近30年黄河陆上三角洲蚀退-淤进对气候变化和人类活动的响应

马乐, 陈健斌, 俞永庆, 王亚梅, 王国阳, 黄渊源, 吕燕玲, 丁咚. 近30年黄河陆上三角洲蚀退-淤进对气候变化和人类活动的响应[J]. 海洋地质前沿, 2024, 40(9): 49-62. doi: 10.16028/j.1009-2722.2023.248
引用本文: 马乐, 陈健斌, 俞永庆, 王亚梅, 王国阳, 黄渊源, 吕燕玲, 丁咚. 近30年黄河陆上三角洲蚀退-淤进对气候变化和人类活动的响应[J]. 海洋地质前沿, 2024, 40(9): 49-62. doi: 10.16028/j.1009-2722.2023.248
MA Yue, CHEN Jianbin, YU Yongqing, WANG Yamei, WANG Guoyang, HUANG Yuanyuan, LYU Yanling, DING Dong. Response of Yellow River subaerial delta erosion and accretion to climate change and human activities in the past 30 years[J]. Marine Geology Frontiers, 2024, 40(9): 49-62. doi: 10.16028/j.1009-2722.2023.248
Citation: MA Yue, CHEN Jianbin, YU Yongqing, WANG Yamei, WANG Guoyang, HUANG Yuanyuan, LYU Yanling, DING Dong. Response of Yellow River subaerial delta erosion and accretion to climate change and human activities in the past 30 years[J]. Marine Geology Frontiers, 2024, 40(9): 49-62. doi: 10.16028/j.1009-2722.2023.248

近30年黄河陆上三角洲蚀退-淤进对气候变化和人类活动的响应

  • 基金项目: 东营市市校合作重点项目(SXHZ-2022-02-15)
详细信息
    作者简介: 马乐(1998—),男,在读硕士,主要从事海岸带陆海环境信息集成方法及应用方面的研究工作. E-mail:male@stu.ouc.edu.cn
    通讯作者: 丁咚(1982—),男,博士,副教授,主要从事海岸带陆海环境信息集成方法及应用方面的研究工作. E-mail:dingdong@ouc.edu.cn
  • 中图分类号: P736;P737

Response of Yellow River subaerial delta erosion and accretion to climate change and human activities in the past 30 years

More Information
  • 近30年来,受全球气候变化和流域人类活动加剧的影响,黄河三角洲陆地蚀退-淤进过程对黄河流域水循环系统的响应变得更为显著。基于谷歌地球引擎(Google Earth Engine)和长时间序列的Landsat影像,结合流域内气象水文长期测量数据,定量研究了近30年黄河陆上三角洲蚀退-淤进对气候变化和人类活动的响应。研究发现,1993—2022年间,黄河三角洲陆地面积经历了先增加后减少再波动增加的阶段,现行河口岸段为主要淤积区,陆地面积每年增长约1.67 km2,刁口河岸段为主要侵蚀区,陆地面积每年减少约2.15 km2;入海水沙与河口面积变化在1993—2001年自然水沙输运时期存在周期为4~5 a的负相位关系;多元回归分析表明,自然水沙输运时期(1993—2001年)气候变化主导了河口蚀退-淤进,人工水沙调控时期(2002—2022年)人类活动的影响远大于气候变化。

  • 加载中
  • 图 1  黄河流域及研究区位置

    Figure 1. 

    图 2  本研究使用的陆地卫星时间序列影像可用数量

    Figure 2. 

    图 3  研究区Landsat5 TM影像及测试地点水陆分割图像

    Figure 3. 

    图 4  基于MNDWI和Otsu阈值分割的海岸线提取过程

    Figure 4. 

    图 5  1993—2022年刁口河岸段海岸线变化

    Figure 5. 

    图 6  1993—2022年东营港及临近岸段海岸线变化

    Figure 6. 

    图 7  1993—2022年河口岸段海岸线变化

    Figure 7. 

    图 8  1993—2022年莱州湾岸段海岸线变化

    Figure 8. 

    图 9  近30年黄河三角洲阶段性侵蚀和淤进区域

    Figure 9. 

    图 10  陆地面积的时间变化序列

    Figure 10. 

    图 11  1993—2022年黄河入海水沙变化

    Figure 11. 

    图 12  年径流量(a)和年输沙量(b)MK检验

    Figure 12. 

    图 13  径流量、输沙量与河口岸段面积小波相干功率谱

    Figure 13. 

    图 14  陆上三角洲蚀退-淤进与影响因子相关系数矩阵热图

    Figure 14. 

  • [1]

    OVEREEM I,SYVITSKI J P M. Dynamics and vulnerability of delta systems[R]. Geesthacht:GKSS Research Center,2009.

    [2]

    SYVITSKI J P M. Deltas at risk[J]. Sustainability Science,2008,3(1):23-32. doi: 10.1007/s11625-008-0043-3

    [3]

    WRIGHT L D. Sediment transport and deposition at river mouths:a synthesis[J]. Geological Society of America Bulletin,1977,88(6):857. doi: 10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2

    [4]

    SAITO Y,YANG Z,HORI K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas:a review on their characteristics,evolution and sediment discharge during the Holocene[J]. Geomorphology,2001,41(2):219-231.

    [5]

    GALAL E M,TAKEWAKA S. The influence of alongshore and cross-shore wave energy flux on large- and small-scale coastal erosion patterns[J]. Earth Surface Processes and Landforms,2011,36(7):953-966. doi: 10.1002/esp.2125

    [6]

    XU J. Response of land accretion of the Yellow River Delta to global climate change and human activity[J]. Quaternary International,2008,186(1):4-11. doi: 10.1016/j.quaint.2007.08.032

    [7]

    RENAUD F G,SYVITSKI J P,SEBESVARI Z,et al. Tipping from the Holocene to the Anthropocene:how threatened are major world deltas?[J]. Current Opinion in Environmental Sustainability,2013,5(6):644-654. doi: 10.1016/j.cosust.2013.11.007

    [8]

    SYVITSKI J P M,KETTNER A J,OVEREEM I,et al. Sinking deltas due to human activities[J]. Nature Geoscience,2009,2(10):681-686. doi: 10.1038/ngeo629

    [9]

    SYVITSKI J P M,SAITO Y. Morphodynamics of deltas under the influence of humans[J]. Global and Planetary Change,2007,57(3):261-282.

    [10]

    WANG H,WU X,BI N,et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe):a review[J]. Global and Planetary Change,2017,157:93-113. doi: 10.1016/j.gloplacha.2017.08.005

    [11]

    ZHANG X,LU Z,JIANG S,et al. The progradation and retrogradation of two newborn Huanghe (Yellow River) Delta lobes and its influencing factors[J]. Marine Geology,2018,400:38-48. doi: 10.1016/j.margeo.2018.03.006

    [12]

    KUENZER C,OTTINGER M,LIU G,et al. Earth observation-based coastal zone monitoring of the Yellow River Delta:dynamics in China’s second largest oil producing region over four decades[J]. Applied Geography,2014,55:92-107. doi: 10.1016/j.apgeog.2014.08.015

    [13]

    KONG D,MIAO C,BORTHWICK A G L,et al. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011[J]. Journal of Hydrology,2015,520:157-167. doi: 10.1016/j.jhydrol.2014.09.038

    [14]

    YU J,FU Y,LI Y,et al. Effects of water discharge and sediment load on evolution of modern Yellow River Delta,China,over the period from 1976 to 2009[J]. Biogeosciences,2011,8(9):2427-2435. doi: 10.5194/bg-8-2427-2011

    [15]

    ZHOU Y,HUANG H Q,NANSON G C,et al. Progradation of the Yellow (Huanghe) River Delta in response to the implementation of a basin-scale water regulation program[J]. Geomorphology,2015,243:65-74. doi: 10.1016/j.geomorph.2015.04.023

    [16]

    JIANG C,PAN S,CHEN S. Recent morphological changes of the Yellow River (Huanghe) submerged delta:causes and environmental implications[J]. Geomorphology,2017,293:93-107. doi: 10.1016/j.geomorph.2017.04.036

    [17]

    WANG S,HASSAN M.A, XIE X. Relationship between suspended sediment load, channel geometry and land area increment in the Yellow River Delta[J]. CATENA,2006,65(3):302-314.

    [18]

    MILLIMAN J D,MEADE R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology,1983,91(1):1-21. doi: 10.1086/628741

    [19]

    LIU F,CHEN S,DONG P,et al. Spatial and temporal variability of water discharge in the Yellow River Basin over the past 60 years[J]. Journal of Geographical Sciences,2012,22(6):1013-1033. doi: 10.1007/s11442-012-0980-8

    [20]

    MILLIMAN J D,SYVITSKI J P M. Geomorphic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers[J]. The Journal of Geology,1992,100(5):525-544. doi: 10.1086/629606

    [21]

    栗云召,于君宝,韩广轩,等. 基于遥感的黄河三角洲海岸线变化研究[J]. 海洋科学,2012,36(4):99-106.

    LI Yunzhao,YU Junbao,HAN Guangxuan,et al. Research on the changes of the coastline in the Yellow River Delta based on remote sensing[J]. Marine Science,2012,36(4):99-106.

    [22]

    牛明香,王俊. 基于Landsat遥感影像的黄河三角洲东营段海岸线变化分析[J]. 水资源保护,2020,36(4):26-33. doi: 10.3880/j.issn.1004-6933.2020.04.005

    NIU Mingxiang,WANG Jun. Analysis of coastline changes in the Dongying Section of the Yellow River Delta based on landsat remote sensing images[J]. Water Resources Protection,2020,36(4):26-33. doi: 10.3880/j.issn.1004-6933.2020.04.005

    [23]

    薛允传,马圣媛,周成虎. 基于遥感和GIS的现代黄河三角洲岸线变迁及发育演变研究[J]. 海洋科学,2009,33(5):36-40.

    XUE Yunchuan,MA Shengyuan,ZHOU Chenghu. Research on the modern changes and development evolution of the coastline in the Yellow River Delta based on remote sensing and GIS[J]. Marine Science,2009,33(5):36-40.

    [24]

    JIANG C,CHEN S,PAN S,et al. Geomorphic evolution of the Yellow River Delta:quantification of basin-scale natural and anthropogenic impacts[J]. CATENA,2018,163:361-377. doi: 10.1016/j.catena.2017.12.041

    [25]

    徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报,2005(5):589-595. doi: 10.11834/jrs.20050586

    XU Hanqiu. Research on extracting water information using Modified Normalized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing,2005(5):589-595. doi: 10.11834/jrs.20050586

    [26]

    FEYISA G L,MEILBY H,FENSHOLT R,et al. Automated Water Extraction Index:a new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment,2014,140:23-35. doi: 10.1016/j.rse.2013.08.029

    [27]

    FISHER A,FLOOD N,DANAHER T. Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment,2016,175:167-182. doi: 10.1016/j.rse.2015.12.055

    [28]

    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66. doi: 10.1109/TSMC.1979.4310076

    [29]

    NAUSHEEN N,SEAL A,KHANNA P,et al. A FPGA based implementation of Sobel edge detection[J]. Microprocessors and Microsystems,2018,56:84-91. doi: 10.1016/j.micpro.2017.10.011

    [30]

    HOU X,WU T,HOU W,et al. Characteristics of coastline changes in mainland China since the early 1940s[J]. Science China Earth Sciences,2016,59(9):1791-1802. doi: 10.1007/s11430-016-5317-5

    [31]

    KENDALL M G. Rank Correlation Methods[M]. Oxford:Griffin,1948.

    [32]

    MANN H B. Nonparametric tests against trend[J]. Econometrica,1945,13(3):245. doi: 10.2307/1907187

    [33]

    王延贵,刘茜,史红玲. 江河水沙变化趋势分析方法与比较[J]. 中国水利水电科学研究院学报,2014,12(2):190-195,201.

    WANG Yangui,LIU Qian,SHI Hongling. Analysis methods and comparison of trends in river sediment changes[J]. Journal of China Institute of Water Resources and Hydropower Research,2014,12(2):190-195,201.

    [34]

    WANG H,YANG Z,SAITO Y,et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005):impacts of climate change and human activities[J]. Global and Planetary Change,2007,57(3):331-354.

    [35]

    章诞武,丛振涛,倪广恒. 基于中国气象资料的趋势检验方法对比分析[J]. 水科学进展,2013,24(4):490-496.

    ZHANG Danwu,CONG Zhentao,NI Guangheng. Comparative analysis of trend test methods based on Chinese meteorological data[J]. Advances in Water Science,2013,24(4):490-496.

    [36]

    苏志明,孙永福,宋玉鹏,等. 基于GEE和GIS的黄河三角洲面积多尺度时间序列分析[J]. 海洋科学进展,2022,40(1):90-101. doi: 10.12362/j.issn.1671-6647.2022.01.008

    SU Zhiming,SUN Yongfu,SONG Yupeng,et al. Multi-scale time series analysis of the area of the Yellow River Delta based on GEE and GIS[J]. Progress in Ocean Science,2022,40(1):90-101. doi: 10.12362/j.issn.1671-6647.2022.01.008

    [37]

    刘志方,刘友存,郝永红,等. 黑河出山径流过程与气象要素多尺度交叉小波分析[J]. 干旱区地理,2014,37(6):1137-1146.

    LIU Zhifang,LIU Youcun,HAO Yonghong,et al. Multi-scale cross wavelet analysis of the Heihe River runoff process and meteorological factors[J]. Arid Land Geography,2014,37(6):1137-1146.

    [38]

    TORRENCE C,WEBSTER P J. Interdecadal changes in the ENSO-monsoon system[J]. Journal of Climate,1999,12(8):2679-2690. doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2

    [39]

    LI H,HUANG C,ZHANG C,et al. Coastal erosion and sediment dynamics of the Yellow River Delta and their responses to the runoff-sediment flux since 1976[J]. Resources Science,2020,42(3):486-498.

    [40]

    FAN Y,CHEN S,ZHAO B,et al. Shoreline dynamics of the active Yellow River Delta since the implementation of Water-Sediment Regulation Scheme:a remote-sensing and statistics-based approach[J]. Estuarine,Coastal and Shelf Science,2018,200:406-419. doi: 10.1016/j.ecss.2017.11.035

    [41]

    CLEVELAND W S,DEVLIN S J. Locally weighted regression:an approach to regression analysis by local fitting[J]. Journal of the American Statistical Association,1988,83(403):596-610. doi: 10.1080/01621459.1988.10478639

    [42]

    COLEMAN J M,WRIGHT L D. Modern river deltas:variability of processes and sand bodies[M]//BROUSSARD M L. Deltas:Models for Exploration. Houston:Houston Geological Society,1975:99-149.

    [43]

    YANG S L,BELKIN I M,BELKINA A I,et al. Delta response to decline in sediment supply from the Yangtze River:evidence of the recent four decades and expectations for the next half-century[J]. Estuarine,Coastal and Shelf Science,2003,57(4):689-699. doi: 10.1016/S0272-7714(02)00409-2

    [44]

    陈俊卿,范勇勇,吴文娟,等. 2016—2017年调水调沙中断后黄河口演变特征[J]. 人民黄河,2019,41(8):6-9,116. doi: 10.3969/j.issn.1000-1379.2019.08.002

    CHEN Junqing,FAN Yongyong,WU Wenjuan,et al. Evolution characteristics of the Yellow River Estuary after the water and sediment regulation interruption from 2016 to 2017[J]. People's Yellow River,2019,41(8):6-9,116. doi: 10.3969/j.issn.1000-1379.2019.08.002

  • 加载中

(14)

计量
  • 文章访问数:  1203
  • PDF下载数:  73
  • 施引文献:  0
出版历程
收稿日期:  2023-10-27
刊出日期:  2024-09-28

目录