珊瑚记录的全新世ENSO变化及其机制研究进展

李悦儿, 余克服. 珊瑚记录的全新世ENSO变化及其机制研究进展[J]. 海洋地质前沿, 2024, 40(6): 13-25. doi: 10.16028/j.1009-2722.2023.127
引用本文: 李悦儿, 余克服. 珊瑚记录的全新世ENSO变化及其机制研究进展[J]. 海洋地质前沿, 2024, 40(6): 13-25. doi: 10.16028/j.1009-2722.2023.127
LI Yueer, YU Kefu. Coral records of Holocene ENSO and its revealed mechanism[J]. Marine Geology Frontiers, 2024, 40(6): 13-25. doi: 10.16028/j.1009-2722.2023.127
Citation: LI Yueer, YU Kefu. Coral records of Holocene ENSO and its revealed mechanism[J]. Marine Geology Frontiers, 2024, 40(6): 13-25. doi: 10.16028/j.1009-2722.2023.127

珊瑚记录的全新世ENSO变化及其机制研究进展

  • 基金项目: 国家自然科学基金“全新世南海珊瑚礁发育的时-空差异及其对全球变暖的适应机制”(42030502),“印太交汇区代表性物种的生物多样性演变及生态功能”(42090041);广西研究生教育创新计划项目“海南潭门岸礁珊瑚记录的南海北部中全新世高分辨率气候变化”(YCSW2023085)
详细信息
    作者简介: 李悦儿(1999—),女,在读硕士,主要从事珊瑚古气候方面的研究工作. E-mail:yueeeeeer@126.com
    通讯作者: 余克服(1969—),男,博士,教授,博士生导师,主要从事南海珊瑚礁地质和生态环境方面的研究工作. E-mail:kefuyu@scsio.ac.cn
  • 中图分类号: P532;P736

Coral records of Holocene ENSO and its revealed mechanism

More Information
  • 厄尔尼诺-南方涛动(El Niño-Southern Oscillation, ENSO)是地球气候系统中最强烈的年际振荡,对全球天气及气候有重要影响。全新世作为与人类关系最为密切的地质时段,重建该时段ENSO的活动历史、探索ENSO的变化规律,将有助于提高对未来ENSO预测的准确性。本文基于珊瑚这一热带海洋的高分辨率气候记录载体,首先介绍从珊瑚骨骼指标中提取ENSO信号、衡量ENSO变率的方法;再梳理珊瑚记录的ENSO变率在早、中、晚全新世的变化历史;最后总结基于珊瑚记录得出的全新世不同时间尺度的ENSO变化机制。结果显示:珊瑚记录的ENSO信号可直接从其环境代用指标的极值变化中识别;或通过谱分析、滤波等方法提取环境代用指标在时间序列中的ENSO周期,再使用阈值分析、滑动窗口等方法定量分析ENSO的频率和振幅变化。珊瑚记录显示,全新世ENSO呈波动变化的特征,总体呈现自早全新世至中全新世ENSO变率不断减弱,而晚全新世ENSO变率持续增强的趋势。基于珊瑚记录得出,岁差变化引起的地表太阳辐射分布变化是全新世百年-千年尺度ENSO变化的主要因子,而气候系统内部驱动可能是全新世年际-年代际尺度ENSO波动的主要原因。与全新世一万多年的时间跨度相比,珊瑚记录的时间窗口累计仅数百年,远未达到揭示ENSO活动规律和变化机制的程度,因此未来需要进一步延长珊瑚记录的时间序列长度、扩大珊瑚记录的空间区域来源,以揭示ENSO变化的规律和机制。

  • 加载中
  • 图 1  珊瑚记录ENSO的研究方法示意图

    Figure 1. 

    图 2  全新世ENSO活动的珊瑚记录分布

    Figure 2. 

    图 3  早全新世以来热带太平洋西部珊瑚Sr/Ca记录的ENSO活动

    Figure 3. 

    图 4  中全新世以来热带太平洋珊瑚δ18O重建的ENSO变率

    Figure 4. 

    图 5  过去2000a南海珊瑚Sr/Ca重建的ENSO变率

    Figure 5. 

    图 6  中全新世期间热带太平洋对岁差强迫的响应

    Figure 6. 

  • [1]

    CANE M A,ZEBIAK S E. A theory for El Niño and the Southern Oscillation [J]. Science,1985,228((4703):):1085-1087. doi: 10.1126/science.228.4703.1085

    [2]

    ROPELEWSKI C F,HALPERT M S. Global and regional scale precipitation patterns associated with the El Niño Southern Oscillation [J]. Monthly Weather Review,1987,115((8):):1606-1626. doi: 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2

    [3]

    TRENBERTH K E. The definition of El Niño[J]. Bulletin of the American Meteorological Society,1997,78(12):277-2777.

    [4]

    MCPHADEN M J. Playing hide and seek with El Niño [J]. Nature Climate Change,2015,5((9):):791-795. doi: 10.1038/nclimate2775

    [5]

    ALEXANDER M A,BLADE I,NEWMAN M,et al. The atmospheric bridge:the influence of ENSO teleconnections on air-sea interaction over the global oceans [J]. Journal of Climate,2002,15((16):):2205-2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2

    [6]

    MCPHADEN M J,ZEBIAK S E,Glantz M H. ENSO as an integrating concept in Earth science [J]. Science,2006,314((5806):):1740-1745. doi: 10.1126/science.1132588

    [7]

    CAI W J,SANTOSO A,COLLINS M,et al. Changing El Niño-Southern Oscillation in a warming climate [J]. Nature Reviews Earth & Environment,2021,2((9):):628-644.

    [8]

    FENG X R,LI M J,LI Y L,et al. Typhoon storm surge in the southeast Chinese mainland modulated by ENSO [J]. Scientific Reports,2021,11((1):):10137-10137. doi: 10.1038/s41598-021-89507-7

    [9]

    REINIG F,WACKER L,JÖRIS O,et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas[J]. Nature,2021,595(7865):66-69. doi: 10.1038/s41586-021-03608-x

    [10]

    LAMB H H. Climatic history and the future,Volume 2:climate:present,past and future [M]. London,England:Methuen and Co. Ltd,1977,1-835.

    [11]

    ALLEY R B,MAYEWSKI P A,SOWERS T,et al. Holocene climatic instability:a prominent widespread event 8200a ago [J]. Geology,1997,25((6):):483-486. doi: 10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2

    [12]

    WALKER M J C,BERKELHAMMER M,BJÖRCK S,et al. Formal subdivision of the Holocene Series/Epoch:a discussion paper by a working group of INTIMATE (Integration of ice-core,marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission On Stratigraphy)[J]. Journal of Quaternary Science,2012,27(7):649-659. doi: 10.1002/jqs.2565

    [13]

    COHEN K M,HARPER D A T,GIBBARD P L. ICS International Chronostratigraphic Chart 2022/02. International Commission on Stratigraphy,IUGS. www. Stratigraphy. Org,2022.

    [14]

    THOMPSON L G,MOSLEY-THOMPSON E,DAVIS M E,et al. Annually resolved ice core records of tropical climate variability over the past ~1800 years [J]. Science,2013,340((6135):):945-950. doi: 10.1126/science.1234210

    [15]

    COOK E R,ANCHUKAITIS K J,BUCKLEY B M,et al. Asian monsoon failure and megadrought during the last millennium [J]. Science,2010,328((5977):):486-489. doi: 10.1126/science.1185188

    [16]

    THEAKER C M, CAROLIN S A, DAY C C, et al. Borneo Stalagmite evidence of significantly reduced El Niño-Southern Oscillation variability at 4.1 ky BP[J]. Geophysical Research Letters,2024,51:e2023GL107111.

    [17]

    FORD H L,RAVELO A C,POLISSAR P J. Reduced El Niño-Southern Oscillation during the Last Glacial Maximum [J]. Science,2015,347((6219):):255-258. doi: 10.1126/science.1258437

    [18]

    JENNY B, VALERO-GARCÉS B L, VILLA-MARTÍNEZ R, et al. Early to mid-Holocene aridity in central Chile and the southern westerlies: the Laguna Aculeo record (34°S) [J]. Quaternary Research,2002,58((2):):160-170.

    [19]

    ROSENTHAL Y,BROCCOLI A J. In search of Paleo-ENSO[J]. Science,2004,304(5668):219-221. doi: 10.1126/science.1095435

    [20]

    CANE M A. The evolution of El Niño,past and future[J]. Earth and Planetary Science Letters,2005,230(2/3):227-240.

    [21]

    Ma T Y. On the growth rate of reef corals and its relation to sea water temperature[J]. Palaeontologia Sinica (Series B),1937,6:21-22.

    [22]

    余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学,2012,42(8):1160-1172.

    [23]

    ALIBERT C,MCCULLOCH M T. Strontium/Calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature:calibration of the thermometer and monitoring of ENSO[J]. Paleoceanography,1997,12(3):345-363. doi: 10.1029/97PA00318

    [24]

    COLE J E,FAIRBANKS R G. The Southern Oscillation recorded in the δ18O of corals from Tarawa atoll[J]. Paleoceanography,1990,5(5):669-683. doi: 10.1029/PA005i005p00669

    [25]

    MCCULLOCH M T,GAGAN M K,MORTIMER G E,et al. A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef,Australia,and the 1982-1983 El-Niño[J]. Geochimica et Cosmochimica Acta,1994,58(12):2747-2754. doi: 10.1016/0016-7037(94)90142-2

    [26]

    丁仲礼. 固体地球科学研究方法[M]. 北京:科学出版社,2013:566-579.

    [27]

    张剑,刁少波,贺行良,等. 西沙群岛珊瑚礁测年与解析[J]. 海洋地质前沿,2021,37(10):64-69.

    [28]

    李献华,李扬,李秋立,等. 同位素地质年代学新进展与发展趋势[J]. 地质学报,2022,96(1):104-122.

    [29]

    COBB K M,CHARLES C D,CHENG H,et al. El Niño Southern Oscillation and tropical Pacific climate during the last millennium[J]. Nature,2003,424(6946):271-276. doi: 10.1038/nature01779

    [30]

    HAN T,YU K F,YAN H,et al. Coral δ18O-based reconstruction of El Niño-Southern Oscillation from the northern South China Sea since 1851 AD[J]. Quaternary International,2020,550:159-168.

    [31]

    MCGREGOR H V,FISCHER M J,GAGAN M K,et al. A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300 years ago[J]. Nature Geoscience,2013,6(11):949-953. doi: 10.1038/ngeo1936

    [32]

    MCGREGOR H V,GAGAN M K. Western Pacific coral Δ18O records of anomalous Holocene variability in the El Niño–Southern Oscillation[J]. Geophysical Research Letters,2004,31(11):L11204.

    [33]

    MCGREGOR S,TIMMERMANN A,TIMM O. A unified proxy for ENSO and PDO variability since 1650[J]. Climate of the Past,2010,6(1):1-17. doi: 10.5194/cp-6-1-2010

    [34]

    COLE J E,DUNBAR R B,MCCLANAHAN T R,et al. Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries[J]. Science,2000,287(5453):617-619. doi: 10.1126/science.287.5453.617

    [35]

    LEONARD N D. ,WELSH K J,LOUGH J M,et al. Evidence of reduced Mid-Holocene ENSO variance on the Great Barrier Reef,Australia[J]. Paleoceanography,2016,31:1248-1260. doi: 10.1002/2016PA002967

    [36]

    COMBOUL M,EMILE-GEAY J,HAKIM G J,et al. Paleoclimate sampling as a sensor placement problem[J]. Journal of Climate,2015,28(19):7717-7740.

    [37]

    KILBOURNE K H,QUINN T M,TAYLOR F W. A fossil coral perspective on western tropical Pacific climate ~350 ka[J]. Paleoceanography,2004,19(1):63-79.

    [38]

    HEREID K A,QUINN T M,OKUMURA Y M. Assessing spatial variability in El Niño-Southern Oscillation event detection skill using coral geochemistry[J]. Paleoceanography,2013,28(1):14-23. doi: 10.1029/2012PA002352

    [39]

    CHAPPELL J,POLACH H. Post-glacial sea-level rise from a coral record at Huon Peninsula,Papua New Guinea[J]. Nature,1991,349(6305):147-149. doi: 10.1038/349147a0

    [40]

    BECK J W,RÉCY J,TAYLOR F,et al. Abrupt changes in early Holocene tropical sea surface temperature derived from coral records[J]. Nature,1997,385(6618):705-707. doi: 10.1038/385705a0

    [41]

    MCCULLOCH M,MORTIMER G,ESAT T,et al. High-resolution windows into Early Holocene climate:Sr/Ca coral records from the Huon Peninsula[J]. Earth and Planetary Science Letters,1996,138(1/4):169-178. doi: 10.1016/0012-821X(95)00230-A

    [42]

    DRISCOLL R E. Reconstructions of the Holocene and Last Glacial Period[D]. Edinburgh:The University of Edinburgh,2014.

    [43]

    SHAO D,MEI Y J,YANG Z K,et al. Holocene ENSO variability in the South China Sea recorded by high-resolution oxygen isotope records from the shells of Tridacna spp.[J]. Scientific Reports,2020,10(1):3921. doi: 10.1038/s41598-020-61013-2

    [44]

    LIU Z Y,LU Z Y,WEN X Y,et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years[J]. Nature,2014,515(7528):550-553. doi: 10.1038/nature13963

    [45]

    MA Y F,QIN Y M,YU K F,et al. Holocene coral reef development in Chenhang Island,northern South China Sea,and its record of sea level changes[J]. Marine Geology,2021,440:106593.

    [46]

    TUDHOPE A W,CHILCOTT C P,MCCULLOCH M T,et al. Variability in the El Niño–Southern Oscillation through a glacial interglacial cycle[J]. Science,2001,291(5508):1511-1517. doi: 10.1126/science.1057969

    [47]

    RODBELL D T,SELTZER G O,ANDERSON D M,et al. An ~15,000-year record of El Niño-driven alluviation in southwestern Ecuador[J]. Science,1999,283(5401):516-520. doi: 10.1126/science.283.5401.516

    [48]

    MOY C M,SELTZER G O,RODBELL D T,et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature,2002,420(6912):162-165. doi: 10.1038/nature01194

    [49]

    CARRÉ M,SACHS J P,PURCA S,et al. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific[J]. Science,2014,345(6200):1045-1048. doi: 10.1126/science.1252220

    [50]

    CHEN S,HOFFMANN S S,LUND D C,et al. A high-resolution speleothem record of western equatorial Pacific rainfall:implications for Holocene ENSO evolution[J]. Earth and Planetary Science Letters,2016,442((1):):61-71.

    [51]

    ABRAM N J,MCGREGOR H V,GAGAN M K,et al. Oscillations in the southern extent of the Indo-Pacific Warm Pool during the Mid-Holocene[J]. Quaternary Science Reviews,2009,28(25/26):2794-2803.

    [52]

    MCGREGOR H V,GAGAN M K,MCCULLOCH M T,et al. Mid-Holocene Variability in the marine 14C reservoir age for northern coastal Papua New Guinea[J]. Quaternary Geochronology,2008,3(3):213-225. doi: 10.1016/j.quageo.2007.11.002

    [53]

    YU K F,HUA Q A,ZHAO J X,et al. Holocene marine 14C reservoir age variability:evidence from 230Th-dated corals in the South China Sea[J]. Paleoceanography,2010,25(3):PA3205.

    [54]

    COBB K M,WESTPHAL N,SAYANI H R,et al. Highly variable El Niño-Southern Oscillation throughout the Holocene[J]. Science,2013,339(6115):67-70. doi: 10.1126/science.1228246

    [55]

    WOODROFFE C D,BEECH M R,GAGAN M K. Mid-Late Holocene El Niño variability in the Equatorial Pacific from coral microatolls[J]. Geophysical Research Letters,2003,30(7):1358.

    [56]

    TOTH L T,ARONSON R B,COBB K M,et al. Climatic and biotic thresholds of coral-reef shutdown[J]. Nature Climate Change,2015,5(4):369-374. doi: 10.1038/nclimate2541

    [57]

    DUPREY N,LAZARETH C E,CORRÈGE T,et al. Early Mid-Holocene SST variability and surface-ocean water balance in the southwest Pacific[J]. Paleoceanography,2012,27(4):PA4207.

    [58]

    WEI G J,DENG W F,YU K F,et al. Sea surface temperature records in the northern South China Sea from Mid-Holocene coral Sr/Ca ratios[J]. Paleoceanography,2007,22(3):PA3206.

    [59]

    LAZARETH C E,ROSELL M B,TURCQ B,et al. Mid-Holocene climate in New Caledonia (southwest Pacific):coral and PMIP models monthly resolved results[J]. Quaternary Science Reviews,2013,69:83-97.

    [60]

    DANG S H,YU K F,TAO S C,et al. El Niño/Southern Oscillation during the 4.2 ka event recorded by growth rates of corals from the north South China Sea[J]. Acta Oceanologica Sinica,2020,39(1):110-117. doi: 10.1007/s13131-019-1520-5

    [61]

    BERNAL J P,LACHNIET M,MCCULLOCH M,et al. A speleothem record of Holocene climate variability from southwestern Mexico[J]. Quaternary Research,2011,75(1):104-113. doi: 10.1016/j.yqres.2010.09.002

    [62]

    ZHOU P C,YAN H,HAN T,et al. Mid to late Holocene ENSO variability reconstructed by high-resolution Tridacna Sr/Ca records from the northern part of the South China Sea[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,601:111117.

    [63]

    DU X J,HENDY I,HINNOV L,et al. High-resolution interannual precipitation reconstruction of Southern California:implications for Holocene ENSO evolution[J]. Earth and Planetary Science Letters,2021,554:116670. doi: 10.1016/j.jpgl.2020.116670

    [64]

    NIE S Y,XIAO W S,WANG R J. Mid-Late Holocene climate variabilities in the Bransfield Strait,Antarctic Peninsula driven by insolation and ENSO activities[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,601:111140.

    [65]

    TOTH L T,ARONSON R B. The 4.2 ka event,ENSO,and coral reef development[J]. Climate of the Past,2019,15(1):105-119. doi: 10.5194/cp-15-105-2019

    [66]

    CORRÈGE T,DELCROIX T,RÉCY J,et al. Evidence for stronger El Niño–Southern Oscillation (ENSO) events in a Mid-Holocene massive coral[J]. Paleoceanography,2000,15(4):465-470. doi: 10.1029/1999PA000409

    [67]

    GIRY C,FELIS T,KÖLLING M,et al. Mid- to Late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals[J]. Earth and Planetary Science Letters,2012,331(1):187-200.

    [68]

    URBAN F E,COLE J E,OVERPECK J T. Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record[J]. Nature,2000,407(6807):989-993. doi: 10.1038/35039597

    [69]

    SANCHEZ S C,WESTPHAL N,HAUG G H,et al. A continuous record of central tropical Pacific climate since the midnineteenth century reconstructed from Fanning and Palmyra Island corals:a case study in coral data reanalysis[J]. Paleoceanography,2020,35(8):e2020PA003848.

    [70]

    THOMPSON D M,COLE J E,SHEN G T,et al. Early twentieth-century warming linked to Tropical Pacific wind strength[J]. Nature Geoscience,2015,8(2):117-121. doi: 10.1038/ngeo2321

    [71]

    GROTHE P R,COBB K M,LIGUORI G,et al. Enhanced El Niño–Southern Oscillation variability in recent decades[J]. Geophysical Research Letters,2020,47(7):1-8.

    [72]

    TOTH L T,ARONSON R B,VOLLMER S V,et al. ENSO drove 2500-year collapse of eastern Pacific coral reefs[J]. Science,2012,337(6090):81-84. doi: 10.1126/science.1221168

    [73]

    GUILDERSON T P,SCHRAG D P. Abrupt shift in subsurface temperatures on the tropical Pacific associated with changes in El Niño[J]. Science,1998,281(5374):240-243. doi: 10.1126/science.281.5374.240

    [74]

    DUNBAR R B,WELLINGTON G M,COLGAN M W,et al. Eastern Pacific sea surface temperature since 1600 A.D.:the δ18O record of climate variability in Galápagos Corals[J]. Paleoceanography,1994,9((2):):291-315. doi: 10.1029/93PA03501

    [75]

    JIANG L L,YU K F,HAN T,et al. Coral perspective on temperature seasonality and interannual variability in the northern South China Sea during the Roman Warm Period[J]. Global and Planetary Change,2021,207:103675. doi: 10.1016/j.gloplacha.2021.103675

    [76]

    JIANG L L,YU K F,TAO S C,et al. Abrupt increase in ENSO variability at 700 CE triggered by solar activity[J]. Journal of Geophysical Research:Oceans,2023,128(1):e2022JC019278.

    [77]

    JIANG L L,YU K F,TAO S C,et al. ENSO Variability during the medieval climate anomaly as recorded by Porites corals from the northern South China Sea[J]. Paleoceanography and Paleoclimatology,2021,36(4):e2020PA004173. doi: 10.1029/2020PA004173

    [78]

    QUINN T M,TAYLOR F W,CROWLEY T J. Coral-based climate variability in the Western Pacific Warm Pool since 1867[J]. Journal of Geophysical Research,2006,111:C11006.

    [79]

    TUDHOPE A W,SHIMMIELD G B,CHILCOTT C P,et al. Recent changes in climate in the far western equatorial Pacific and their relationship to the Southern Oscillation; oxygen isotope records from massive corals,Papua New Guinea[J]. Earth and Planetary Science Letters,1995,136(3):575-590.

    [80]

    LEUPOLD M,PFEIFFER M,WATANABE T K,et al. El Niño-Southern Oscillation and internal sea surface temperature variability in the tropical Indian Ocean since 1675[J]. Climate of the Past,2021,17(1):151-170. doi: 10.5194/cp-17-151-2021

    [81]

    TARIQUE M,RAHAMAN W,THAMBAN M,et al. Surface pH Record (1990–2013) of the Arabian Sea from Boron isotopes of Lakshadweep corals:trend,variability,and control[J]. Journal of Geophysical Research:Biogeosciences,2021,126(7):e2020JG006122.

    [82]

    CLEMENT A C,SEAGER R,CANE M A. Suppression of El Niño during the Mid-Holocene by changes in the Earth's orbit[J]. Paleoceanography,2000,15(6):731-737. doi: 10.1029/1999PA000466

    [83]

    DANG H W,JIAN Z M,WANG Y,et al. Pacific Warm Pool subsurface heat sequestration modulated Walker Circulation and ENSO activity during the Holocene[J]. Science Advances,2020,6(42):eabc0402. doi: 10.1126/sciadv.abc0402

    [84]

    汪品先. 地球系统与演变[M]. 北京:科学出版社,2018:291-415.

    [85]

    EMILE-GEAY J,COBB K M,CARRÉ M,et al. Links between tropical Pacific seasonal,interannual and orbital variability during the Holocene[J]. Nature Geoscience,2016,9(2):168-173. doi: 10.1038/ngeo2608

    [86]

    DEE S G,COBB K M,EMILE-GEAY J,et al. No consistent ENSO response to volcanic forcing over the last millennium[J]. Science,2020,367(6485):1477-1481. doi: 10.1126/science.aax2000

    [87]

    ZHU F,EMILE-GEAY J,ANCHUKAITIS K J,et al. A re-appraisal of the ENSO response to volcanism with paleoclimate data assimilation[J]. Nature Communications,2022,13(1):747. doi: 10.1038/s41467-022-28210-1

  • 加载中

(6)

计量
  • 文章访问数:  1044
  • PDF下载数:  1155
  • 施引文献:  0
出版历程
收稿日期:  2023-05-13
刊出日期:  2024-06-28

目录