风暴后海陵岛金沙滩恢复期床面高度变化分析

刘润, 李志强, 朱道恒, 胡鹏鹏, 孙琰, 曾春华. 风暴后海陵岛金沙滩恢复期床面高度变化分析[J]. 海洋地质前沿, 2024, 40(8): 22-31. doi: 10.16028/j.1009-2722.2023.201
引用本文: 刘润, 李志强, 朱道恒, 胡鹏鹏, 孙琰, 曾春华. 风暴后海陵岛金沙滩恢复期床面高度变化分析[J]. 海洋地质前沿, 2024, 40(8): 22-31. doi: 10.16028/j.1009-2722.2023.201
LIU Run, LI Zhiqiang, ZHU Daoheng, HU Pengpeng, SUN Yan, ZENG Chunhua. Analysis of bed level elevation during beach recovery after storm on Golden Beach, Hailing Island, Guangdong[J]. Marine Geology Frontiers, 2024, 40(8): 22-31. doi: 10.16028/j.1009-2722.2023.201
Citation: LIU Run, LI Zhiqiang, ZHU Daoheng, HU Pengpeng, SUN Yan, ZENG Chunhua. Analysis of bed level elevation during beach recovery after storm on Golden Beach, Hailing Island, Guangdong[J]. Marine Geology Frontiers, 2024, 40(8): 22-31. doi: 10.16028/j.1009-2722.2023.201

风暴后海陵岛金沙滩恢复期床面高度变化分析

  • 基金项目: 国家自然科学基金(42176167)
详细信息
    作者简介: 刘润(1997—),女,在读硕士,主要从事海岸动力地貌学方面的研究工作. E-mail:Runl0411@163.com
    通讯作者: 李志强(1974—),男,博士,教授,主要从事海滩过程、海岸工程环境方面的研究工作. E-mail:qiangzl1974@163.com
  • 中图分类号: P731.2

Analysis of bed level elevation during beach recovery after storm on Golden Beach, Hailing Island, Guangdong

More Information
  • 台风后海滩恢复初期的床面变化是海滩演变机理的重要研究内容。利用2021年8月17—22日现场观测获取的海陵岛金沙滩碎波带床面高度和波浪、潮汐数据,分析不同潮汐周期和波况下的床面高度变化特征,并采用连续小波变换分析床面高度的周期变化特征。结果表明:①风暴后海滩恢复期的波浪以卷破波为主,在较低潮位与强浪耦合下海滩迅速恢复,而在较高潮位与弱浪耦合下海滩恢复有限;②床面高度在“最高潮”时减小,在“次高潮”时增加, “次高潮”期间床面高度的周期变化更显著;③床面高程变化受多种水动力参数共同影响,观测点位置不同对潮位变化和波浪作用力反映不同,观测点位于外碎波带,床面高程受深水波高影响较大,在碎波带内受碎波带的波浪、潮位高低以及破碎类型影响较大。

  • 加载中
  • 图 1  研究区概况

    Figure 1. 

    图 2  观测期间波浪与潮汐情况

    Figure 2. 

    图 3  潮汐周期内平均床面高程的相对变化

    Figure 3. 

    图 4  2021年8月17—22日DSP变化

    Figure 4. 

    图 5  不同潮周期内BLE的周期振荡变化

    Figure 5. 

    图 6  床面高程与水动力因子的相关性(p<0.001)

    Figure 6. 

    图 7  波潮耦合下的床面高程变化

    Figure 7. 

    表 1  不同潮汐周期平均DSP的变化

    Table 1.  Changes in average DSP for different tidal periods

    潮汐条件 潮汐周期 平均水深/m 平均有效波高/m 平均DSP-A
    /mm
    平均DSP-B
    /mm
    平均DSP-C
    /mm
    小潮 T1 1.03 1.37 215.3 225.3 -
    中潮 T2 0.79 0.82 492.8 267.1 -
    T3 0.91 0.59 312.7 302.6 -
    T4* 0.63 0.45 322.9 306.5 192.5
    T5 1.20 0.46 329.1 308.1 193.4
    T6* 0.66 0.58 202.7 296.7 188.9
    T7 1.21 0.86 339.5 296.4 199.8
    大潮 T8* 0.59 0.65 192.2 257.4 180.0
    T9 1.29 1.04 331.5 278.3 188.6
    注:“*”表示次最高潮;“-”表示无数据。
    下载: 导出CSV

    表 2  不同潮情和波况下3个观测点(A、B、C)平均DSP变化

    Table 2.  Changes of average DSP at 3 observation points (A, B, C) under different tide and wave conditions

    潮汐状态/波况 潮汐
    周期
    平均DSP-A
    /mm
    平均DSP-A的标准差/mm 平均DSP-B
    /mm
    平均DSP-B的标准差/mm 平均DSP-C
    /mm
    平均DSP-C的标准差/mm 平均Hs/m
    小潮 T1 215.3 9.37 225.3 22.86 - - 0.37
    中潮 T2—T7 337.5 62.46 291.9 29.31 194.7 26.00 0.66
    大潮 T8—T9 279.5 33.25 269.4 45.71 184.6 2.51 0.87
    高能Ⅰ T1 215.3 9.37 225.3 22.86 - - 1.37
    中等Ⅰ T2—T3 375.0 9.53 284.3 66.17 - - 0.71
    低能 T4*—T5 372.4 13.42 307.5 7.41 193.1 3.19 0.45
    中等Ⅱ T6*—T8* 262.7 6.12 284.8 12.42 189.2 8.19 0.72
    高能Ⅱ T9 331.5 30.61 278.3 23.26 188.6 2.15 1.04
    注:“-”表示无数据。
    下载: 导出CSV

    表 3  床面变化与水动力因子斯皮尔曼相关系数(p)分析

    Table 3.  Spearman correlation coefficient between bed level changes and hydrodynamic factors

    变量 DSP-C DSP-B DSP-A
    rs p rs p rs p
    ε −0.204 0.289 −0.658** <0.001 −0.475** <0.001
    Hmax 0.095 0.626 −0.336** 0.010 −0.083 0.536
    Hs −0.048 0.804 −0.425** 0.001 −0.145 0.278
    Ts −0.158 0.414 −0.231 0.081 −0.190 0.154
    ξb −0.195 0.312 −0.547** <0.001 −0.478** <0.001
    Hb −0.021 0.915 −0.447** <0.001 −0.127 0.344
    h 0.350 0.063 0.624** <0.001 0.560** <0.001
    H0 −0.529** <0.001 −0.164 0.220 −0.428** <0.001
    注:**相关性显著水平0.01(双尾),粗体表示极显著相关性(p<0.001)。
    下载: 导出CSV
  • [1]

    PEREGRINE D H. Surf zone currents[J]. Theoretical and Computational Fluid Dynamics,1998,10(1):295-309.

    [2]

    PANG W H,ZHOU X Y,DAI Z J,et al. ADV-based investigation on bed level changes over a meso-macro tidal beach[J]. Frontiers in Marine Science,2021,8:733923. doi: 10.3389/fmars.2021.733923

    [3]

    PULEO J A,LANCKRIET T,BLENKINSOPP C. Bed level fluctuations in the inner surf and swash zone of a dissipative beach[J]. Marine geology,2014,349:99-112. doi: 10.1016/j.margeo.2014.01.006

    [4]

    曾春华,胡泰桓,张会领,等. 徐闻青安湾海滩冲流带对台风 doi: 10.3969/j.issn.1673-9159.2021.05.010

    “韦帕”的波动响应特征[J]. 广东海洋大学学报,2021,41(5):74-83. doi: 10.3969/j.issn.1673-9159.2021.05.010

    [5]

    BIAUSQUE M,SENECHAL N. Seasonal morphological response of an open sandy beach to winter wave conditions:the example of Biscarrosse Beach,SW France[J]. Geomorphology,2019,332:157-169. doi: 10.1016/j.geomorph.2019.02.009

    [6]

    KROON A,MASSELINK G. Morphodynamics of intertidal bar morphology on a macrotidal beach under low-energy wave conditions,North Lincolnshire,England[J]. Marine geology,2002,190(3/4):591-608.

    [7]

    MASSELINK G,AUSTIN M,TINKER J,et al. Cross-shore sediment transport and morphological response on a macrotidal beach with intertidal bar morphology,Truc Vert,France[J]. Marine Geology,2008,251(3/4):141-155.

    [8]

    陈子燊,李志强,李志龙,等. 海滩碎波带波性质的统计对比分析[J]. 中山大学学报(自然科学版),2002,41(6):86-90. doi: 10.3321/j.issn:0529-6579.2002.06.024

    [9]

    HU T H,LI Z Q,ZENG C H,et al. Applications of EMD to analyses of high-frequency beachface responses to Storm Bebinca in the Qing’an Bay,Guangdong Province,China[J]. Acta Oceanologica Sinica,2022,41(5):147-162. doi: 10.1007/s13131-021-1948-2

    [10]

    SCOTT T,MASSELINK G,O'HARE T,et al. The extreme 2013/2014 winter storms:beach recovery along the southwest coast of England[J]. Marine Geology,2016,382:224-241. doi: 10.1016/j.margeo.2016.10.011

    [11]

    HOUSER C,WERNETTE P,RENTSCHLAR E,et al. Post-storm beach and dune recovery:implications for barrier island resilience[J]. Geomorphology,2015,234:54-63. doi: 10.1016/j.geomorph.2014.12.044

    [12]

    CASTELLE B,BUJAN S,FERREIRA S,et al. Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast[J]. Marine Geology,2017,385:41-55. doi: 10.1016/j.margeo.2016.12.006

    [13]

    YU F,SWITZER A D,LAU A Y A,et al. A comparison of the post-storm recovery of two sandy beaches on Hong Kong Island,southern China[J]. Quaternary international,2013,304:163-175. doi: 10.1016/j.quaint.2013.04.002

    [14]

    GE Z P,DAI Z J,PANG W H,et al. LIDAR-based detection of the post-typhoon recovery of a meso-macro-tidal beach in the Beibu Gulf,China[J]. Marine Geology,2017,391:127-143 doi: 10.1016/j.margeo.2017.08.008

    [15]

    BRUUN P. Coast erosion and the development of beach profiles[M]. America:Beach Erosion Board,1954.

    [16]

    GALVIN J C J. Breaker type classification on three laboratory beaches[J]. Journal of geophysical research,1968,73(12):3651-3659. doi: 10.1029/JB073i012p03651

    [17]

    MASSELINK G,RUSSELL P,BLENKINSOPP C,et al. Swash zone sediment transport,step dynamics and morphological response on a gravel beach[J]. Marine Geology,2010,274(1/4):50-68.

    [18]

    BRAND E,MONTREUIL A L,DAN S,et al. Macro-tidal beach morphology in relation to nearshore wave conditions and suspended sediment concentrations at Mariakerke,Belgium[J]. Regional Studies in Marine Science,2018,24:97-106. doi: 10.1016/j.rsma.2018.08.002

    [19]

    BATTJES J A. Surf similarity[M] Copenhagen:Coastal Engineering,1974:466-480.

    [20]

    KOMAR P D,GAUGHAN M K. Airy wave theory and breaker height prediction[M] Vancouver:Coastal Engineering Proceedings,1972:405-418.

    [21]

    TORRENCE C,COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological society,1998,79(1):61-78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

    [22]

    MASSELINK G,RUSSELL P. Flow velocities,sediment transport and morphological change in the swash zone of two contrasting beaches[J]. Marine Geology,2006,227(3/4):227-240.

    [23]

    DELGADO R,MONTREUIL A L,DAN S,et al. Contribution of waves and currents to observed suspended sediment distribution patterns in a macro-tidal beach[C]// Leuven:The 13 International Conference on Cohesive Sediment Transport Processes,2015.

    [24]

    KENDALL M,GIBBONS J D. Rank Correlation Methods[M]. New York:Oxford University Press,1990.

    [25]

    SHORT A D. Handbook of beach and shoreface morphodynamics[M]. Chichester:John Wiley,1999.

    [26]

    CASTELLE B,COCO G. The morphodynamics of rip channels on embayed beaches[J]. Continental Shelf Research,2012,43:10-23. doi: 10.1016/j.csr.2012.04.010

    [27]

    DALY C J,BRYAN K R,WINTER C. Wave energy distribution and morphological development in and around the shadow zone of an embayed beach[J]. Coastal Engineering,2014,93:40-54. doi: 10.1016/j.coastaleng.2014.08.003

    [28]

    COCO G,BRYAN K R,GREEN M O,et al. Video observations of shoreline and sandbar coupled dynamics[C]//Coasts and Ports 2005:Coastal Living-Living Coast; Australasian Conference; Proceedings,Barton ACT:Institution of Engineers,2005:471-476.

    [29]

    VOUSDOUKAS M I,ALMEIDA L P M,FERREIRA Ó. Beach erosion and recovery during consecutive storms at a steep-sloping,meso-tidal beach[J]. Earth Surface Processes and Landforms,2012,37(6):583-593. doi: 10.1002/esp.2264

    [30]

    THOM B G,HALL W. Behaviours of beach profiles during accretion and erosion dominated periods[J]. Earth surface processes and landforms,1991,16(2):113-127. doi: 10.1002/esp.3290160203

    [31]

    EGENSE A K. Southern California beach changes in response to extraordinary storm[J]. Shore and Beach,1989,57(4):14-17.

    [32]

    WANG P,KIRBY J H,HABER J D,et al. Morphological and sedimentological impacts of Hurricane Ivan and immediate poststorm beach recovery along the northwestern Florida barrier-island coasts[J]. Journal of Coastal Research,2006,22(6):1382-1402.

  • 加载中

(7)

(3)

计量
  • 文章访问数:  321
  • PDF下载数:  39
  • 施引文献:  0
出版历程
收稿日期:  2023-08-11
刊出日期:  2024-08-28

目录