The REE geochemistry and heavy mineral composition of BS24 core: implication to the Late Holocene sedimentary evolution in the North Yellow Sea
-
摘要:
北黄海泥质区具有地理位置独特、陆源物质供应丰富、沉积环境复杂等特点,为了更好地理解全球变化背景下对北黄海“源-汇”过程的影响,对北黄海泥质区边缘BS24岩芯沉积物进行了AMS14C测年、粒度、黏土粒级稀土元素和重矿物组成特征分析,以判识沉积物的来源、沉积环境特征,并进一步探讨北黄海的沉积演化过程。研究表明,BS24岩芯轻重稀土元素具有明显分异,稀土元素的球粒陨石标准化配分曲线右倾,轻稀土元素富集,重稀土元素亏损,上陆壳标准化的δEu和δCe无明显异常。稀土元素的变化趋势较为一致,以170 cm为界,上段波动幅度较大,下段含量相对稳定。岩芯中共鉴定出30种重矿物,以黑云母(37.46%)和自生黄铁矿(22.39%)最为常见,辉石和氧化铁矿物及不稳定矿物含量低。黏土粒级及极细砂组分特征指示,BS24岩芯晚全新世以来主要接受黄河物质的沉积。BS24岩芯自生黄铁矿含量的变化可能指示了北黄海冷水团强度的变化。650 cal. a BP以来,北黄海冷水团强度增强,自生黄铁矿含量降低;650~1 560 cal. a BP期间,研究区处于还原环境,北黄海冷水团强度减弱,营造的缺乏对流性环境为自生黄铁矿的富集提供了有利条件。
Abstract:The mud area of the North Yellow Sea is characterized by unique geographical location, abundant terrestrial sediment supply, and complex sedimentary environment. Therefore, revealing the sedimentary evolution of the mud area of the North Yellow Sea is of great significance for systematic understanding of “source-sink” scheme in the North Yellow Sea under the impact of global change. In this paper, AMS14C dating, grain size, clay grain size, and REE (rare earth element) and heavy mineral composition of BS24 core sediments in the margin of the mud area of the North Yellow Sea were analyzed to identify the provenance and environment characteristics of the sediments. Furthermore, the sedimentary evolution process in the North Yellow Sea was discussed. Results show that the BS24 core has obvious differentiation of LREE and HREE, the chondrite normalized partition curve of REE inclines to the right, LREE is enriched, HREE is depleted, and had no obvious anomalies of δEu and δCe normalized in the overland crust. The variation trend of REEs is relatively consistent, a boundary at 170 cm, large fluctuation range in the upper segment, and a relatively stable content in the lower segment. A total of 30 heavy minerals were identified, of which biotite (37.46%) and authigenic pyrite (22.39%) are most common, and pyroxene, ferric oxide and unstable minerals were low in content. The clay grain size and very fine sand composition of the BS24 core indicate that the source was mainly from the Yellow River since the Late Holocene. The variation of authigenic pyrite content in BS24 core reflected the variation in cold water mass strength in the North Yellow Sea. Since 650 cal. a BP, the strength of the cold water mass in the North Yellow Sea increased and the authigenic pyrite content decreased. During 650-1 560 cal. a BP, the study area was in a reductive environment, and the strength of the cold water mass in the North Yellow Sea was weakened. The lack of convective environment was favorable for the formation of authigenic pyrite.
-
-
图 9 北黄海云母含量分布[42]
Figure 9.
表 1 BS24岩芯AMS14C测年结果
Table 1. BS24 core AMS14C dating results
样品编号 深度/cm 测试材料 14C年龄/a BP 年代校正/cal. a BP 日历年龄/cal. a BP BS24-75 69~81 混合底栖有孔虫 810±30 660~358 509 BS24-170 165~175 混合底栖有孔虫 1 130±30 952~640 796 BS24-295 290~
300混合底栖有孔虫 2 080±30 2 000~1 600 1800 表 2 BS24岩芯稀土元素含量统计表
Table 2. Statistics of REE content of the BS24 core
最小值 最大值 平均值 标准偏差 变异系数 La 30.00 55.05 44.01 3.85 8.74 Ce 77.34 115.50 93.42 6.57 7.04 Pr 6.99 13.06 10.58 0.91 8.64 Nd 25.27 47.22 38.21 3.25 8.51 Sm 4.89 8.76 7.19 0.59 8.15 Eu 1.01 1.76 1.45 0.11 7.88 Gd 4.39 7.52 6.24 0.49 7.82 Tb 0.65 1.12 0.94 0.07 7.86 Dy 3.78 6.25 5.37 0.42 7.79 Ho 0.75 1.23 1.05 0.08 7.74 Er 2.08 3.39 2.91 0.22 7.60 Tm 0.34 0.55 0.46 0.04 7.64 Yb 2.26 3.58 3.04 0.23 7.61 Lu 0.35 0.56 0.47 0.04 7.65 ∑REE 165.85 265.56 215.32 16.32 7.58 LREE 151.25 241.36 194.86 14.84 7.62 HREE 14.60 24.20 20.46 1.57 7.69 LREE/HREE 9.09 10.36 9.53 0.27 2.86 δEuCN 0.64 0.66 0.65 0.01 0.01 δCeCN 0.98 1.34 1.01 0.05 0.05 δEuUCC 1.00 1.04 1.02 0.01 0.01 δCeUCC 0.95 1.31 0.99 0.05 0.05 (La/Sm)UCC 0.85 0.99 0.92 0.02 0.03 (La/Yb)UCC 0.92 1.18 1.06 0.05 0.05 (Gd/Yb)UCC 1.12 1.26 1.19 0.03 0.02 -
[1] MILLIMAN J D,MEADE R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology,1983,91(1):1-21. doi: 10.1086/628741
[2] MILLIMAN J D,QIN Y S,REN M E,et al. Man's influence on the erosion and transport of sediment by Asian rivers:the Yellow River (Huanghe) example[J]. The Journal of Geology,1987,95(6):751-762. doi: 10.1086/629175
[3] YANG S Y,YOUN J S. Geochemical compositions and provenance discrimination of the central South Yellow Sea sediments[J]. Marine Geology,2007,243(1):229-241.
[4] LI Z X,XIA D X,Berne S,et al. Tidal deposition systems of China's continental shelf,with special reference to the eastern Bohai Sea[J]. Marine Geology,1998,145(3/4):225-253.
[5] 王伟,李安春,徐方建,等. 北黄海表层沉积物粒度分布特征及其沉积环境分析[J]. 海洋与湖沼,2009,40(5):525-531. doi: 10.3321/j.issn:0029-814X.2009.05.001
[6] 程鹏,高抒. 北黄海西部海底沉积物的粒度特征和净输运趋势[J]. 海洋与湖沼,2000,31(6):604-615. doi: 10.3321/j.issn:0029-814X.2000.06.004
[7] KIM G,YANG H S,CHURCH T M. Geochemistry of alkaline earth elements (Mg,Ca,Sr,Ba) in the surface sediments of the Yellow Sea[J]. Chemical Geology,1998,153(1):1-10.
[8] 孙荣涛,李铁刚,常凤鸣. 北黄海表层沉积物中的底栖有孔虫分布与海洋环境[J]. 海洋地质与第四纪地质,2009,29(4):21-28.
[9] 孙荣涛,李铁刚,常凤鸣. 全新世北黄海泥质区环境演化的底栖有孔虫记录[J]. 海洋地质与第四纪地质,2010,30(5):83-90.
[10] 陈晓辉. 北黄海陆架晚第四纪地层结构与物源环境演变研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2014.
[11] ZHANG S W,WANG Q Y,LU Y,et al. Observation of the seasonal evolution of the Yellow Sea cold water mass in 1996-1998[J]. Continental Shelf Research:A Companion Journal to Deep-Sea Research and Progress in Oceanography,2008,28(3):442-457.
[12] LIU J P,MILLIMAN J D,GAO S. The Shandong mud wedge and post-glacial sediment accumulation in the Yellow Sea[J]. Geo-marine Letters,2002,21(4):212-218.
[13] LIU J P,MILLIMAN J D,GAO S,et al. Holocene development of the Yellow River subaqueous delta,North Yellow Sea[J]. Marine Geology,2004,209(1/4):45-67.
[14] LIU J,SAITO Y,WANG H,et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology,2007,236(3/4):165-187.
[15] WU X,WANG H J,BI N S,et al. Climate and human battle for dominance over the Yellow River's sediment discharge:from the Mid-Holocene to the Anthropocene[J]. Marine Geology,2020,425:106188. doi: 10.1016/j.margeo.2020.106188
[16] 皮仲,李铁刚,南青云. 中全新世以来南黄海岩心记录的沉积环境演变对东亚季风的响应[J]. 海洋地质前沿,2016,32(7):1-10.
[17] MORENO A,CANALS M. The role of dust in abrupt climate change:insights from offshore Northwest Africa and Alboran Sea sediment records[J]. Contributions to Science,2004,2(4):485-498.
[18] 艾丽娜,韩宗珠,吴晓,等. 长江与黄河黏土粒级沉积物地球化学特征及其物源指示意义[J]. 海洋地质与第四纪地质,2020,40(3):109-118.
[19] 杨守业,李从先,LEE C B,等. 黄海周边河流的稀土元素地球化学及沉积物物源示踪[J]. 科学通报,2003,48(11):1233-1236. doi: 10.3321/j.issn:0023-074X.2003.11.024
[20] 杨守业,李从先. 黄河,长江与韩国 Keum、Yeongsan 江沉积物常量元素地球化学特征[J]. 地球化学,2004,33(1):99-105.
[21] 尹秀珍,刘万洙,蓝先洪,等. 南黄海表层沉积物的碎屑矿物、地球化学特征及物源分析[J]. 吉林大学学报(地球科学版),2007,37(3):491-499.
[22] 周晓静,高抒,贾建军. 长江粘土矿物示踪标记稳定性的初步研究[J]. 海洋与湖沼,2003,4(6):683-692. doi: 10.11693/hyhz200306013013
[23] 韩宗珠,衣伟虹,李敏,等. 渤海湾北部沉积物重矿物特征及物源分析[J]. 中国海洋大学学报(自然科学版),2013,43(4):73-79.
[24] 金秉福,岳伟,王昆山. 黄河、辽河和鸭绿江沉积角闪石矿物化学特征对比及物源识别[J]. 海洋学报(中文版),2014,36(4):11-21.
[25] 王中波,杨守业,李萍,等. 长江水系沉积物碎屑矿物组成及其示踪意义[J]. 沉积学报,2006,26(4):570-578. doi: 10.3969/j.issn.1000-0550.2006.04.015
[26] 初凤友,陈丽蓉,申顺喜,等. 南黄海自生黄铁矿成因及其环境指示意义[J]. 海洋与湖沼,1995,26(3):227-233.
[27] QIN Y C,MEI X,JIANG X J,et al. Sediment provenance and tidal current-driven recycling of Yellow River detritus in the Bohai Sea,China[J]. Marine Geology,2021,436:106473. doi: 10.1016/j.margeo.2021.106473
[28] 齐君,李凤业,宋金明,等. 北黄海沉积速率及其沉积通量[J]. 海洋地质与第四纪地质,2004,24(2):9-14.
[29] 黄朋,李铁钢,李安春,等. 黄海北部表层沉积物地球化学特征[J]. 矿物学报,2007,27(1):343-347.
[30] CHEN X H,LI T G,ZHANG X H,et al. A Holocene Yalu River-derived fine-grained deposit in the southeast coastal area of the Liaodong Peninsula[J]. Chinese Journal of Oceanology and Limnology,2013,31(3):636-647. doi: 10.1007/s00343-013-2087-1
[31] KIM G,YANG H S,CHURCH T M. Geochemistry of alkaline earth elements (Mg,Ca,Sr,Ba) in the surface sediments of the Yellow Sea[J]. Chemical Geology,1999,153(1/4):1-10.
[32] YANG Z S,LIU J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology,2007,240(1/4):169-176.
[33] 李广雪, 杨子赓, 刘勇. 中国东部海域海底沉积环境成因研究[M]. 北京: 科学出版社, 2005: 6-20.
[34] KONG G S,LEE C W. Marine reservoir corrections for southern coastal waters of Korea[J]. The Sea:Journal of the Korean Society of Oceanography,2005,10(2):124-128.
[35] SOUTHON J,KASHGARIAN M,FONTUGNE M,et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon,2002,44(1):167-180. doi: 10.1017/S0033822200064778
[36] JOHN M. Grain size determination and interpretation[M]. Oxford, UK: Wiley Blackwell, 1988: 63-65.
[37] 范德江,杨作升,毛登,等. 长江与黄河沉积物中粘土矿物及地化成分的组成[J]. 海洋地质与第四纪地质,2001,21(4):7-12.
[38] 蓝先洪,密蓓蓓,陈晓辉,等. 北黄海中部晚第四纪沉积物来源的稀土元素示踪[J]. 中国稀土学报,2015,33(2):241-252.
[39] YANG S Y,JUNG H S,CHOI M S,et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) River sediments[J]. Earth and Planetary Science Letters,2002,201(2):407-419. doi: 10.1016/S0012-821X(02)00715-X
[40] 王中波,杨守业,李日辉,等. 黄河水系沉积物碎屑矿物组成及沉积动力环境约束[J]. 海洋地质与第四纪地质,2010,30(4):73-85.
[41] 孙白云. 黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J]. 海洋地质与第四纪地质,1990,10(3):23-34.
[42] QIN Y C,XUE C T,JIANG X J. Tidal current-dominated depositional environments in the central-northern Yellow Sea as revealed by heavy-mineral and grain-size dispersals[J]. Marine Geology,2018,398:59-72. doi: 10.1016/j.margeo.2018.01.004
[43] PAN B T,PANG H L,GAO H S,et al. Heavy-mineral analysis and provenance of Yellow River sediments around the China Loess Plateau[J]. Journal of Asian Earth Sciences,2016,127:1-11. doi: 10.1016/j.jseaes.2016.06.006
[44] 薛春汀,刘健,孔祥淮. 1128—1855年黄河下游河道变迁及其对中国东部海域的影响[J]. 海洋地质与第四纪地质,2011,31(5):25-36.
[45] YANG S Y,JUNG H S,LIM D I,et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews,2003,63(1/2):93-120.
[46] 常鑫,张明宇,谷玉,等. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展,2020,35(12):1306-1320. doi: 10.11867/j.issn.1001-8166.2020.105
[47] 胡邦琦,杨作升,赵美训,等. 南黄海中部泥质区7200年以来东亚冬季风变化的沉积记录[J]. 中国科学:地球科学,2012,42(10):1568-1581.
[48] 项立辉. 长江口滨外泥质区末次冰消期以来沉积特征与沉积环境演化[D]. 青岛: 中国海洋大学, 2008.
-