Status quo of offshore geothermal energy development and its enlightenment to China
-
摘要:
在世界能源短缺以及实现碳减排目标的背景下,随着海洋和地热能开发技术的进步,海上地热能的潜力越来越受到人们的关注。本文分析了目前全球海上地热资源开发热点区域分布,以及海上地热资源利用的优势和劣势,梳理了国内外海洋地热资源利用现状和关键开发技术,包括海上地热利用方式、地热勘查技术、地热资源评价技术、地热利用技术和地热能开发影响评价技术等,指出了当前中国海上地热能发展利用过程中面临着基础资料薄弱、关键技术创新力不足、核心装备自主性差、激励政策不够完善等诸多挑战,并给出了相应的发展建议。
Abstract:Under the background of world energy shortage and carbon emission reduction targets, with the progress of marine and geothermal energy development technology, the potential of offshore geothermal energy has attracted more and more attention. The distribution of hot spots in the development of offshore geothermal resources in the world, as well as the advantages and disadvantages of the utilization of offshore geothermal resources were analyzed. The status quo and key technologies of offshore geothermal resources exploration were summarized, including offshore geothermal utilization strategy, geothermal exploration technology, geothermal resource evaluation technology, geothermal utilization technology and the environment impact evaluation technology, ect. It is pointed out that there are many challenges in the development and utilization of offshore geothermal energy in China, such as weak basic data, insufficient innovation of key technologies, poor autonomy of core equipment, and imperfect incentive policies, etc. At last, the corresponding development suggestions are given.
-
-
图 1 中国近海及周边海域盆地的热流值分布[6]
Figure 1.
图 2 海洋地热发电方案概图[13]
Figure 2.
图 3 海上地热能辅助开采浅层稠油方法示意图[32]
Figure 3.
图 4 联合深海地热开采可燃冰系统示意图[42]
Figure 4.
图 7 半导体温差发电器原理[27]
Figure 7.
表 1 海洋地热能的特性
Table 1. Characteristics of offshore geothermal energy
参数 具体特性 优势 热源 以深部地幔的热量为主 储量和质量 海洋地热能储量大、优质高温地热资源多 最大开采深度 与海洋钻采设备的发展有关,目前5 000~6 000 m 采热方式 以注入海水或CO2等介质循环热交换为主 海域使用 除了争议海区,权属明确,开发纠纷少 潜在最优开发区域 针对性强,包括已开发的海上油气田、热液喷口和海山 劣势 开发难度 难度较大,基础资料少、海洋深度大、环境恶劣、地理位置偏远以及海洋技术发展限制等 开发成本 前期勘查、设备制造安装、后期维护成本都很高 技术成熟度 起步晚,成熟度很低,从原理分类到开采利用皆需参照陆上地热能开发技术 海洋环境影响 影响大且未知,尤其是深海和地下深部独特脆弱的生态系统 -
[1] 滕吉文,张永谦,阮小敏. 发展可再生能源和新能源与必须深层次思考的几个科学问题:非化石能源发展的必由之路[J]. 地球物理学进展,2010,25(4):1115-1152.
[2] 马冰,贾凌霄,于洋,等. 世界地热能开发利用现状与展望[J]. 中国地质,2021,48(6):1734-1747. doi: 10.12029/gc20210606
[3] DAVIES J H. Global map of solid earth surface heat flow[J]. Geochemistry,Geophysics,Geosystems,2013,14(10):4608-4622.
[4] 张英,冯建赟,何治亮,等. 地热系统类型划分与主控因素分析[J]. 地学前缘,2017,24(3):190-198.
[5] GLUYAS J,AULD A,ADAMS C,et al. Geothermal Potential of the Global Oil Industry[M]. Renewable Geothermal Energy Explorations,2019:1-11.
[6] 姜素华,张雯,李三忠,等. 西北太平洋洋陆过渡带新生代盆地构造演化与油气分布特征[J]. 大地构造与成矿学,2019,43(4):839-857.
[7] 郝春艳. 陆海统筹下的中国大地热流分布格局与构造意义[D]. 南京:南京大学,2016.
[8] 栾锡武,张训华. 东海及琉球沟弧盆系的海底热流测量与热流分布[J]. 地球物理学进展,2003,18(4):670-678. doi: 10.3969/j.issn.1004-2903.2003.04.017
[9] 梁振君. 中国海上最大高温高压气田东方13-2气田投产[N]. 海南日报,2020-11-26(A01).
[10] AULD A,HOGG S,BERSON A,et al. Power production via North Sea hot brines[J]. Energy,2014,78:674-684.
[11] ODUMODU C F R,MODE A W. Geothermal gradients and heat flow variations in parts of the eastern Niger Delta,Nigeria[J]. Journal of the Geological Society of India,2016,88:107-118. doi: 10.1007/s12594-016-0463-0
[12] HIRIART G,PROL-LEDESMA R M,ALCOCER S,et al. Submarine geothermics:hydrothermal vents and electricity generation[C]. Proceedings World Geothermal Congress,2010:1-6.
[13] KARASON B. Utilization of offshore geothermal resources for power production[D]. Reykjavík:Reykjavik University,2013.
[14] ARYADI Y,RIZAL I S,FADHLI M N. Electricity generation from hydrothermal vents[C]. IOP Conference Series:Earth and Environmental Science,2016:42.
[15] YU X,WU S J,YANG C J. Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter[J]. Applied energy,2016,164:620-627. doi: 10.1016/j.apenergy.2015.12.036
[16] ARMANI F B,PALTRINIERI D. Perspectives of offshore geothermal energy in Italy[C]. EPJ Web of Conferences:EDP Sciences,2013,54:02001.
[17] PRABOWO T R,FAUZIYYAH F,BRONTO S. A new idea:the possibilities of offshore geothermal system in Indonesia marine volcanoes[C]. IOP Conference Series:Earth and Environmental Science,2017,103:1-15.
[18] COSTELLO M J,CHAUDHARY C. Marine biodiversity,biogeography,deep-sea gradients,and conservation[J]. Current Biology,2017,27:511-527. doi: 10.1016/j.cub.2017.04.060
[19] 肖鹏,窦斌,田红,等. 开采海洋区域干热岩的可行性探讨[J]. 海洋地质前沿,2018,34(8):55-60.
[20] 曲万隆,邢同菊,张建伟,等. 东营黄河三角洲地热资源特征及其开发利用[J]. 地质学报. 2019,93(S1):212-216.
[21] 温广连. 渤海石油基地地热直供配套水源热泵供暖模式应用分析[J]. 区域供热,2014(5):12-22.
[22] 赵利军. 大连鲁能易汤海洋温泉地热资源综合分析[J]. 中国资源综合利用,2020,38(6):102-104.
[23] 王峰,雷霁霖. 半滑舌鳎工厂化循环水养殖模式能值评价[J]. 中国工程科学,2015,17(1):4-10. doi: 10.3969/j.issn.1009-1742.2015.01.001
[24] 张效新,王淑生,韩红梅,等. 地热深井卤水配兑黄河淡水工厂化养殖凡纳滨对虾试验[J]. 河北渔业,2016(1):32-34. doi: 10.3969/j.issn.1004-6755.2016.01.010
[25] 闫欣,张成飞,季本安,等. 利用地下海水进行金乌贼亲体越冬养殖技术[J]. 科学养鱼,2020(12):63-64. doi: 10.3969/j.issn.1004-843X.2020.12.035
[26] AULD A,HOGG S,BERSON A,et al. Power production via North Sea hot brines[J]. Energy,2014,78:674-684. doi: 10.1016/j.energy.2014.10.056
[27] BANERJEE A,CHAKRABORTY T,MATSAGAR V. Evaluation of possibilities in geothermal energy extraction from oceanic crust using offshore wind turbine monopiles[J]. Renewable and Sustainable Energy Reviews,2018,92:685-700. doi: 10.1016/j.rser.2018.04.114
[28] 唐晓旭. 海上稠油多元热流体吞吐工艺研究及现场试验[J]. 中国海上油气,2011,23(3):185-188. doi: 10.3969/j.issn.1673-1506.2011.03.010
[29] HUANG S J,CAO M,CHENG L S. Experimental study on the mechanism of enhanced oil recovery by multi-thermal fluid in offshore heavy oil[J]. International Journal of Heat and Mass Transfer,2018,122:1074-1084. doi: 10.1016/j.ijheatmasstransfer.2018.02.049
[30] 王君,范毅. 稠油油藏的开采技术和方法[J]. 西部探矿工程,2006(7):84-85. doi: 10.3969/j.issn.1004-5716.2006.07.040
[31] 郭太现,苏彦春. 渤海油田稠油油藏开发现状和技术发展方向[J]. 中国海上油气,2013,25(4):26-30.
[32] 朱旭晨,刘汝敏,王涛,等. 地热能辅助开采海上浅层稠油方法可行性分析[J]. 油气地质与采收率,2021,28(6):63-70.
[33] 陈秋月,王中华,王婷,等. 利用地热能提高稠油油藏采收率的探索与实践[J]. 石油化工应用,2022,41(6):43-47. doi: 10.3969/j.issn.1673-5285.2022.06.010
[34] 程聪,姜涛,匡增桂,等. 天然气水合物系统特征及其对我国水合物勘查的启示[J]. 地质科技情报,2019,38(4):30-40.
[35] 毛佩筱,吴能友,宁伏龙,等. 不同井型下的天然气水合物降压开采产气产水规律[J]. 天然气工业,2020,40(11):168-176. doi: 10.3787/j.issn.1000-0976.2020.11.020
[36] ULLERICH J W,SELIM M S,SLOAN E D. Theory and measurement of hydrate dissociation[J]. AIChE Journal,1987,33:747-752. doi: 10.1002/aic.690330507
[37] YOUSIF M H,ABASS H H,SELIM M S,et al. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE Reservoir Evaluation & Engineering,1991,6:69-76.
[38] 宁伏龙,蒋国盛,汤凤林,等. 利用地热开采海底天然气水合物[J]. 天然气工业,2006,26(12):136-138. doi: 10.3321/j.issn:1000-0976.2006.12.038
[39] LIU Y,HOU J,ZHAO H,et al. A method to recover natural gas hydrates with geothermal energy conveyed by CO2[J]. Energy,2018,144:265-278. doi: 10.1016/j.energy.2017.12.030
[40] 孙致学,朱旭晨,刘垒,等. 联合深层地热甲烷水合物开采方法及可行性评价[J]. 海洋地质与第四纪地质,2019,39(2):146-156.
[41] 任红. 南海天然气水合物取样技术现状及发展建议[J]. 石油钻探技术,2020,48(4):89-93. doi: 10.11911/syztjs.2020045
[42] 王维希,张春生,吴颜雄,等. 联合深海地热开采天然气水合物技术展望[J]. 现代化工,2021,41(9):17-21.
[43] CHEN X Y,DU X,YANG J,et al. Developing offshore natural gas hydrate from existing oil & gas platform based on a novel multilateral wells system:depressurization combined with thermal flooding by utilizing geothermal heat from existing oil & gas wellbore[J]. Energy,2022,258:124870. doi: 10.1016/j.energy.2022.124870
[44] 何宏舟,陈志强,蔡佳莹. 海洋温差能和地热能联合发电系统 [P] . 中国专利:CN102644565B. 2013-09-25.
[45] 刘松堂,霍建玲,杨磊,等. 海底热流原位探测技术研究进展及趋势[J]. 海洋技术学报,2019,38(6):104-112.
[46] DAVIS E E,VILLINGER H,MC DONALD R D. A robust rapid-response probe for measuring bottom-hole temperatures in deep-ocean boreholes [J]. Marine Geophysical Researches,1997,19:267-281. doi: 10.1023/A:1004292930361
[47] 刘松堂,李宏源,霍建玲,等. 热毯式海底热流原位探测系统设计[J]. 海洋技术学报,2019,38(4):39-44.
[48] 杨小秋,曾信,石红才,等. 海底热流长期观测系统研制进展[J]. 地球物理学报,2022,65(2):427-447.
[49] 窦玉玲,管志川,徐云龙. 海上钻井发展综述与展望[J]. 海洋石油,2006,26(2):64-67. doi: 10.3969/j.issn.1008-2336.2006.02.013
[50] 祝沛桢,李政航,程龙. 深海石油钻采机械发展现状及展望[J]. 科技经济导刊,2016(30):58
[51] 刘健. 我国海洋钻机设备发展路径研究[J]. 中国工程科学,2020,22(6):40-48.
[52] FEDER J. Geothermal well construction:a step change in oil and gas technologies [J]. Journal of Petroleum Technology. 2021,73(1):32-35.
[53] 王社教,李峰,闫家泓,等. 油田地热资源评价方法及应用[J]. 石油学报,2020,41(5):45-56.
[54] 饶松,高腾,肖红平,等. 中国油区地热开发利用进展[J]. 科技导报,2022,40(20):65-76.
[55] 刘怀增,黄刚,郝晓鹏,等. 海洋石油平台拆除作业风险评估分析研究[J]. 山东化工,2015(13):103-104. doi: 10.3969/j.issn.1008-021X.2015.13.040
[56] 邓宗成,张颖,栾忠庆. 海上石油平台及管线弃置的海洋环境保护研究[J]. 油气田环境保护,2016(4):56-58. doi: 10.3969/j.issn.1005-3158.2016.04.018
[57] 张茂东. 我国海上退役油气平台再利用研究[J]. 海洋开发与管理,2021,38(7):62-67. doi: 10.3969/j.issn.1005-9857.2021.07.010
[58] SUI D,WIKTORSKI E,RØKSLAND M,et al. Review and investigations on geothermal energy extraction from abandoned petroleum wells[J]. Journal of Petroleum Exploration and Production Technology,2019,9:1135-1147. doi: 10.1007/s13202-018-0535-3
[59] KUREVIJA T,VULIN D. High enthalpy geothermal potential of the deep gas fields in central Drava basin,Croatia[J]. Water Resources Management,2011,25:30413052.
[60] LUND J W,FREESTON D H,BOYD T L. Direct utilization of geothermal energy 2010 worldwide review[J]. Geothermics,2011,40(3):159-180. doi: 10.1016/j.geothermics.2011.07.004
[61] KHARSEH M,AL-KHAWAJA M,HASSANI F. Utilization of oil wells for electricity generation:performance and economics[J]. Energy,2015,90:910-916. doi: 10.1016/j.energy.2015.07.116
[62] BU X,MA W,LI H. Geothermal energy production utilizing abandoned oil and gas wells[J]. Renew Energy,2012,41:80-85. doi: 10.1016/j.renene.2011.10.009
[63] TEMPLETON J D,GHOREISHI-MADISEH S A,HASSANI F. Abandoned petroleum wells as sustainable sources of geothermal energy[J]. Energy,2014,70:366-373. doi: 10.1016/j.energy.2014.04.006
[64] ENGLISH J M,ENGLISH K L,DUNPHY R B,et al. An overview of deep geothermal energy and its potential on the island of ireland[J]. First Break,2023,41. 33-43.
[65] MALEK A E,ADAMS B M,ROSSI E,et al. Electric power generation,specific capital cost,and specific power for advanced geothermal systems[C]. Stanford,California,USA:Proceeding of 46th Workshop on Geothermal Reservoir Engineering,2021,15-17.
[66] GHOLAMIAN E,HABIBOLLAHZADE A,ZARE V. Development and multi-objective optimization of geothermal-based organic Rankine cycle integrated with thermoelectric generator and proton exchange membrane electrolyzer for power and hydrogen production[J]. Energy Conversion and Management,2018,174:112-125. doi: 10.1016/j.enconman.2018.08.027
[67] 黄雅婷,陶乐仁,黄理浩,等. 有机朗肯循环系统研究综述[J]. 有色金属材料与工程,2018,39(1):57-62.
[68] HINTERLEITNER B,KNAPP I,PONEDER M,et al. Thermoelectric performance of a metastable thin-film Heusler alloy[J]. Nature,2019,576,85-90.
[69] WANG K,YUAN B,JI G,et al. A comprehensive review of geothermal energy extraction and utilization in oilfields[J]. Journal of Petroleum Science and Engineering,2018,168:465-477. doi: 10.1016/j.petrol.2018.05.012
[70] CLARK C W,ELLISON W T,SOUTHALL B L,et al. Acoustic masking in marine ecosystems:intuitions,analysis,and implication[J]. Marine Ecology Progress Series,2009,395:201-222. doi: 10.3354/meps08402
[71] COPPING A,BATTEY H,BROWN-SARACINO J,et al. An international assessment of the environmental effects of marine energy development[J]. Ocean & Coastal Management,2014,99:3-13.
[72] INGRAM D M,SMITH G H,BITTENCOURT-FERREIRA C,et al. Protocols for the equitable assessment of marine energy converters[M]. Edinburgh:University of Edinburgh,2011.
[73] PEDAMALLU L R,NEVES R J,RODRIGUES N E,et al. Environmental impacts of offshore geothermal energy[J]. Transacions,2018,42:825-834.
[74] TESTER J,HERZOG H,CHEN Z,et al. Prospects for universal geothermal energy from heat mining[J]. Science & Global Security,1994,5(1):99-121.
-