主要分布在中沙海槽和南海深水海盆区。温带-亚热带组合以Globigerina rubescens为代表,主要分布在中沙碳酸盐岩台地北部斜坡区。研究发现,本区浮游有孔虫的分布主要受海水深度控制,而不同温盐性质水团的入侵影响也不容忽视,其中,Globigerina rubescens在中沙碳酸盐岩台地北部斜坡区的富集就是响应研究区以北低温高盐水团的佐证之一。同时,浮游有孔虫的相关分布特征(丰度、简单分异度、碎壳率和易溶种/抗溶种)进一步指示研究区的碳酸钙溶跃面约为2 750 m,碳酸钙补偿深度约为3 400~3 700 m。

  • 加载中
  • 图 1  研究区区域地质概况

    Figure 1. 

    图 2  中沙海域夏冬季表层海水温度、盐度分布

    Figure 2. 

    图 3  表层沉积物中常见浮游有孔虫属种

    Figure 3. 

    图 4  中沙海域浮游有孔虫属种结构组成

    Figure 4. 

    图 5  浮游有孔虫相关参数平面分布及其随水深变化

    Figure 5. 

    图 6  研究区常见种属百分含量分布图

    Figure 6. 

    图 7  浮游有孔虫Q型因子分析的主因子载荷平面分布图

    Figure 7. 

    图 8  研究区常见浮游有孔虫属种与环境要素间冗余分析

    Figure 8. 

    图 9  浮游有孔虫中易溶种/抗溶种比值随水深变化

    Figure 9. 

    表 1  研究区浮游有孔虫常见属种分布特征统计表

    Table 1.  Distribution characteristics of modern major planktonic foraminifera species in the study area

    /%
    常见属种百分比范围平均值
    与水深关系不同分布区的百分含量平均值
    盆地海槽
    海岭
    台地斜坡
    Globorotalia menardii5.80~37.6515.4126.3018.7815.6711.08
    Trilobatus sacculifer2.21~21.7115.1712.7113.2515.3716.42
    Globigerinoides ruber3.50~28.0012.947.4510.5614.2615.74
    Pulleniatina obliquiloculata2.77~30.1311.0116.8211.6111.659.79
    Neogloboquadrina dutertrei0.00~20.349.0610.938.729.148.29
    Globigerinella aequilateralis0~12.285.075.285.254.395.02
    Globigerina rubescens0~30.004.941.474.524.906.93
    Orbulina universa0~10.464.401.894.204.354.59
    Globigerinoides conglobatus0~11.894.242.713.933.255.36
    Globorotalia tumida0.48~18.043.174.875.002.401.95
    注:↑代表正相关;↓代表负相关。
    下载: 导出CSV

    表 2  浮游有孔虫因子分析属种的最大方差因子得分

    Table 2.  Scores of maximum variance factors in factor analysis of planktonic foraminifera in the study area

    属种主因子1主因子2主因子3
    Globorotalia menardii-0.332 273.550 390.261 12
    Trilobatus sacculifer2.718 1-0.075 74-0.119 17
    Globigerinoides ruber2.144 81-0.659 510.961 96
    Pulleniatina obliquiloculata0.360 211.428 31-0.294 12
    Neogloboquadrina dutertrei0.923 670.526 54-0.165 94
    Globigerinella aequilateralis0.378 64-0.085 62-0.182 37
    Globigerina rubescens-0.830 83-0.433 423.889 42
    Orbulina universa0.405 99-0.458 52-0.409 4
    Globigerinoides conglobatus0.337 36-0.411 2-0.247 65
    Globorotalia tumida-0.875 810.571 3-0.035 47
    Globigerinoidestenellus-0.580 78-0.439 81-0.399 98
    Globoquadrina conglomerata-0.580 35-0.438 35-0.406 09
    Sphaeroidinella dehiscens-0.581 23-0.439 08-0.405 4
    Globigerina calida-0.580 2-0.440 07-0.406 71
    Globorotalia menardii gibberula-0.581 82-0.437 64-0.407 98
    Globigerinella adamsi-0.580 24-0.439 71-0.408 89
    Globorotalia crassaformis-0.581 48-0.439 52-0.407 85
    Globorotalia truncatulinoides-0.581 92-0.439-0.407 81
    注:加粗数值代表因子分析得分较高的属种。
    下载: 导出CSV

    表 3  南海不同海区的碳酸钙溶跃面和CCD深度

    Table 3.  The calcite lysocline depth and calcite compensation depth in different regions of the South China Sea

    区域溶跃面深度/mCCD深度/m指标参考文献
    南海南部3 0003 800浮游有孔虫[32]
    南海南部2 6003 600碳酸钙含量、浮游有孔虫[31]
    南海中南部2 500~3 0003 000~3 500碳酸钙含量、浮游有孔虫[17]
    中沙海域2 7503 400~3 700浮游有孔虫本文
    南海中北部3 000\碳酸钙含量[33]
    南海北部2 5003 500碳酸钙含量、浮游有孔虫[12]
    南海东北部2 2003 400碳酸钙含量、浮游有孔虫[31]
    下载: 导出CSV
  • [1]

    SCHIEBEL R. Planktic foraminiferal sedimentation and the marine calcite budget[J]. Global Biogeochemical Cycles,2002,16(4):3-1-3-21.

    [2]

    王佳,常凤鸣,李铁刚,等. 上新世5 Ma以来黑潮演变过程:浮游有孔虫群落证据[J]. 中国科学:地球科学,2020,50(11):1655-1670.

    [3]

    THOMPSON P R. Planktonic foraminifera in the Western North Pacific during the past 150 000 years:comparison of modern and fossil assemblages[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,1981,35:241-279.

    [4]

    CHEN M T,HUANG C C,PFLAUMANN U,et al. Estimating glacial western Pacific sea-surface temperature:methodological overview and data compilation of surface sediment planktic foraminifer faunas[J]. Quaternary Science Reviews,2005,24(7/9):1049-1062.

    [5]

    PFLAUMANN U,JIAN Z M. Modern distribution patterns of planktonic foraminifera in the South China Sea and western Pacific:a new transfer technique to estimate regional sea-surface temperatures[J]. Marine Geology,1999,156(1/4):41-83.

    [6]

    WU F,XIE X N,BETZLER Z,et al. The impact of eustatic sea-level fluctuations,temperature variations and nutrient-level changes since the Pliocene on tropical carbonate platform (Xisha Islands,South China Sea)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,514:373-385.

    [7]

    SATTLER U,IMMENHAUSER A,SCHLAGER W,et al. Drowning history of a Miocene carbonate platform (Zhujiang Formation,South China Sea)[J]. Sedimentary Geology,2009,219(1/4):318-331.

    [8]

    DAVIS C V,FUQUA L,PRIDE C,et al. Seasonal and interannual changes in planktic foraminiferal fluxes and species composition in Guaymas Basin,Gulf of California[J]. Marine Micropaleontology,2019,149:75-88. doi: 10.1016/j.marmicro.2019.05.001

    [9]

    DARLING K F,WADE C M,SICCHA M ET AL. Genetic diversity and ecology of the planktonic foraminifers Globigerina bulloides,Turborotalita quinqueloba and Neogloboquadrina pachyderma off the Oman margin during the late SW Monsoon[J]. Marine Micropaleontology,2017,137:64-77. doi: 10.1016/j.marmicro.2017.10.006

    [10]

    张茂恒,王建. 盐城上岗全新世有孔虫组合的环境意义[J]. 海洋地质前沿,2003,19(9):5-8.

    [11]

    李顺,张江勇,钟和贤,等. 南海北部陆坡ZSQD196PC柱状样末次间冰期以来的古海洋学记录:氧同位素,有孔虫和硅藻[J]. 海洋地质前沿,2013,29(11):32-38.

    [12]

    郭建卿,陈荣华,赵庆英,等. 南海北部表层沉积物中浮游有孔虫分布特征与环境意义[J]. 海洋学研究,2006,24(1):19-27. doi: 10.3969/j.issn.1001-909X.2006.01.003

    [13]

    LI B H,JIAN Z M,WANG P X. Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa Trough during the last 20,000 years[J]. Marine Micropaleontology,1997,32(1):59-69.

    [14]

    涂霞,郑范,向荣,等. 末次冰期以来西太平洋暖池变化的浮游有孔虫记录[J]. 热带海洋学报,2005,24(1):1-7. doi: 10.3969/j.issn.1009-5470.2005.01.001

    [15]

    KUCERA M. Planktonic foraminifera as tracers of past oceanic environments[J]. Developments in Marine Geology,2007,1(4):213-262.

    [16]

    RIDGWELL A,ZEEBE R E. The role of the global carbonate cycle in the regulation and evolution of the earth system[J]. Earth and Planetary Science Letters,2005,234(3):299-315.

    [17]

    涂霞. 南海中部海区浮游有孔虫的溶解:碳酸盐溶解作用初探[J]. 热带海洋学报,1984,3(4):20-25.

    [18]

    SIJINKUMAR A V,NATH B N,CLEMENS S,et al. North Atlantic climatic changes reflected in the Late Quaternary foraminiferal abundance record of the Andaman Sea,north-eastern Indian Ocean[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2016,446:11-18.

    [19]

    HUANG,X X,BETZLER C,WU S G,et al. First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank),South China Sea[J]. Marine and Petroleum Geology,2020,117:104349. doi: 10.1016/j.marpetgeo.2020.104349

    [20]

    田永青,黄洪辉,巩秀玉,等. 2014年春季南海中沙群岛北部海域的低温高盐水及其形成机制[J]. 热带海洋学报,2016,35(2):4-12.

    [21]

    LI L Q,TU X,LUO Y L,et al. Quantitative Analysis of Planktonic Foraminifera in Surface Sediments From the South China Sea[J]. Science in China,Series B,1993,36(8):1011-1018.

    [22]

    王晓燕,李保华,黄宝琦. 晚更新世南海不同海区的浮游有孔虫群落特征差异及环境控制因素[J]. 微体古生物学报,2021,38(1):9.

    [23]

    汪品先. 南海深部过程的探索[J]. 科技导报,2020,38(18):6-20. doi: 10.3981/j.issn.1000-7857.2020.18.001

    [24]

    FANG G H,FANG G H,FANG Y,et al. A survey of studies on the South China Sea upper ocean circulation[J]. Acta Oceanogr. Taiwan,1998,37(1):1-16.

    [25]

    LIU Z,ZHAO Y,COLIN C,et al. Source-to-sink transport processes of uvial sediments in the South China Sea[J]. Earth-Science Reviews,2016,153:238-273. doi: 10.1016/j.earscirev.2015.08.005

    [26]

    LADIGBOLU I A,LI B H,LI H L,et al. Fluxes and isotopic composition of planktonic foraminifera off Hainan Island,northern South China Sea:implications for paleoceanographic studies[J]. Palaeoworld,2020,29(3):636-647. doi: 10.1016/j.palwor.2019.07.006

    [27]

    李保华,赵泉鸿,陈民本,等,. 南沙海区晚第四纪浮游有孔虫演化及其古海洋学意义[J]. 微体古生物学报,2001,18(1):1-9. doi: 10.3969/j.issn.1000-0674.2001.01.001

    [28]

    俞宙菲,李保华,李宏亮,等. 现代浮游有孔虫对南海西南部上升流的响应[J]. 第四纪研究,2020,40(3):801-810. doi: 10.11928/j.issn.1001-7410.2020.03.17

    [29]

    黄宝琦,翦知湣,林慧玲. 南海东北部晚第四纪古生产力变化[J]. 海洋地质与第四纪地质,2000,20(2):65-68.

    [30]

    BERGER W H. Planktonic Foraminifera:selective solution and paleoclimatic interpretation[J]. Deep Sea Research and Oceanographic Abstracts,1968,15(1):31-43. doi: 10.1016/0011-7471(68)90027-2

    [31]

    陈荣华,徐建,孟翊,等. 南海东北部表层沉积中微体化石与碳酸盐溶跃面和补偿深度[J]. 海洋学报(中文版),2003,25(2):48-56. doi: 10.3321/j.issn:0253-4193.2003.02.006

    [32]

    MIAO Q M,THUNELL R V,ANDERSON D M. Glacial-Holocene carbonate dissolution and sea surface temperatures in the South China Sea and Sulu Sea[J]. Paleoceanography,1994,9(2):269-290. doi: 10.1029/93PA02830

    [33]

    张江勇,彭学超,张玉兰,等. 南海中沙群岛以北至陆坡表层沉积物碳酸钙含量的分布[J]. 热带地理,2011,31(2):125-132. doi: 10.3969/j.issn.1001-5221.2011.02.002

    [34]

    WANG P X,WANG L. BIAN Y,et al. Late Quaternary paleoceanography of the South China Sea:surface circulation and carbonate cycles[J]. Marine Geology,1995,127(1):145-165.

    [35]

    罗又郎,劳焕年,王渌漪. 南海东北部表层沉积物类型与粒度特征的初步研究[J]. 热带海洋,1985,4(1):33-41.

    [36]

    陈木宏,陈绍谋. 南海碳酸盐溶解与深海沉积物类型[J]. 热带海洋,1989(3):20-26.

    [37]

    韩舞鹰,马克美. 南海东北部海区碳酸钙的饱和面、溶跃面和补偿深度[J]. 热带海洋,1988,7(3):84-89.

    [38]

    李学杰,陈芳,刘坚,等. 南海西部表层沉积物碳酸盐分布特征及其溶解作用[J]. 地球化学,2004,33(3):254-260. doi: 10.3321/j.issn:0379-1726.2004.03.004

    [39]

    李粹中. 南海深水碳酸盐沉积作用[J]. 沉积学报,1989,7(2):35-43. doi: 10.14027/j.cnki.cjxb.1989.02.006

  • 加载中

(9)

(3)

计量
  • 文章访问数:  1745
  • PDF下载数:  173
  • 施引文献:  0
出版历程
收稿日期:  2021-12-07
刊出日期:  2022-09-28

目录