Response of Yellow River subaerial delta erosion and accretion to climate change and human activities in the past 30 years
-
摘要:
近30年来,受全球气候变化和流域人类活动加剧的影响,黄河三角洲陆地蚀退-淤进过程对黄河流域水循环系统的响应变得更为显著。基于谷歌地球引擎(Google Earth Engine)和长时间序列的Landsat影像,结合流域内气象水文长期测量数据,定量研究了近30年黄河陆上三角洲蚀退-淤进对气候变化和人类活动的响应。研究发现,1993—2022年间,黄河三角洲陆地面积经历了先增加后减少再波动增加的阶段,现行河口岸段为主要淤积区,陆地面积每年增长约1.67 km2,刁口河岸段为主要侵蚀区,陆地面积每年减少约2.15 km2;入海水沙与河口面积变化在1993—2001年自然水沙输运时期存在周期为4~5 a的负相位关系;多元回归分析表明,自然水沙输运时期(1993—2001年)气候变化主导了河口蚀退-淤进,人工水沙调控时期(2002—2022年)人类活动的影响远大于气候变化。
Abstract:In the past 30 years, affected by global climate change and intensified human activities in the basin, the response of the Yellow River Delta land erosion-accretion process to the water circulation system of the Yellow River Basin has become more significant. Based on Google Earth Engine and long-term series of Landsat images, combined with long-term meteorological and hydrological measurement data in the basin, this research quantitatively studies the response of the Yellow River subaerial delta erosion and accretion to climate change and human activities in the past 30 years. The research found that in the 30 years from 1993 to 2022, the land area of the Yellow River Delta experienced a stage of first increasing, then decreasing and then fluctuating increase. The current river mouth bank section is the main accretion area, and the land area increases by about 1.67 km2 per year. The Diaokou river bank section is the main erosion area. area, the land area decreases by about 2.15 km2 per year; there is a negative phase relationship with a period of 4~5 years between the changes in sediment loads and river mouth area during the natural water and sediment transport period (1993-2001); multiple regression analysis shows that the natural water and sediment during the period (1993-2001), climate change dominated the erosion and accretion of the river mouth. During the artificial Water-Sediment Regulation Scheme period (2002-2022), the impact of human activities was far greater than climate change.
-
-
[1] OVEREEM I,SYVITSKI J P M. Dynamics and vulnerability of delta systems[R]. Geesthacht:GKSS Research Center,2009.
[2] SYVITSKI J P M. Deltas at risk[J]. Sustainability Science,2008,3(1):23-32. doi: 10.1007/s11625-008-0043-3
[3] WRIGHT L D. Sediment transport and deposition at river mouths:a synthesis[J]. Geological Society of America Bulletin,1977,88(6):857. doi: 10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2
[4] SAITO Y,YANG Z,HORI K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas:a review on their characteristics,evolution and sediment discharge during the Holocene[J]. Geomorphology,2001,41(2):219-231.
[5] GALAL E M,TAKEWAKA S. The influence of alongshore and cross-shore wave energy flux on large- and small-scale coastal erosion patterns[J]. Earth Surface Processes and Landforms,2011,36(7):953-966. doi: 10.1002/esp.2125
[6] XU J. Response of land accretion of the Yellow River Delta to global climate change and human activity[J]. Quaternary International,2008,186(1):4-11. doi: 10.1016/j.quaint.2007.08.032
[7] RENAUD F G,SYVITSKI J P,SEBESVARI Z,et al. Tipping from the Holocene to the Anthropocene:how threatened are major world deltas?[J]. Current Opinion in Environmental Sustainability,2013,5(6):644-654. doi: 10.1016/j.cosust.2013.11.007
[8] SYVITSKI J P M,KETTNER A J,OVEREEM I,et al. Sinking deltas due to human activities[J]. Nature Geoscience,2009,2(10):681-686. doi: 10.1038/ngeo629
[9] SYVITSKI J P M,SAITO Y. Morphodynamics of deltas under the influence of humans[J]. Global and Planetary Change,2007,57(3):261-282.
[10] WANG H,WU X,BI N,et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe):a review[J]. Global and Planetary Change,2017,157:93-113. doi: 10.1016/j.gloplacha.2017.08.005
[11] ZHANG X,LU Z,JIANG S,et al. The progradation and retrogradation of two newborn Huanghe (Yellow River) Delta lobes and its influencing factors[J]. Marine Geology,2018,400:38-48. doi: 10.1016/j.margeo.2018.03.006
[12] KUENZER C,OTTINGER M,LIU G,et al. Earth observation-based coastal zone monitoring of the Yellow River Delta:dynamics in China’s second largest oil producing region over four decades[J]. Applied Geography,2014,55:92-107. doi: 10.1016/j.apgeog.2014.08.015
[13] KONG D,MIAO C,BORTHWICK A G L,et al. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011[J]. Journal of Hydrology,2015,520:157-167. doi: 10.1016/j.jhydrol.2014.09.038
[14] YU J,FU Y,LI Y,et al. Effects of water discharge and sediment load on evolution of modern Yellow River Delta,China,over the period from 1976 to 2009[J]. Biogeosciences,2011,8(9):2427-2435. doi: 10.5194/bg-8-2427-2011
[15] ZHOU Y,HUANG H Q,NANSON G C,et al. Progradation of the Yellow (Huanghe) River Delta in response to the implementation of a basin-scale water regulation program[J]. Geomorphology,2015,243:65-74. doi: 10.1016/j.geomorph.2015.04.023
[16] JIANG C,PAN S,CHEN S. Recent morphological changes of the Yellow River (Huanghe) submerged delta:causes and environmental implications[J]. Geomorphology,2017,293:93-107. doi: 10.1016/j.geomorph.2017.04.036
[17] WANG S,HASSAN M.A, XIE X. Relationship between suspended sediment load, channel geometry and land area increment in the Yellow River Delta[J]. CATENA,2006,65(3):302-314.
[18] MILLIMAN J D,MEADE R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology,1983,91(1):1-21. doi: 10.1086/628741
[19] LIU F,CHEN S,DONG P,et al. Spatial and temporal variability of water discharge in the Yellow River Basin over the past 60 years[J]. Journal of Geographical Sciences,2012,22(6):1013-1033. doi: 10.1007/s11442-012-0980-8
[20] MILLIMAN J D,SYVITSKI J P M. Geomorphic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers[J]. The Journal of Geology,1992,100(5):525-544. doi: 10.1086/629606
[21] 栗云召,于君宝,韩广轩,等. 基于遥感的黄河三角洲海岸线变化研究[J]. 海洋科学,2012,36(4):99-106.
LI Yunzhao,YU Junbao,HAN Guangxuan,et al. Research on the changes of the coastline in the Yellow River Delta based on remote sensing[J]. Marine Science,2012,36(4):99-106.
[22] 牛明香,王俊. 基于Landsat遥感影像的黄河三角洲东营段海岸线变化分析[J]. 水资源保护,2020,36(4):26-33. doi: 10.3880/j.issn.1004-6933.2020.04.005
NIU Mingxiang,WANG Jun. Analysis of coastline changes in the Dongying Section of the Yellow River Delta based on landsat remote sensing images[J]. Water Resources Protection,2020,36(4):26-33. doi: 10.3880/j.issn.1004-6933.2020.04.005
[23] 薛允传,马圣媛,周成虎. 基于遥感和GIS的现代黄河三角洲岸线变迁及发育演变研究[J]. 海洋科学,2009,33(5):36-40.
XUE Yunchuan,MA Shengyuan,ZHOU Chenghu. Research on the modern changes and development evolution of the coastline in the Yellow River Delta based on remote sensing and GIS[J]. Marine Science,2009,33(5):36-40.
[24] JIANG C,CHEN S,PAN S,et al. Geomorphic evolution of the Yellow River Delta:quantification of basin-scale natural and anthropogenic impacts[J]. CATENA,2018,163:361-377. doi: 10.1016/j.catena.2017.12.041
[25] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报,2005(5):589-595. doi: 10.11834/jrs.20050586
XU Hanqiu. Research on extracting water information using Modified Normalized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing,2005(5):589-595. doi: 10.11834/jrs.20050586
[26] FEYISA G L,MEILBY H,FENSHOLT R,et al. Automated Water Extraction Index:a new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment,2014,140:23-35. doi: 10.1016/j.rse.2013.08.029
[27] FISHER A,FLOOD N,DANAHER T. Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment,2016,175:167-182. doi: 10.1016/j.rse.2015.12.055
[28] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66. doi: 10.1109/TSMC.1979.4310076
[29] NAUSHEEN N,SEAL A,KHANNA P,et al. A FPGA based implementation of Sobel edge detection[J]. Microprocessors and Microsystems,2018,56:84-91. doi: 10.1016/j.micpro.2017.10.011
[30] HOU X,WU T,HOU W,et al. Characteristics of coastline changes in mainland China since the early 1940s[J]. Science China Earth Sciences,2016,59(9):1791-1802. doi: 10.1007/s11430-016-5317-5
[31] KENDALL M G. Rank Correlation Methods[M]. Oxford:Griffin,1948.
[32] MANN H B. Nonparametric tests against trend[J]. Econometrica,1945,13(3):245. doi: 10.2307/1907187
[33] 王延贵,刘茜,史红玲. 江河水沙变化趋势分析方法与比较[J]. 中国水利水电科学研究院学报,2014,12(2):190-195,201.
WANG Yangui,LIU Qian,SHI Hongling. Analysis methods and comparison of trends in river sediment changes[J]. Journal of China Institute of Water Resources and Hydropower Research,2014,12(2):190-195,201.
[34] WANG H,YANG Z,SAITO Y,et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005):impacts of climate change and human activities[J]. Global and Planetary Change,2007,57(3):331-354.
[35] 章诞武,丛振涛,倪广恒. 基于中国气象资料的趋势检验方法对比分析[J]. 水科学进展,2013,24(4):490-496.
ZHANG Danwu,CONG Zhentao,NI Guangheng. Comparative analysis of trend test methods based on Chinese meteorological data[J]. Advances in Water Science,2013,24(4):490-496.
[36] 苏志明,孙永福,宋玉鹏,等. 基于GEE和GIS的黄河三角洲面积多尺度时间序列分析[J]. 海洋科学进展,2022,40(1):90-101. doi: 10.12362/j.issn.1671-6647.2022.01.008
SU Zhiming,SUN Yongfu,SONG Yupeng,et al. Multi-scale time series analysis of the area of the Yellow River Delta based on GEE and GIS[J]. Progress in Ocean Science,2022,40(1):90-101. doi: 10.12362/j.issn.1671-6647.2022.01.008
[37] 刘志方,刘友存,郝永红,等. 黑河出山径流过程与气象要素多尺度交叉小波分析[J]. 干旱区地理,2014,37(6):1137-1146.
LIU Zhifang,LIU Youcun,HAO Yonghong,et al. Multi-scale cross wavelet analysis of the Heihe River runoff process and meteorological factors[J]. Arid Land Geography,2014,37(6):1137-1146.
[38] TORRENCE C,WEBSTER P J. Interdecadal changes in the ENSO-monsoon system[J]. Journal of Climate,1999,12(8):2679-2690. doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2
[39] LI H,HUANG C,ZHANG C,et al. Coastal erosion and sediment dynamics of the Yellow River Delta and their responses to the runoff-sediment flux since 1976[J]. Resources Science,2020,42(3):486-498.
[40] FAN Y,CHEN S,ZHAO B,et al. Shoreline dynamics of the active Yellow River Delta since the implementation of Water-Sediment Regulation Scheme:a remote-sensing and statistics-based approach[J]. Estuarine,Coastal and Shelf Science,2018,200:406-419. doi: 10.1016/j.ecss.2017.11.035
[41] CLEVELAND W S,DEVLIN S J. Locally weighted regression:an approach to regression analysis by local fitting[J]. Journal of the American Statistical Association,1988,83(403):596-610. doi: 10.1080/01621459.1988.10478639
[42] COLEMAN J M,WRIGHT L D. Modern river deltas:variability of processes and sand bodies[M]//BROUSSARD M L. Deltas:Models for Exploration. Houston:Houston Geological Society,1975:99-149.
[43] YANG S L,BELKIN I M,BELKINA A I,et al. Delta response to decline in sediment supply from the Yangtze River:evidence of the recent four decades and expectations for the next half-century[J]. Estuarine,Coastal and Shelf Science,2003,57(4):689-699. doi: 10.1016/S0272-7714(02)00409-2
[44] 陈俊卿,范勇勇,吴文娟,等. 2016—2017年调水调沙中断后黄河口演变特征[J]. 人民黄河,2019,41(8):6-9,116. doi: 10.3969/j.issn.1000-1379.2019.08.002
CHEN Junqing,FAN Yongyong,WU Wenjuan,et al. Evolution characteristics of the Yellow River Estuary after the water and sediment regulation interruption from 2016 to 2017[J]. People's Yellow River,2019,41(8):6-9,116. doi: 10.3969/j.issn.1000-1379.2019.08.002
-