-
摘要:
厄尔尼诺-南方涛动(El Niño-Southern Oscillation, ENSO)是地球气候系统中最强烈的年际振荡,对全球天气及气候有重要影响。全新世作为与人类关系最为密切的地质时段,重建该时段ENSO的活动历史、探索ENSO的变化规律,将有助于提高对未来ENSO预测的准确性。本文基于珊瑚这一热带海洋的高分辨率气候记录载体,首先介绍从珊瑚骨骼指标中提取ENSO信号、衡量ENSO变率的方法;再梳理珊瑚记录的ENSO变率在早、中、晚全新世的变化历史;最后总结基于珊瑚记录得出的全新世不同时间尺度的ENSO变化机制。结果显示:珊瑚记录的ENSO信号可直接从其环境代用指标的极值变化中识别;或通过谱分析、滤波等方法提取环境代用指标在时间序列中的ENSO周期,再使用阈值分析、滑动窗口等方法定量分析ENSO的频率和振幅变化。珊瑚记录显示,全新世ENSO呈波动变化的特征,总体呈现自早全新世至中全新世ENSO变率不断减弱,而晚全新世ENSO变率持续增强的趋势。基于珊瑚记录得出,岁差变化引起的地表太阳辐射分布变化是全新世百年-千年尺度ENSO变化的主要因子,而气候系统内部驱动可能是全新世年际-年代际尺度ENSO波动的主要原因。与全新世一万多年的时间跨度相比,珊瑚记录的时间窗口累计仅数百年,远未达到揭示ENSO活动规律和变化机制的程度,因此未来需要进一步延长珊瑚记录的时间序列长度、扩大珊瑚记录的空间区域来源,以揭示ENSO变化的规律和机制。
Abstract:The El Niño-Southern Oscillation (ENSO) is the strongest interannual oscillation in the Earth's climate system, which has a significant impact on global weather and climate. The Holocene is the geological time most closely related to humans, and reconstructing the activity history of ENSO and exploring the change pattern of ENSO in this period will help to improve the accuracy of future ENSO prediction. In this regard, based on coral, a high-resolution climate record carrier of tropical oceans, we firstly introduce the method of extracting ENSO signal from coral skeleton index and measuring ENSO variability; then compares the history of ENSO variability in early, middle and late Holocene; and finally summarizes the mechanism of ENSO variability in different time scales in Holocene based on coral record. The results show that the ENSO signals in the coral records can be directly identified from the extreme changes of their environmental proxies; or the ENSO cycles of the environmental proxies on the time series can be extracted by spectral analysis and filtering, and then the frequency and amplitude changes of ENSO can be quantitatively analyzed by using threshold analysis and sliding window methods. The coral records show that the Holocene ENSO is characterized by fluctuating changes, with a general trend of decreasing ENSO variability from the early to middle Holocene and increasing ENSO variability in the late Holocene. Based on the coral record, it is concluded that the change in surface solar radiation distribution due to the age difference is the main factor of the century-millennium scale ENSO variation in the Holocene, while the internal drive of the climate system may be the main reason for the interannual-interdecadal scale ENSO fluctuation in the Holocene. However, compared with the long time span of the Holocene, the accumulated time window of the coral record is only a few hundred years, which is far from revealing the patterns and mechanisms of ENSO activity. Therefore, it is necessary to further extend the time series and increase the spatial area of the coral record in the future to reveal the patterns and mechanisms of ENSO variability.
-
Key words:
- ENSO /
- variability /
- Holocene /
- coral /
- fluctuation
-
-
[1] CANE M A,ZEBIAK S E. A theory for El Niño and the Southern Oscillation [J]. Science,1985,228((4703):):1085-1087. doi: 10.1126/science.228.4703.1085
[2] ROPELEWSKI C F,HALPERT M S. Global and regional scale precipitation patterns associated with the El Niño Southern Oscillation [J]. Monthly Weather Review,1987,115((8):):1606-1626. doi: 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
[3] TRENBERTH K E. The definition of El Niño[J]. Bulletin of the American Meteorological Society,1997,78(12):277-2777.
[4] MCPHADEN M J. Playing hide and seek with El Niño [J]. Nature Climate Change,2015,5((9):):791-795. doi: 10.1038/nclimate2775
[5] ALEXANDER M A,BLADE I,NEWMAN M,et al. The atmospheric bridge:the influence of ENSO teleconnections on air-sea interaction over the global oceans [J]. Journal of Climate,2002,15((16):):2205-2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
[6] MCPHADEN M J,ZEBIAK S E,Glantz M H. ENSO as an integrating concept in Earth science [J]. Science,2006,314((5806):):1740-1745. doi: 10.1126/science.1132588
[7] CAI W J,SANTOSO A,COLLINS M,et al. Changing El Niño-Southern Oscillation in a warming climate [J]. Nature Reviews Earth & Environment,2021,2((9):):628-644.
[8] FENG X R,LI M J,LI Y L,et al. Typhoon storm surge in the southeast Chinese mainland modulated by ENSO [J]. Scientific Reports,2021,11((1):):10137-10137. doi: 10.1038/s41598-021-89507-7
[9] REINIG F,WACKER L,JÖRIS O,et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas[J]. Nature,2021,595(7865):66-69. doi: 10.1038/s41586-021-03608-x
[10] LAMB H H. Climatic history and the future,Volume 2:climate:present,past and future [M]. London,England:Methuen and Co. Ltd,1977,1-835.
[11] ALLEY R B,MAYEWSKI P A,SOWERS T,et al. Holocene climatic instability:a prominent widespread event 8200a ago [J]. Geology,1997,25((6):):483-486. doi: 10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2
[12] WALKER M J C,BERKELHAMMER M,BJÖRCK S,et al. Formal subdivision of the Holocene Series/Epoch:a discussion paper by a working group of INTIMATE (Integration of ice-core,marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission On Stratigraphy)[J]. Journal of Quaternary Science,2012,27(7):649-659. doi: 10.1002/jqs.2565
[13] COHEN K M,HARPER D A T,GIBBARD P L. ICS International Chronostratigraphic Chart 2022/02. International Commission on Stratigraphy,IUGS. www. Stratigraphy. Org,2022.
[14] THOMPSON L G,MOSLEY-THOMPSON E,DAVIS M E,et al. Annually resolved ice core records of tropical climate variability over the past ~1800 years [J]. Science,2013,340((6135):):945-950. doi: 10.1126/science.1234210
[15] COOK E R,ANCHUKAITIS K J,BUCKLEY B M,et al. Asian monsoon failure and megadrought during the last millennium [J]. Science,2010,328((5977):):486-489. doi: 10.1126/science.1185188
[16] THEAKER C M, CAROLIN S A, DAY C C, et al. Borneo Stalagmite evidence of significantly reduced El Niño-Southern Oscillation variability at 4.1 ky BP[J]. Geophysical Research Letters,2024,51:e2023GL107111.
[17] FORD H L,RAVELO A C,POLISSAR P J. Reduced El Niño-Southern Oscillation during the Last Glacial Maximum [J]. Science,2015,347((6219):):255-258. doi: 10.1126/science.1258437
[18] JENNY B, VALERO-GARCÉS B L, VILLA-MARTÍNEZ R, et al. Early to mid-Holocene aridity in central Chile and the southern westerlies: the Laguna Aculeo record (34°S) [J]. Quaternary Research,2002,58((2):):160-170.
[19] ROSENTHAL Y,BROCCOLI A J. In search of Paleo-ENSO[J]. Science,2004,304(5668):219-221. doi: 10.1126/science.1095435
[20] CANE M A. The evolution of El Niño,past and future[J]. Earth and Planetary Science Letters,2005,230(2/3):227-240.
[21] Ma T Y. On the growth rate of reef corals and its relation to sea water temperature[J]. Palaeontologia Sinica (Series B),1937,6:21-22.
[22] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学,2012,42(8):1160-1172.
[23] ALIBERT C,MCCULLOCH M T. Strontium/Calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature:calibration of the thermometer and monitoring of ENSO[J]. Paleoceanography,1997,12(3):345-363. doi: 10.1029/97PA00318
[24] COLE J E,FAIRBANKS R G. The Southern Oscillation recorded in the δ18O of corals from Tarawa atoll[J]. Paleoceanography,1990,5(5):669-683. doi: 10.1029/PA005i005p00669
[25] MCCULLOCH M T,GAGAN M K,MORTIMER G E,et al. A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef,Australia,and the 1982-1983 El-Niño[J]. Geochimica et Cosmochimica Acta,1994,58(12):2747-2754. doi: 10.1016/0016-7037(94)90142-2
[26] 丁仲礼. 固体地球科学研究方法[M]. 北京:科学出版社,2013:566-579.
[27] 张剑,刁少波,贺行良,等. 西沙群岛珊瑚礁测年与解析[J]. 海洋地质前沿,2021,37(10):64-69.
[28] 李献华,李扬,李秋立,等. 同位素地质年代学新进展与发展趋势[J]. 地质学报,2022,96(1):104-122.
[29] COBB K M,CHARLES C D,CHENG H,et al. El Niño Southern Oscillation and tropical Pacific climate during the last millennium[J]. Nature,2003,424(6946):271-276. doi: 10.1038/nature01779
[30] HAN T,YU K F,YAN H,et al. Coral δ18O-based reconstruction of El Niño-Southern Oscillation from the northern South China Sea since 1851 AD[J]. Quaternary International,2020,550:159-168.
[31] MCGREGOR H V,FISCHER M J,GAGAN M K,et al. A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300 years ago[J]. Nature Geoscience,2013,6(11):949-953. doi: 10.1038/ngeo1936
[32] MCGREGOR H V,GAGAN M K. Western Pacific coral Δ18O records of anomalous Holocene variability in the El Niño–Southern Oscillation[J]. Geophysical Research Letters,2004,31(11):L11204.
[33] MCGREGOR S,TIMMERMANN A,TIMM O. A unified proxy for ENSO and PDO variability since 1650[J]. Climate of the Past,2010,6(1):1-17. doi: 10.5194/cp-6-1-2010
[34] COLE J E,DUNBAR R B,MCCLANAHAN T R,et al. Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries[J]. Science,2000,287(5453):617-619. doi: 10.1126/science.287.5453.617
[35] LEONARD N D. ,WELSH K J,LOUGH J M,et al. Evidence of reduced Mid-Holocene ENSO variance on the Great Barrier Reef,Australia[J]. Paleoceanography,2016,31:1248-1260. doi: 10.1002/2016PA002967
[36] COMBOUL M,EMILE-GEAY J,HAKIM G J,et al. Paleoclimate sampling as a sensor placement problem[J]. Journal of Climate,2015,28(19):7717-7740.
[37] KILBOURNE K H,QUINN T M,TAYLOR F W. A fossil coral perspective on western tropical Pacific climate ~350 ka[J]. Paleoceanography,2004,19(1):63-79.
[38] HEREID K A,QUINN T M,OKUMURA Y M. Assessing spatial variability in El Niño-Southern Oscillation event detection skill using coral geochemistry[J]. Paleoceanography,2013,28(1):14-23. doi: 10.1029/2012PA002352
[39] CHAPPELL J,POLACH H. Post-glacial sea-level rise from a coral record at Huon Peninsula,Papua New Guinea[J]. Nature,1991,349(6305):147-149. doi: 10.1038/349147a0
[40] BECK J W,RÉCY J,TAYLOR F,et al. Abrupt changes in early Holocene tropical sea surface temperature derived from coral records[J]. Nature,1997,385(6618):705-707. doi: 10.1038/385705a0
[41] MCCULLOCH M,MORTIMER G,ESAT T,et al. High-resolution windows into Early Holocene climate:Sr/Ca coral records from the Huon Peninsula[J]. Earth and Planetary Science Letters,1996,138(1/4):169-178. doi: 10.1016/0012-821X(95)00230-A
[42] DRISCOLL R E. Reconstructions of the Holocene and Last Glacial Period[D]. Edinburgh:The University of Edinburgh,2014.
[43] SHAO D,MEI Y J,YANG Z K,et al. Holocene ENSO variability in the South China Sea recorded by high-resolution oxygen isotope records from the shells of Tridacna spp.[J]. Scientific Reports,2020,10(1):3921. doi: 10.1038/s41598-020-61013-2
[44] LIU Z Y,LU Z Y,WEN X Y,et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years[J]. Nature,2014,515(7528):550-553. doi: 10.1038/nature13963
[45] MA Y F,QIN Y M,YU K F,et al. Holocene coral reef development in Chenhang Island,northern South China Sea,and its record of sea level changes[J]. Marine Geology,2021,440:106593.
[46] TUDHOPE A W,CHILCOTT C P,MCCULLOCH M T,et al. Variability in the El Niño–Southern Oscillation through a glacial interglacial cycle[J]. Science,2001,291(5508):1511-1517. doi: 10.1126/science.1057969
[47] RODBELL D T,SELTZER G O,ANDERSON D M,et al. An ~15,000-year record of El Niño-driven alluviation in southwestern Ecuador[J]. Science,1999,283(5401):516-520. doi: 10.1126/science.283.5401.516
[48] MOY C M,SELTZER G O,RODBELL D T,et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature,2002,420(6912):162-165. doi: 10.1038/nature01194
[49] CARRÉ M,SACHS J P,PURCA S,et al. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific[J]. Science,2014,345(6200):1045-1048. doi: 10.1126/science.1252220
[50] CHEN S,HOFFMANN S S,LUND D C,et al. A high-resolution speleothem record of western equatorial Pacific rainfall:implications for Holocene ENSO evolution[J]. Earth and Planetary Science Letters,2016,442((1):):61-71.
[51] ABRAM N J,MCGREGOR H V,GAGAN M K,et al. Oscillations in the southern extent of the Indo-Pacific Warm Pool during the Mid-Holocene[J]. Quaternary Science Reviews,2009,28(25/26):2794-2803.
[52] MCGREGOR H V,GAGAN M K,MCCULLOCH M T,et al. Mid-Holocene Variability in the marine 14C reservoir age for northern coastal Papua New Guinea[J]. Quaternary Geochronology,2008,3(3):213-225. doi: 10.1016/j.quageo.2007.11.002
[53] YU K F,HUA Q A,ZHAO J X,et al. Holocene marine 14C reservoir age variability:evidence from 230Th-dated corals in the South China Sea[J]. Paleoceanography,2010,25(3):PA3205.
[54] COBB K M,WESTPHAL N,SAYANI H R,et al. Highly variable El Niño-Southern Oscillation throughout the Holocene[J]. Science,2013,339(6115):67-70. doi: 10.1126/science.1228246
[55] WOODROFFE C D,BEECH M R,GAGAN M K. Mid-Late Holocene El Niño variability in the Equatorial Pacific from coral microatolls[J]. Geophysical Research Letters,2003,30(7):1358.
[56] TOTH L T,ARONSON R B,COBB K M,et al. Climatic and biotic thresholds of coral-reef shutdown[J]. Nature Climate Change,2015,5(4):369-374. doi: 10.1038/nclimate2541
[57] DUPREY N,LAZARETH C E,CORRÈGE T,et al. Early Mid-Holocene SST variability and surface-ocean water balance in the southwest Pacific[J]. Paleoceanography,2012,27(4):PA4207.
[58] WEI G J,DENG W F,YU K F,et al. Sea surface temperature records in the northern South China Sea from Mid-Holocene coral Sr/Ca ratios[J]. Paleoceanography,2007,22(3):PA3206.
[59] LAZARETH C E,ROSELL M B,TURCQ B,et al. Mid-Holocene climate in New Caledonia (southwest Pacific):coral and PMIP models monthly resolved results[J]. Quaternary Science Reviews,2013,69:83-97.
[60] DANG S H,YU K F,TAO S C,et al. El Niño/Southern Oscillation during the 4.2 ka event recorded by growth rates of corals from the north South China Sea[J]. Acta Oceanologica Sinica,2020,39(1):110-117. doi: 10.1007/s13131-019-1520-5
[61] BERNAL J P,LACHNIET M,MCCULLOCH M,et al. A speleothem record of Holocene climate variability from southwestern Mexico[J]. Quaternary Research,2011,75(1):104-113. doi: 10.1016/j.yqres.2010.09.002
[62] ZHOU P C,YAN H,HAN T,et al. Mid to late Holocene ENSO variability reconstructed by high-resolution Tridacna Sr/Ca records from the northern part of the South China Sea[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,601:111117.
[63] DU X J,HENDY I,HINNOV L,et al. High-resolution interannual precipitation reconstruction of Southern California:implications for Holocene ENSO evolution[J]. Earth and Planetary Science Letters,2021,554:116670. doi: 10.1016/j.jpgl.2020.116670
[64] NIE S Y,XIAO W S,WANG R J. Mid-Late Holocene climate variabilities in the Bransfield Strait,Antarctic Peninsula driven by insolation and ENSO activities[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,601:111140.
[65] TOTH L T,ARONSON R B. The 4.2 ka event,ENSO,and coral reef development[J]. Climate of the Past,2019,15(1):105-119. doi: 10.5194/cp-15-105-2019
[66] CORRÈGE T,DELCROIX T,RÉCY J,et al. Evidence for stronger El Niño–Southern Oscillation (ENSO) events in a Mid-Holocene massive coral[J]. Paleoceanography,2000,15(4):465-470. doi: 10.1029/1999PA000409
[67] GIRY C,FELIS T,KÖLLING M,et al. Mid- to Late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals[J]. Earth and Planetary Science Letters,2012,331(1):187-200.
[68] URBAN F E,COLE J E,OVERPECK J T. Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record[J]. Nature,2000,407(6807):989-993. doi: 10.1038/35039597
[69] SANCHEZ S C,WESTPHAL N,HAUG G H,et al. A continuous record of central tropical Pacific climate since the midnineteenth century reconstructed from Fanning and Palmyra Island corals:a case study in coral data reanalysis[J]. Paleoceanography,2020,35(8):e2020PA003848.
[70] THOMPSON D M,COLE J E,SHEN G T,et al. Early twentieth-century warming linked to Tropical Pacific wind strength[J]. Nature Geoscience,2015,8(2):117-121. doi: 10.1038/ngeo2321
[71] GROTHE P R,COBB K M,LIGUORI G,et al. Enhanced El Niño–Southern Oscillation variability in recent decades[J]. Geophysical Research Letters,2020,47(7):1-8.
[72] TOTH L T,ARONSON R B,VOLLMER S V,et al. ENSO drove 2500-year collapse of eastern Pacific coral reefs[J]. Science,2012,337(6090):81-84. doi: 10.1126/science.1221168
[73] GUILDERSON T P,SCHRAG D P. Abrupt shift in subsurface temperatures on the tropical Pacific associated with changes in El Niño[J]. Science,1998,281(5374):240-243. doi: 10.1126/science.281.5374.240
[74] DUNBAR R B,WELLINGTON G M,COLGAN M W,et al. Eastern Pacific sea surface temperature since 1600 A.D.:the δ18O record of climate variability in Galápagos Corals[J]. Paleoceanography,1994,9((2):):291-315. doi: 10.1029/93PA03501
[75] JIANG L L,YU K F,HAN T,et al. Coral perspective on temperature seasonality and interannual variability in the northern South China Sea during the Roman Warm Period[J]. Global and Planetary Change,2021,207:103675. doi: 10.1016/j.gloplacha.2021.103675
[76] JIANG L L,YU K F,TAO S C,et al. Abrupt increase in ENSO variability at 700 CE triggered by solar activity[J]. Journal of Geophysical Research:Oceans,2023,128(1):e2022JC019278.
[77] JIANG L L,YU K F,TAO S C,et al. ENSO Variability during the medieval climate anomaly as recorded by Porites corals from the northern South China Sea[J]. Paleoceanography and Paleoclimatology,2021,36(4):e2020PA004173. doi: 10.1029/2020PA004173
[78] QUINN T M,TAYLOR F W,CROWLEY T J. Coral-based climate variability in the Western Pacific Warm Pool since 1867[J]. Journal of Geophysical Research,2006,111:C11006.
[79] TUDHOPE A W,SHIMMIELD G B,CHILCOTT C P,et al. Recent changes in climate in the far western equatorial Pacific and their relationship to the Southern Oscillation; oxygen isotope records from massive corals,Papua New Guinea[J]. Earth and Planetary Science Letters,1995,136(3):575-590.
[80] LEUPOLD M,PFEIFFER M,WATANABE T K,et al. El Niño-Southern Oscillation and internal sea surface temperature variability in the tropical Indian Ocean since 1675[J]. Climate of the Past,2021,17(1):151-170. doi: 10.5194/cp-17-151-2021
[81] TARIQUE M,RAHAMAN W,THAMBAN M,et al. Surface pH Record (1990–2013) of the Arabian Sea from Boron isotopes of Lakshadweep corals:trend,variability,and control[J]. Journal of Geophysical Research:Biogeosciences,2021,126(7):e2020JG006122.
[82] CLEMENT A C,SEAGER R,CANE M A. Suppression of El Niño during the Mid-Holocene by changes in the Earth's orbit[J]. Paleoceanography,2000,15(6):731-737. doi: 10.1029/1999PA000466
[83] DANG H W,JIAN Z M,WANG Y,et al. Pacific Warm Pool subsurface heat sequestration modulated Walker Circulation and ENSO activity during the Holocene[J]. Science Advances,2020,6(42):eabc0402. doi: 10.1126/sciadv.abc0402
[84] 汪品先. 地球系统与演变[M]. 北京:科学出版社,2018:291-415.
[85] EMILE-GEAY J,COBB K M,CARRÉ M,et al. Links between tropical Pacific seasonal,interannual and orbital variability during the Holocene[J]. Nature Geoscience,2016,9(2):168-173. doi: 10.1038/ngeo2608
[86] DEE S G,COBB K M,EMILE-GEAY J,et al. No consistent ENSO response to volcanic forcing over the last millennium[J]. Science,2020,367(6485):1477-1481. doi: 10.1126/science.aax2000
[87] ZHU F,EMILE-GEAY J,ANCHUKAITIS K J,et al. A re-appraisal of the ENSO response to volcanism with paleoclimate data assimilation[J]. Nature Communications,2022,13(1):747. doi: 10.1038/s41467-022-28210-1
-