Geological sampling method and on-site processing of coring samples of marine shallow gas hydrate
-
摘要:
天然气水合物地质调查中通常采用地质、地球物理、地球化学等多种调查方法获得各类地质资料,而海洋地质取样可直接获得海底实物样品,是海洋地质调查中的重要手段。浅表层天然气水合物赋存于近海底沉积物中,利用合适的地质取样方法,在勘探目标区可以直接获得水合物样品及其存在的标志。基于浅表层水合物的存在指示标志和赋存特征,结合前期调查的成功经验,总结了适用于浅表层水合物的地质取样技术方法,主要有海底表层取样、重力柱状取样、海底钻探和保温保压取芯等,不同的取样方法所取的样品类型也有差异,应根据实际地质特征做出优选。针对浅表层天然气水合物的赋存特征,建立了一套海洋天然气水合物取芯样品现场处理和分析方法。水合物采集样品回收到甲板后快速处置分析是水合物调查的重要环节,而正确的现场处理方法是保证样品测试准确的关键。
Abstract:In the geological survey of natural gas hydrate, various geological data are usually obtained by geological, geophysical, geochemical and other survey methods. Among them, marine geological sampling can directly obtain the physical samples of the seabed, which is an important means in marine geological survey. Shallow gas hydrate exists in near seabed sediments. Hydrate samples and their existence markers can be obtained directly in the exploration target area by using appropriate geological sampling methods. Based on the indicators and occurrence characteristics of shallow surface hydrate, combined with the successful experience of previous investigation, this paper summarizes the geological sampling methods suitable for shallow surface hydrate, mainly including seabed surface sampling, gravity column sampling, seabed drilling and thermal insulation and pressure maintaining coring. The types of samples taken by different sampling methods are also different, which should be optimized according to the actual geological characteristics. According to the occurrence characteristics of shallow gas hydrate, a set of on-site processing and analysis methods of marine gas hydrate coring samples are established. The rapid processing and analysis of hydrate samples after being recovered to the deck is an important link of hydrate investigation, and the correct on-site processing method is the key to ensure the accuracy of sample testing.
-
-
图 7 利用沉积物重力取样器在鄂霍次克海取到的水合物样品[25]
Figure 7.
-
[1] 吴能友,梁金强,王宏斌,等. 海洋天然气水合物成藏系统研究进展[J]. 现代地质,2008,22(3):356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003
[2] HESTER K C,BREWER P G. Clathrate hydrates in nature[J]. Annual Review of Marine Science,2009,1(1):303-327. doi: 10.1146/annurev.marine.010908.163824
[3] 邬黛黛,吴能友,付少英,等. 南海北部东沙海域水合物区浅表层沉积物的地球化学特征[J]. 海洋地质与第四纪地质,2010,30(5):41-51.
[4] 蔡峰,吴能友,闫桂京,等. 海洋浅表层天然气水合物成藏特征[J]. 海洋地质前沿,2020,36(9):73-78.
[5] 孙运宝,蔡峰,李清,等. 海洋浅表层天然气水合物资源评价[J]. 海洋地质前沿,2020,36(9):87-93.
[6] LIANG J Q,ZHANG W,LU J A,et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea:insights from site GMGS5-W9-2018[J]. Marine Geology,2019,418:1-19.
[7] MATSUMOTO R,TANAHASHI M,KAKUWA Y,et al. Recovery of thick deposits of massive gas hydrates from gas chimney structures,eastern margin of Japan Sea:Japan Sea shallow gas hydrate project[J]. Fire in the Ice,2017,17(1):1-22.
[8] 骆迪,蔡峰,闫桂京,等. 浅表层天然气水合物高分辨率地震勘探方法与应用[J]. 海洋地质前沿,2020,36(9):101-108.
[9] 吴能友,李彦龙,刘乐乐,等. 海洋天然气水合物储层蠕变行为的主控因素与研究展望[J]. 海洋地质与第四纪地质,2021,41(5):3-11.
[10] 刘昌岭,孙运宝. 海洋天然气水合物储层特性及其资源量评价方法[J]. 海洋地质与第四纪地质,2021,41(5):44-57.
[11] 张训华, 赵铁虎. 海洋地质调查技术[M]. 北京: 海洋出版社, 2018.
[12] PECKMANN J,REIMER A,LUTH U,et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology,2001,177(1/2):129-150.
[13] PECKMANN J,THIEL V. Carbon cycling at ancient methane-seeps[J]. Chemical Geology,2004,205(3/4):443-467.
[14] SASSEN R,ROBERTS H H,CARNEY R,et al. Free hydrocarbon gas,gas hydrate,and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope:relation to microbial processes[J]. Chemical Geology,2004,205(3/4):195-217.
[15] TEICHERT B,BOHRMANN G,SUESS E. Chemoherms on Hydrate Ridge:unique microbially-mediated carbonate build-ups growing into the water column[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,227(1/3):67-85.
[16] 马晓理,刘丽华,徐行,等. 南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示[J]. 海洋地质与第四纪地质,2021,41(5):112-125.
[17] HESSELBO S P,GROCKE D R,JENKYNS H C,et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature,2000,406:392-395. doi: 10.1038/35019044
[18] 梁金强, 王宏斌, 苏丕波. 天然气水合物成藏的控制因素研究[M]. 北京: 地质出版社, 2018.
[19] SAHLING H,RICKERT D,LEE R W. Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin,NE Pacific[J]. Marine Ecology Progress,2002,231:121-138. doi: 10.3354/meps231121
[20] TRÉHU ANNE,CAROLYN R,MELANIE H,et al. Gas hydrates in marine sediments:lessons from scientific ocean drilling[J]. Oceanography,2006,19(4):124-142. doi: 10.5670/oceanog.2006.11
[21] 曾宪军,伍忠良,郝小柱. 海洋地质调查方法与设备综述[J]. 气象水文海洋仪器,2009,26(1):111-117,120. doi: 10.3969/j.issn.1006-009X.2009.01.031
[22] 黄永样, SUESS E, 吴能友. 南海北部陆坡甲烷和天然气水合物地质: 中德合作SO-177航次成果专报[M]. 北京: 地质出版社, 2008.
[23] 杨楠,任旭光,王俊珠,等. 深海移动电视抓斗海洋地质调查中的应用[J]. 机械工程与技术,2018,7(5):7.
[24] 陈虹,王心亮,魏伟,等. 深海爬游机器人概念及关键技术分析[J]. 中国舰船研究,2018,13(6):19-26.
[25] OBZHIROV A I,EMELYANOVA T A,TELEGIN Y A,et al. Gas flows in the Sea of Okhotsk resulting from Cretaceous-Cenozoic tectonomagmatic activity[J]. Russian Journal of Pacific Geology,2020,14(2):156-168. doi: 10.1134/S1819714020020049
[26] 张炜,邵明娟,姜重昕,等. 世界天然气水合物钻探历程与试采进展[J]. 海洋地质与第四纪地质,2018,38(5):1-13.
[27] 谢焜,金永平,李兰香,等. 深海海底钻机用铠装脐带缆有限元分析[J]. 矿业工程研究,2020,35(3):34-40.
[28] 刘协鲁,阮海龙,赵义,等. 海域天然气水合物保温保压取样钻具研究与应用进展[J]. 钻探工程,2021,48(7):33-39.
[29] 刘昌岭, 孟庆国. 天然气水合物实验测试技术[M]. 北京: 科学出版社, 2016.
[30] 梁金强. 海域天然气水合物资源勘查技术[M]. 北京: 科学出版社, 2020.
-