Analysis of bed level elevation during beach recovery after storm on Golden Beach, Hailing Island, Guangdong
-
摘要:
台风后海滩恢复初期的床面变化是海滩演变机理的重要研究内容。利用2021年8月17—22日现场观测获取的海陵岛金沙滩碎波带床面高度和波浪、潮汐数据,分析不同潮汐周期和波况下的床面高度变化特征,并采用连续小波变换分析床面高度的周期变化特征。结果表明:①风暴后海滩恢复期的波浪以卷破波为主,在较低潮位与强浪耦合下海滩迅速恢复,而在较高潮位与弱浪耦合下海滩恢复有限;②床面高度在“最高潮”时减小,在“次高潮”时增加, “次高潮”期间床面高度的周期变化更显著;③床面高程变化受多种水动力参数共同影响,观测点位置不同对潮位变化和波浪作用力反映不同,观测点位于外碎波带,床面高程受深水波高影响较大,在碎波带内受碎波带的波浪、潮位高低以及破碎类型影响较大。
Abstract:The bed surface changes during the initial stage of beach recovery after a typhoon are an important research content for the mechanism of beach evolution. We analyzed the characteristics of the bed level elevation (BLE) change under various tidal cycles and wave conditions using the BLE and wave and tidal data of the surf zone of Golden Beach (Jinshatan, Hailing Island (Yangjiang, Guangdong, South China), which were obtained from field observation from August 17 to 22, 2021. We then used continuous wavelet transform to analyze the characteristics of the cycle change of the BLE. The findings are ① during the beach's storm-related recovery phase, the majority of the waves are breaking waves, and the beach recovers quickly at low tide when there are powerful waves, while the beach recovers to a limited extent at high tide coupled with weak waves. ② The BLE decreases during the "highest tide" and raises during the "sub-highest tide", and the periodic change of BLE during the "sub-highest tide" is more substantial. The beach recovers to a limited extent during high tide combined with weak waves. ③ Various hydrodynamic factors affect the change in BLE, and the different observation point have different responses to tidal level changes and wave forces. The BLE is more affected by deep-water wave height when observation site is beyond the surf zone, while the wave, the tidal level, and the type of broken waves inside the surf zone are main impact factors on the BLE.
-
Key words:
- tropical storm /
- surf zones /
- bed level changes /
- wavelet analysis /
- beach restoration
-
-
表 1 不同潮汐周期平均DSP的变化
Table 1. Changes in average DSP for different tidal periods
潮汐条件 潮汐周期 平均水深/m 平均有效波高/m 平均DSP-A
/mm平均DSP-B
/mm平均DSP-C
/mm小潮 T1 1.03 1.37 215.3 225.3 - 中潮 T2 0.79 0.82 492.8 267.1 - T3 0.91 0.59 312.7 302.6 - T4* 0.63 0.45 322.9 306.5 192.5 T5 1.20 0.46 329.1 308.1 193.4 T6* 0.66 0.58 202.7 296.7 188.9 T7 1.21 0.86 339.5 296.4 199.8 大潮 T8* 0.59 0.65 192.2 257.4 180.0 T9 1.29 1.04 331.5 278.3 188.6 注:“*”表示次最高潮;“-”表示无数据。 表 2 不同潮情和波况下3个观测点(A、B、C)平均DSP变化
Table 2. Changes of average DSP at 3 observation points (A, B, C) under different tide and wave conditions
潮汐状态/波况 潮汐
周期平均DSP-A
/mm平均DSP-A的标准差/mm 平均DSP-B
/mm平均DSP-B的标准差/mm 平均DSP-C
/mm平均DSP-C的标准差/mm 平均Hs/m 小潮 T1 215.3 9.37 225.3 22.86 - - 0.37 中潮 T2—T7 337.5 62.46 291.9 29.31 194.7 26.00 0.66 大潮 T8—T9 279.5 33.25 269.4 45.71 184.6 2.51 0.87 高能Ⅰ T1 215.3 9.37 225.3 22.86 - - 1.37 中等Ⅰ T2—T3 375.0 9.53 284.3 66.17 - - 0.71 低能 T4*—T5 372.4 13.42 307.5 7.41 193.1 3.19 0.45 中等Ⅱ T6*—T8* 262.7 6.12 284.8 12.42 189.2 8.19 0.72 高能Ⅱ T9 331.5 30.61 278.3 23.26 188.6 2.15 1.04 注:“-”表示无数据。 表 3 床面变化与水动力因子斯皮尔曼相关系数(p)分析
Table 3. Spearman correlation coefficient between bed level changes and hydrodynamic factors
变量 DSP-C DSP-B DSP-A rs p rs p rs p ε −0.204 0.289 −0.658** <0.001 −0.475** <0.001 Hmax 0.095 0.626 −0.336** 0.010 −0.083 0.536 Hs −0.048 0.804 −0.425** 0.001 −0.145 0.278 Ts −0.158 0.414 −0.231 0.081 −0.190 0.154 ξb −0.195 0.312 −0.547** <0.001 −0.478** <0.001 Hb −0.021 0.915 −0.447** <0.001 −0.127 0.344 h 0.350 0.063 0.624** <0.001 0.560** <0.001 H0 −0.529** <0.001 −0.164 0.220 −0.428** <0.001 注:**相关性显著水平0.01(双尾),粗体表示极显著相关性(p<0.001)。 -
[1] PEREGRINE D H. Surf zone currents[J]. Theoretical and Computational Fluid Dynamics,1998,10(1):295-309.
[2] PANG W H,ZHOU X Y,DAI Z J,et al. ADV-based investigation on bed level changes over a meso-macro tidal beach[J]. Frontiers in Marine Science,2021,8:733923. doi: 10.3389/fmars.2021.733923
[3] PULEO J A,LANCKRIET T,BLENKINSOPP C. Bed level fluctuations in the inner surf and swash zone of a dissipative beach[J]. Marine geology,2014,349:99-112. doi: 10.1016/j.margeo.2014.01.006
[4] 曾春华,胡泰桓,张会领,等. 徐闻青安湾海滩冲流带对台风 doi: 10.3969/j.issn.1673-9159.2021.05.010
“韦帕”的波动响应特征[J]. 广东海洋大学学报,2021,41(5):74-83. doi: 10.3969/j.issn.1673-9159.2021.05.010
[5] BIAUSQUE M,SENECHAL N. Seasonal morphological response of an open sandy beach to winter wave conditions:the example of Biscarrosse Beach,SW France[J]. Geomorphology,2019,332:157-169. doi: 10.1016/j.geomorph.2019.02.009
[6] KROON A,MASSELINK G. Morphodynamics of intertidal bar morphology on a macrotidal beach under low-energy wave conditions,North Lincolnshire,England[J]. Marine geology,2002,190(3/4):591-608.
[7] MASSELINK G,AUSTIN M,TINKER J,et al. Cross-shore sediment transport and morphological response on a macrotidal beach with intertidal bar morphology,Truc Vert,France[J]. Marine Geology,2008,251(3/4):141-155.
[8] 陈子燊,李志强,李志龙,等. 海滩碎波带波性质的统计对比分析[J]. 中山大学学报(自然科学版),2002,41(6):86-90. doi: 10.3321/j.issn:0529-6579.2002.06.024
[9] HU T H,LI Z Q,ZENG C H,et al. Applications of EMD to analyses of high-frequency beachface responses to Storm Bebinca in the Qing’an Bay,Guangdong Province,China[J]. Acta Oceanologica Sinica,2022,41(5):147-162. doi: 10.1007/s13131-021-1948-2
[10] SCOTT T,MASSELINK G,O'HARE T,et al. The extreme 2013/2014 winter storms:beach recovery along the southwest coast of England[J]. Marine Geology,2016,382:224-241. doi: 10.1016/j.margeo.2016.10.011
[11] HOUSER C,WERNETTE P,RENTSCHLAR E,et al. Post-storm beach and dune recovery:implications for barrier island resilience[J]. Geomorphology,2015,234:54-63. doi: 10.1016/j.geomorph.2014.12.044
[12] CASTELLE B,BUJAN S,FERREIRA S,et al. Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast[J]. Marine Geology,2017,385:41-55. doi: 10.1016/j.margeo.2016.12.006
[13] YU F,SWITZER A D,LAU A Y A,et al. A comparison of the post-storm recovery of two sandy beaches on Hong Kong Island,southern China[J]. Quaternary international,2013,304:163-175. doi: 10.1016/j.quaint.2013.04.002
[14] GE Z P,DAI Z J,PANG W H,et al. LIDAR-based detection of the post-typhoon recovery of a meso-macro-tidal beach in the Beibu Gulf,China[J]. Marine Geology,2017,391:127-143 doi: 10.1016/j.margeo.2017.08.008
[15] BRUUN P. Coast erosion and the development of beach profiles[M]. America:Beach Erosion Board,1954.
[16] GALVIN J C J. Breaker type classification on three laboratory beaches[J]. Journal of geophysical research,1968,73(12):3651-3659. doi: 10.1029/JB073i012p03651
[17] MASSELINK G,RUSSELL P,BLENKINSOPP C,et al. Swash zone sediment transport,step dynamics and morphological response on a gravel beach[J]. Marine Geology,2010,274(1/4):50-68.
[18] BRAND E,MONTREUIL A L,DAN S,et al. Macro-tidal beach morphology in relation to nearshore wave conditions and suspended sediment concentrations at Mariakerke,Belgium[J]. Regional Studies in Marine Science,2018,24:97-106. doi: 10.1016/j.rsma.2018.08.002
[19] BATTJES J A. Surf similarity[M] Copenhagen:Coastal Engineering,1974:466-480.
[20] KOMAR P D,GAUGHAN M K. Airy wave theory and breaker height prediction[M] Vancouver:Coastal Engineering Proceedings,1972:405-418.
[21] TORRENCE C,COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological society,1998,79(1):61-78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
[22] MASSELINK G,RUSSELL P. Flow velocities,sediment transport and morphological change in the swash zone of two contrasting beaches[J]. Marine Geology,2006,227(3/4):227-240.
[23] DELGADO R,MONTREUIL A L,DAN S,et al. Contribution of waves and currents to observed suspended sediment distribution patterns in a macro-tidal beach[C]// Leuven:The 13 International Conference on Cohesive Sediment Transport Processes,2015.
[24] KENDALL M,GIBBONS J D. Rank Correlation Methods[M]. New York:Oxford University Press,1990.
[25] SHORT A D. Handbook of beach and shoreface morphodynamics[M]. Chichester:John Wiley,1999.
[26] CASTELLE B,COCO G. The morphodynamics of rip channels on embayed beaches[J]. Continental Shelf Research,2012,43:10-23. doi: 10.1016/j.csr.2012.04.010
[27] DALY C J,BRYAN K R,WINTER C. Wave energy distribution and morphological development in and around the shadow zone of an embayed beach[J]. Coastal Engineering,2014,93:40-54. doi: 10.1016/j.coastaleng.2014.08.003
[28] COCO G,BRYAN K R,GREEN M O,et al. Video observations of shoreline and sandbar coupled dynamics[C]//Coasts and Ports 2005:Coastal Living-Living Coast; Australasian Conference; Proceedings,Barton ACT:Institution of Engineers,2005:471-476.
[29] VOUSDOUKAS M I,ALMEIDA L P M,FERREIRA Ó. Beach erosion and recovery during consecutive storms at a steep-sloping,meso-tidal beach[J]. Earth Surface Processes and Landforms,2012,37(6):583-593. doi: 10.1002/esp.2264
[30] THOM B G,HALL W. Behaviours of beach profiles during accretion and erosion dominated periods[J]. Earth surface processes and landforms,1991,16(2):113-127. doi: 10.1002/esp.3290160203
[31] EGENSE A K. Southern California beach changes in response to extraordinary storm[J]. Shore and Beach,1989,57(4):14-17.
[32] WANG P,KIRBY J H,HABER J D,et al. Morphological and sedimentological impacts of Hurricane Ivan and immediate poststorm beach recovery along the northwestern Florida barrier-island coasts[J]. Journal of Coastal Research,2006,22(6):1382-1402.
-